
Comparison of two Conservative Schemes for

Hyperbolic Interface Problems

Riccardo Fazio

Dipartimento di Matematica, Università di Messina
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Abstract. We recall two conservative schemes recently proposed for the numerical

solution of hyperbolic interface problems. Then, we compare the two schemes on a

piston problem and a shock tube problem.

1 Introduction

We compare two conservative schemes for the system of conservation laws
describing two gases separated by an interface. For the comparison we use
a model problem introduced by Fazio and LeVeque [2]. A material interface
I(t) separates two gases within a tube with a piston L(t) at one of its ends.
The governing equations for this problem are given by Euler equations of gas
dynamics,

∂q

∂t
+

∂

∂x
[f(q)] = 0 , (1)

with

q = [ρ, ρu,E]T ,

f(q) =
[

ρu, ρu2 + p, (E + p)u
]T

, (2)

and with the constitutive law for ideal gases

p = (γ(x, t) − 1)

(

E −
1

2
ρu2

)

, (3)

where ρ, u, E, and p denote, respectively, density, velocity, total energy den-
sity per unit volume, and pressure of the gas. The polytropic constant γ(x, t)
takes the value γ1 for 0 ≤ x < I(t), and γ2 for I(t) < x ≤ L(t).

The motion of the piston is governed by Newton’s equation

d2L

dt2
=

A

m
(p(L(t), t) − pout(t)) , (4)

where A is the area of the piston, m is its mass and pout(t) is a prescribed
external pressure. From the above model a tube problem is recovered by
assuming that the piston is initially at rest and setting A = 0 in (4).
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2 The Eulerian scheme

For the Eulerian scheme we apply a finite volume approach, where we denote
by

Qn
i ≈

1

∆xn
i

∫ xn+1

i

xn
i

q(x, tn) dx

the overage of the filed quantities on the reference grid-cell. Within the
physical domain we define a moving mesh, xn

i < xn
i+1 at time tn with

∆xn
i = xn

i+1 − xn
i and ∆tn = tn+1 − tn. Moreover, we assume a constant

speed of the moving mesh, that is

ẋn
i =

(

xn+1
i − xn

i

)

/∆tn

is constant over each time step (tn, tn+1].
Integrating the conservation law over the trapezoid (shown shaded in

figure 1), we get

∆xn+1
i Qn+1

i = ∆xn
i Qn

i − ∆tn [(f(Q∗
i+1) − ẋn

i+1Q
∗
i+1) − (f(Q∗

i ) − ẋn
i Q∗

i )] .

tn

tn+1

xn

i
xn

i+1

xn+1

i+1xn+1

i

Qn

i

Q∗

i Q∗

i+1

Fig. 1. Moving-mesh grid points and field quantities.

Let us define κn
i = ∆xn

i /∆η, where κ(η, t) is a capacity function and η is
a computational variable with constant ∆η. Then, replacing ∆xn

i by κn
i ∆η

in the above equation and dividing by ∆η, we get

κn+1
i Qn+1

i = κn
i Qn

i −
∆tn

∆η
[(f(Q∗

i+1) − ẋn
i+1Q

∗

i+1)−(f(Q∗
i ) − ẋn

i Q∗
i )] .

This gives a consistent, but nonconservative, approximation to the balance
law because

κn
i ≈ Xη(ηi, tn) and ẋn

i ≈ Xt(ηi, tn) .

Note that, when the grid is moving, κn
i varies with n. The algorithm

should achieves two goals:
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1.
∑

i

κn
i Qn

i should be conserved with n;

2. constant states Q should be preserved, even when κQ is varying (i.e.,
when the mesh is moving).

To this end, we can use the relation

κn
i Qn

i = κn+1
i Qn

i −
∆tn

∆η
(ẋn

i+1 − ẋn
i )Qn

i ,

following from xn+1
i = xn

i + ∆tnẋn
i . The above equation, after some rear-

rangements, gives

κn+1
i Qn+1

i = κn+1
i Qn

i −
∆tn

∆η
[(f(Q∗

i+1) − ẋn
i+1(Q

∗
i+1 − Qn

i ))

−(f(Q∗
i ) − ẋn

i (Q∗
i − Qn

i ))] .

This can be viewed as a conservative discretization of the balance law (see
[2]).

This moving-mesh method supplemented by suitable monitor functions
has been used by J. M. Stockie, J. A. Mackenzie and R. D. Russell [6] to
provide a better resolution of wave structures, in particular of contact dis-
continuities, in comparison with fixed mesh computations.

