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Non-oscillatory Lax-Friedrichs Type Central
Finite Volume Methods for 3-D Flows on
Unstructured Tetrahedral Grids

P. Arminjon, A. Madrane, and A. St-Cyr

Abstract. We present a 3D finite volume generalization of the 1-dimensional
Lax-Friedrichs and Nessyahu-Tadmor schemes for hyperbolic equations on
unstructured tetrahedral grids. The non-oscillatory central difference scheme
of Nessyahu and Tadmor, in which the resolution of the Riemann problem
at the cell interfaces is by-passed thanks to the use of the staggered Lax-
Friedrichs scheme, is extended here to a two-step, three-dimensional non-
oscillatory centered scheme in finite volume formulation. Piecewise linear cell
interpolants using Venkatakrishnan’s limiter combined with diverse techniques
to estimate the gradients lead to a non-oscillatory spatial resolution of order 2.
The fact that the expected second order resolution is not fully attained in 3D
for nonlinear systems might be caused by the absence of grid adaptation in our
calculations. Numerical results for a linear advection problem with continuous
initial conditions in 3D show the accuracy and stability of the method. We
also include results for the 3D Euler system (shock tube problem)

1. Introduction

In earlier papers [5, 6] we presented a two-dimensional finite volume method gen-
eralizing the one-dimensional Lax-Friedrichs [12] and Nessyahu-Tadmor [16] dif-
ference schemes for hyperbolic conservation laws to unstructured triangular grids,
while in [4, 2] we have also constructed a corresponding extension for 2-dimensional
Cartesian grids. Other recent contributions in the case of Cartesian grids can be
found in {10, 11, 13, 14].

All these extensions to 2-dimensional problems lead to non-oscillatory, essen-
tially second order accurate finite volume methods.

In |2, 3] we presented an extension to staggered structured three-dimensional
Cartesian grids of our two-dimensional finite volume method for Cartesian grids.
We proved that the first order three-dimensional finite volume extension of the
Lax-Iriedrichs scheme is monotone under an appropriate CFL condition. Some
difficulties encountered in the numerical experiments led us to consider a special
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type of limiting function proposed by Venkatakrishnan. The method still displayed
too much dissipation and requires some adjustments.

In this paper, we first present a finite volume extension of the first order
accurate Lax-Friedrichs scheme to three-dimensional tetrahedral grids. We then
construct the extension of our two-dimensional finite volume method to a quasi-
second order accurate non-oscillatory finite volume method of “central type”, for
staggered unstructured tetrahedral grids, which can be viewed as a finite vol-
ume generalization of the 1-dimensional Nessyahu-Tadmor difference scheme to
3-dimensional unstructured tetrehedral grids.

2. Mathematical modelling

2.1. Governing equations

Let ©Q ¢ R3 be the domain of interest of the flow and I" be its boundary, we write
I' = TgUTy U, where I'g denotes that part of the body boundary which
is relevant for the computational domain. T'y, is the (upwind) farfield boundary,
and I'g is the (downwind) exit part of the boundary. The equations describing
3-dimensional compressible inviscid flows are the Euler equations, written here in
their conservation form , given by
ou = =

— + V- F(U)=0

B (U)

e — . . d
where U = (p, pu, pv, pw, B)",  F(U) = (F’(U),G’(U),IZ(U))7 , (1)

—

F (U) denotes the convective flux , p is the density, V= (u,v,w) is the velocity
vector, I/ = pe = pe -+ f;-p(uz v? 4+ w?) is the total energy per unit volume; p is
the pressure of the fluid. Let A,B and C' denote the Jacobian matrices 0F(U)/0U,
AG(U)/OU and OH(U)/OU, respectively. Eq.(1) can be written in the nonconser-
vative form:

ou ou . oU ou
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at () Oz FBU) oy HC) 0z ) 2)

3. Discretization with respect to space and time

3.1. Definitions, description of the first-order method

We assume that € is a polyhedral bounded domain of R*, and start from an
arbitrary FEM tetrahedral grid 7, where h is the maximal length of the edges in
T, We need the following notations: 7;; denotes the set of all tetrahedra which
share edge [4,7] as a common edge. Let M denote the set of indices of all sub-
tetrahedra of the original tetrahedral grid, defined by the median planes such as:
MGG M GG, MGGy and JM GGy on fig. 1 Let m(i, 7, 7,1) be one such in-
dex contained in M, where 7 € T35 and { {1 <[ < 4) is the index of one of the four
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sub-tetrahedra sharing edge [i, j] and contained in tetrahedron 7. If I = 1,3 then
the index denotes sub-tetrahedra having node a; in common, and, if [ = 2,4 they
share node a;. Any such sub-tetrahedron will be noted I, where k € M. K (i) is the
set of nodes (vertices) which are neighbours of node a;. Let nv be the number of
vertices of 7 € Ty, For every vertex a;, 1 <4 < nv (written i for simplicity on fig. 1)
of an arbitrary tetrahedron 7 € 73, we define the (vertex centered) barycentric cell
C; as follows (this approach was introduced in [1]): every tetrahedron of 7}, is sub-
divided in 24 sub-tetrahedra [ by the median planes. The cell C; is the union of the
resulting sub-tetrahedra sharing a; as a vertex C; = UjeK(,,:) UreT,;j bin(iyjor {1,31)-
The faces of interest associated with each sub-tetrehedron Iy, (k € M) are, first,
those which do not share any edge midpoint (such as M in fig. 1) noted 8l (such
as jGGH or jGG3 on fig. 1), and secondly, the faces which do not contain vertex a;
in their composition, noted dl7. The outward normals to those faces will be noted
ny, for 01} and vy, for 0lF (such as, on fig. 1, MGG or M1GG3). Note that we use
normal vectors such that ||ng|| = Area(dl}) and ||vg|| = Area(dl}). The bound-
ary OC; of C; can be constructed with 912 ( 0C; = Ujer@ Urer, algn(bjn',{lﬁ}))'
As was the case in our 2-dimensional extensions, our 3-D extension also uses a

Fiaure 1. Barycentric cell C; and diamond cell L;;

dual grid, with dual cells L;; associated with the edges of 7). The dual ("dia-
mond”) cell L, is composed by the sub-tetrahedra (defined above) sharing edge
li, g) (Li; = U, ey, bm(igri1,2,3,4) y). Owing to the the fact that Ol + denotes one of
the facets of OL,;, we can formulate the dependence of dL;; on the selected faces
(i.e. with superscript index 1) of the sub-tetrahedra which compose L;; :

OLij = U myly.:,(v;,;,p,w{ 1,2,3,4}) U ((N'zl)'z.(//?j;ry{ 1,3}) U a‘{'rln.(i,j,ﬁ{’zlﬂ}) (3)

TETy TET;;

Let 7,7, k, 1 be the four nodes defining a tetrahedron 7 sharing node a;, then the
cell boundary element of cell C;, associated with 7 and edge [i, j] is

OC; vr N Ly = Triangle(M, GG ) U Triangle( M, GGy) = ("91;2,?/(,,17:}"7,1{1‘3})
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= al?n(i,jml) U 8lfn,(i,j,7,3) (4)

Let m;; denote the midpoint of edge [i,j], also written as M; above, and let
Ul = U(a,t™) and U{;H > U(my;,t"*1) denote the nodal (resp. cell average)
values in the first and second grid at time ¢ = ¢" and ¢ = t"*!, respectively (n
even).

The union of all the barycentric cells constitutes a partition of the computational
domain €2 and the same holds for diamond cells:

=JC, Q= ULk
i=1 k=1

where nv and ne are the number of vertices and number of edges, respectively, of
the original finite element triangulation 7;,. We now define the two steps of our
first order accurate (staggered, Lax-Friedrichs type) finite volume method:

First time step:

In the first (and further odd) time step of our 3-dimensional finite volume scheme,
we start from initial (or previously obtained) cell average values U, for the barycen-
tric cells of the first grid, and compute cell average values U ,; for the (staggered)
dual cells of the second grid. This is done by integrating (1) on an extended con-
trol volume L;; x [t",t" 1], where L;; is a (diamond) cell of the dual grid, and by
assuming that U L; (8" 4+ At) is piecewise constant on the cells of the second grid.
Using (1) and applying the divergence theorem to the flux term, we obtain

L +1 L'r'tl 13
/ / U didt -+ / / F(U) -7 dAdt =0 (5)
Ly i §Ly,

Let m(1,3) be equal to m(i, 7, 7,{1,3}) and m(2,4) = m(i, j,7,{2,4}) for simplic-
ity, (where m(1,3) is in fact dependent on i, j, 7);we obtain

l . Af, S - —
n41 _ T ' g T — P n >
U” = ’i(Z/, -+ ([l ) - ‘/’()[([/ij) T(}? {‘F(Ifz ) ©Tm(1,3) + ‘F(U/ ) ! n‘m.(‘l,A)}
At / = N At ' = _
R T FU@E") ndA — —— / F(U@)™) - 7 dA
Vol(Lij). OL; N g ' Vol(Lij). AL M (

(6)

Second time step: Starting from the known diamond cell value U;;""J, we compute
the barycentric cell value l)’lﬁ”’” (1 <4 < nw) by integrating (1) on an extended
control volume C; x [t /,""‘Lg], applying the divergence theorem to the flux term,
and observing that