2.1 Stability analysis

As far as the stability of the moving-mesh method is concerned, by follow-
ing Harten and Hyman [4], we require that the domain of influence of the
Riemann problem at xn

i is contained in [xn+1
i−1 , xn+1

i+1 ] at time tn+1. Hence, we
impose that

xn+1
i−1 ≤ xn

i + λ−

i ∆tn ≤ xn
i + λ+

i ∆tn ≤ xn+1
i+1 ,

where λ+
i = maxp (0, λp

i ), λ−

i = minp (0, λp
i ), and λp

i is the speed of the
p−wave, with p = 1, 2, 3, for the Euler equations. The above relations, by
taking into account that xn+1

i = xn
i +∆tnẋn

i , can be unified into the stability
conditions

|λ̃−

i |∆tn ≤ ∆xn
i−1 ⇒ |λ̃−

i+1|∆tn ≤ ∆xn
i

|λ̃+
i |∆tn ≤ ∆xn

i ;

here λ̃±

i = λ±

i − ẋn
i are shifted wave speeds. The two above stability restric-

tions can be unified into

∆tnmax
i







∣

∣

∣
λ̃+

i

∣

∣

∣

∆xi
,

∣

∣

∣
λ̃−

i+1

∣

∣

∣

∆xi







≤ 1 . (5)

Provided that ẋn
i ≈ λp

i we get wider time steps ∆tn with respect to a
fixed nonuniform grid. This can be seen as a possibility to relax the global
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CFL condition. However, let us note that we have three waves and only one
mesh speed, so that, in general we have to find a compromise.

To grasp the reason for the shifted wave speeds in the stability condition
(5), we write the transformed system

(κ(η, t)q)t + [f(q) − ẋ(η, t)q]η = 0

in the computational variable η (here subscripts stand for partial derivatives),
and notice that the new Jacobian of the flux functions is given by the old one
minus the mesh speed.

A different stability condition follows by requiring ∆tn to be small enough
so that waves from neighboring cells do not interact. This results in a more
strict stability condition, where the left-hand side is one half than the one in
(5). However, numerical tests confirm that stability is ensured by imposing
(5).

3 The Lagrangian scheme

In this section, we follow the treatment by Fazio and Russo [3].

3.1 Lagrangian formulation

By introducing the Lagrangian coordinate ξ given by

ξ =

∫ x

x0(t)

ρ(z, t)dz ,

where x0(t) denotes the Eulerian coordinate of the first fluid particle of the
domain, the Euler equations (1)-(2) can be transformed in Lagrangian form

Dq

Dt
+

∂

∂ξ
[f(q)] = 0 , (6)

which is in conservation form too, with

q = [V, u, E ]T ,

f(q) = [−u, p, up]T ; (7)

here the time derivative is the Lagrangian derivative

D/Dt = ∂/∂t + u∂/∂x ,

the new field variables are defined by V (ξ, t) = ρ−1, E = E/ρ, and the equa-
tion of state (3) becomes

p = (γ(ξ, t) − 1)

(

E −
1

2
u2

)

/V . (8)

The inverse transformation of coordinate is

x = x0(t) +

∫ ξ

0

V (z, t)dz , (9)
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and x0(t) satisfies the equation

d

dt
x0 = u(ξ = 0, t) .

Hence, 0 ≤ ξ ≤ ξmax will be our “computational domain” in which we have
a fixed uniform grid with ξi = (i − 1/2)∆ξ, for i = 1, 2, . . . , N , denoting the
center of i-th cell, and ∆ξ = ξmax/N .

3.2 The Nessyahu and Tadmor central scheme.

The Nessyahu and Tadmor central scheme [5] has the form of a predictor-
corrector scheme

q
n+1/2
j = qn

j −
λ

2
f ′j ,

qn+1
j+1/2 =

1

2
(qn

j + qn
j+1) +

1

8
(q′

j − q′

j+1) − λ
(

f
(

q
n+1/2
j+1

)

− f
(

q
n+1/2
j

))

,

where qn
j denotes an approximation of the cell average of the field at time tn

qn
j ≈

1

∆ξ

∫ ξj+∆ξ/2

ξj−∆ξ/2

q(ξ, tn) dξ

and λ = ∆t/∆ξ. The time step ∆t must satisfy the stability condition

λ max
j

ρ(A(qn
j )) <

1

2
,

where ρ(A) denotes the spectral radius of the Jacobian matrix

A =

[

∂fi

∂qk

]

.