0C; = | ) {0CnoCyu{oC Ny U {00 N T},
JeK (i)
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We obtain

, Vol(C; N Lyj)

n+2 __ ? ) n+1 n+1 *ﬁ

U= > val(cy i Vol Z 2w Y m(L3)
FEK(4) ' EK(?,) T€Ts;

At / — At " .
FU™NY . TdA - ———— / FUY . TdA (7
VOKC) 8C;NT s ( ) VOZ(C') 8C; Moo ( ) ( )

3.2. High-order accurate approximations

To obtain second-order accuracy, we introduce cellwise piecewise linear interpo-
lation (MUSCL,[17]), the derivatives of the P, (Galerkin) interpolation [8], Least
Squares [6], and the Gauss-Green formula [7]. First step: We integrate (1) on an
extended control volume L;; x [t", t"t1], assuming we have obtained from the cell
average values U!* piecewise linear reconstructions given by

Uh(xay7 Z, tn)écl _“‘C ( y Y, 2 tn)
=U + (@ —2) P+ (y — 9)QF + (2 — )R (2,9,2) € Ci
(8)

For the integration with respect to time, in order to ensure "nearly” second-order
accuracy, we adopt a ” quasi-midpoint formula” time discretization, where the
convective flux is computed at the intermediate time trts ( thus requiring the
computation of predicted values U (x,y,t"" %) along dL;; ), in the integration
with respect to time.
Predictor (First step):

On each face of the cell L;;, using the Iuler equations, we define a predicted
vector

n4-1/2 n Al ST n 1 Iirmm 1
U(LL,G’,,(I [T” GG 27{P (’(,L;,,CL,G) P+ G ( a; G )(’JL - H (([(1 GG )R1}
(9)
where, using (8), the value of U]’ along the face a;, (1, G of diamond cell Ly; is

taken equal to

Un(w,y, 2, 0") 2 U= (0, a0 — i) P A 5 (Y, 0,0 — Yi) Q7

2 ’ 2
/1 iz T &
‘[";)‘(Z,,,“(‘;l:(',’ - ’:l)]{; = Ua G, (JO}

The corrector can now be written, using (9), as
Corrector (First step)

Vol(Li Ul ‘{ L(x,y, 2, t")dZ r/ L(x,y, 2,1 “)(lz}
LijnC; Li;nC,

sigh

ALY + /)“ }f Uty mdA

T SOV Ggrinsy Y O 12,4
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+ At/ FUD) - fidA + At/ FUP) iigdA=0  where (11)
C)L“ N 8L,,-_,» N
/ ﬁ(CE Y, 2, tn Z V()l m(l 3) £<xgm(1,3)>ygm(1,3)ang(l,a)atn> (12>
Linc; TET;;

where G,(1 3) is the centroid of sub-tetrahedron lm(1,3)- Note that from the coding
viewpoint there is a simplification since the two sub-tetrahedra (1,3) also form a
convex polyhedron the barycenter of which can be calculated, and the last integral
can be simplified.

Second step

To obtain the second step of the time discretization, we integrate (1) on the cell
Cy x [t "2 assuming we have obtained, from the diamond cell average values
U,,-ZH computed in the first time step, piecewise linear reconstructions, given by

Up(z,y, 2, t"*) = Lij(z,y, 2, t")

Un—‘- + ( 'TZ_]>Pn 5—1 (J _ y”)Qn I—l (z = Z[j)}?n+1

I

(13)
Proceeding as for the first step, we obtain
Predictor (second step)
n+3 yrt1
U@ <,J My, Gy = =Ug; G, My ,Gy
. ni -+ 1 n+1 / n-41 7r+1 o U T+ n-+17
2"{-F Ue e e P + G UGG, QT+ H(U (;1 e B

(14)

where
Un(x,y, 2, ")y = ot
1 - HH | , ., ~74-1 1 - n-+1 n-1
+ ;2(1(; wp )P 2(!/(; —ym,) Q)+ Q(»c ~am )R = UG iy o

(15)
defines an approximation of the value of U on the boundary element [, Gy, M, G3]
of cell ;.

Corrector (second step)

Vol(Curt — Z: / Lij(w,y, z, ") dz
[eFtal)

s (i) 7

Y L (U (2, 2,072) - P dA

je 1\() €Ty " va?JT’Jﬂ
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where

/ Lij('Z)yaZ)tn%-l)df:
CyMLyy

Z Z {Vol(lngi,jir1,3)) L(TG (1,7,m1,3) Yo (177 1,3) 5 20 igr1,3)0 £ )}
JEK (i) TETy;
(17)

is computed according to 12 with the respective barycenters of the sub-tetrahedra
(again, a simplification is possible).

3.2.1. APPROXIMATION OF THE SLOPES AND LIMITATION In order to compute the
gradient (P*, QF, R}") of the piecewise linear interpolant L(x,y, z,t™) for the cell
C;, we use the Py (Galerkin) interpolation [8], Least Squares [6] and Gauss-Green
[7]. For the limitation we use several procedures, see [17]. Numerical experiments
have led us to choose the Gauss-Green formula for the gradients used in the re-
construction for the cells C; and a least squares weighted procedure for the cells

3.2.2. StaBILITY We refer to [15] for a stability study of linear multidimensional
advection models that is also valid in the 3-D case. For the second time step:

Vol(C, . ‘
At; = ~———~(~~'2—~ where A}, ., = max(\;, max Aj)
; o 7 neighbour of i
/\;ILO.CL' dA
Jac;
and N = ||Vy|| +

N L. .

Vi, ¢; refer to the values in the cell C; of the velocity vector and sound speed,
respectively. We then choose the minimum At¢; for all indices ¢ (1 < i < nv)
At = min {At;} with a similar time step definition for the first (odd) step

1<i<<nv

(1 — gt

4. Numerical experiments

4.1. Linear advection problem

First, to confirm the spatial accuracy of the scheme, a simple advection test is
performed on a smooth initial distribution. The distribution is advected near the
boundary of the cube [0, 1]? and compared with the exact solution of the following
problem:

Wi+ Uy A+ Uy F Uy =0 (18)

cos(4mr?) if r% < 1/8

wla,y, 2,0 =0) = f(r?) = .
W,y 2, ) =107 { 0 otherwise

where 74 = (z—1/2)%++(y~1/2)?+ (2~ 1/2)? . Table 1 shows the L;-error and ac-
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Diameter | Nodes | Lt-error | Order
0.134057 | 4095 | 0.0487568
0.123977 | 5733 | 0.0416913 | 2.0027

TABLE 1. L' - error and accuracy order, continuous problem

curacy order; the limiting function used was the one proposed by Venkatakrishnan
[18].

4.2. Shock tube problem

To illustrate the accuracy of our scheme, we present numerical results for a 3-D
extension of the shock tube problem introduced by Sod . In this problem, an initial
discontinuity in the thermodynamical state of the gas breaks into a shock wave
followed by a contact discontinuity and a rarefaction wave. Finite element meshes
with 909,1809 and 3609 nodes are used and the initial conditions at ¢ = 0 are
specified by the data
p=Lu=0v=0w=0p=10 =z€]l0,1/2] (19)
p=0125u=0;v=0,w=0;p=01 =ze[l/2/1]
The profiles of density, velocity, pressure and temperature are compared with the
analytical solution at ¢t = 0.16. The numerical solution of the 3-dimensional shock

h Nodes L? p Order LV, Order L? P Order
0.01 909 | 2.898e-05 9.982¢-05 2.778e-05
0.005 | 1809 | 1.555e-05 | 0.898 | 6.399¢-05 | 0.641 | 1.196e-05 | 1.216

TABLE 2. L? - error and accuracy order, Sod’s problem

$ods shock tube problam 903 nodes

vt THBENESOOTOG.gp. 1 ©

t_sod.outt

0.8 “TUBEDE 08

04

Fiounre 2. Sod’s shock tube problem with 909 and 3609 gridpoints

tube problem is clearly much more likely to suffer from excessive numerical dissi-
pation than its 1-dimensional analogue see . g. [9]. In our case, see table 2 and Pig.
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2, this dissipation might be due to the fact that the tetrahedra are fairly stretched
(the aspect ratio is more than 1 : 25). This creates an additional difficulty for the
capture of the shock and particularly of the contact discontinuity. Mesh adapta-
tion, which was not available to us, would certainly bring a decisive improvement,
as was observed in our 2-dimensional experiments [6].

5. Conclusion

In this paper we have presented a new construction of three-dimensional finite vol-
ume methods for inviscid flows using staggered unstructured tetrahedral grids. The
first and second-order methods can be considered as finite volume generalizations
of the Lax-Friedrichs and Nessyahu-Tadmor 1-dimensional difference schemes, re-
spectively. Actual calculations have been restricted to the higher-order method, as
the first-order Lax-Friedrichs-type method, in three dimensions, proved to be even
more dissipative than in one dimension. Nevertheless the quality of the results
does not fully meet original expectations, based on the very high quality obtained
with our method for 2-dimensional flows [6], where we were using grid adaptation.
We could probably attribute the excessive dissipation in part to the grids, which
have a relatively small number of nodes, a high aspect ratio, and have not bene-
fited from the improvements brought about by grid adaptation. We are currently
working on this problem.
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