This condition ensures that the generalized Riemann problems with piece-
wise smooth data at time tn do not interact during the time step ∆t.

q′
j/∆ξ and f ′j/∆ξ are first order approximations of the space derivatives

of, respectively, the field and the flux, and can be computed in several ways.
The simplest choice (used here) is

q′

j = MM(qj+1 − qj ,qj − qj−1) ,

f ′j = MM(fj+1 − fj , fj − fj−1) ,

where MM(v, w) is the min-mod limiter

MM(v, w) =

{

sgn(v) · min(|v|, |w|) if sgn(v) = sgn(w)
0 otherwise .

Let us note that, after one time step, the numerical solution is computed
on a staggered grid (see Figure 2). After two time steps, the numerical solution
is evaluated on the original grid.
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ξξ
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Fig. 2. Staggered grid in space-time used in the NT scheme.

3.3 Balancing the pressure at the interface.

We note that the interface is a material line and, therefore, velocity and
pressure have to be continuous across the interface. This subsection report a
possible way to enforce the continuity of the pressure at the interface

We assume that, at the initial time, the interface is located at the bound-
ary between cell jw and cell jw + 1. Because of the use of Lagrangian coordi-
nates, the interface will always separate cell jw from cell jw + 1 at even time
steps, and it will be in the middle of cell jw + 1/2 at odd time steps (see
Figure 3).

Let us denote by subscript 1 and 2 the values of the field variables on the
two sides of the interface cell at odd time steps. The balance of pressure on

Vjw

Vjw

Vjw+1

Vjw+1

Vjw+
1

2

Vjw−

1

2

Vjw+
3

2

ξjw
ξjw+

1

2
ξjw+1 ξ

t

tn

tn+1

tn+2

Fig. 3. Evolution of the specific volume V near the interface cell for a steady

solution.



Two conservative schemes for hyperbolic interface problems 91

both sides of the interface, p1 = p2, gives

γ1 − 1

V1

(

E1 −
1

2
u2

)

=
γ2 − 1

V2

(

E2 −
1

2
u2

)

. (10)

We assume that, on the two sides of the interface, there are two different
gases, whose ratio of densities, η, is equal to the ratio of molecular masses:

V2 = ηV1 . (11)

This condition is physically correct if the temperature is continuous across the
interface. The cell average of specific volume V and energy E at the interface
cell jw + 1/2 are

V =
V1 + V2

2
, E =

E1 + E2

2
. (12)

By using of above relations (10-11-12), we get the following formula for the
pressure p = p1 = p2 in terms of the field variables at the interface

p(V, u, E) =
(1 + η)(γ1 − 1)(γ2 − 1)

ηγ1 + γ2 − 1 − η

(

E −
1

2
u2

)

/V . (13)

Let us note that, by setting η = 1 and γ1 = γ2 = γ, we recover from (13) the
classical equation of state for a polytropic gas. Once the interface quantities
are known, the values of the field variables on each of the two sides can be
computed

V1 =
2

1 + η
V , E1 =

p(V, u, E)V1

γ1 − 1
+

1

2
u2 ,

V2 =
2η

1 + η
V , E2 =

p(V, u, E)V2

γ2 − 1
+

1

2
u2 .

Figure 3 shows the evolution of specific volume obtained by our scheme
on two time steps for a steady solution. A similar picture is obtained for the
evolution of energy. Note how the scheme maintains static solutions.

4 Numerical tests

To validate the schemes we perform two tests. In particular, we consider the
piston problem treated by Fazio and LeVeque [2], and the shock-interface
interaction problem by Abgrall and Karni [1].

For the first test, two gases are separated by an interface between a solid
wall and a plane piston. The related initial and interface conditions are

(ρ, u, p) =

{

(ρ1, u1, p1) = (1.0, 0.0, 1.0) 0 ≤ x ≤ I(0)
(ρ2, u2, p2) = (1.0, 0.0, 1.0) I(0) ≤ x ≤ L(0) .

I(0) = 0.5 , L(0) = 1 ,
dL

dt
(0) = 0 , (14)

dI

dt
(t) = u1(I(t), t) = u2(I(t), t) ;
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Fig. 4. Numerical results obtained with 100 mesh cells. Solid lines: Eulerian scheme

implemented within CLAWPACK. Dashed-dotted lines: Lagrangian central scheme.

Left γ1 = γ2 = 1.4, middle γ1 = 1.4, γ2 = 2.8 and right γ1 = γ2 = 2.8.

the remaining data are: A/m = 2, pout(t) = 2, γ1 = 1.4, γ2 = 2.8. Figure
(4) illustrates a comparison of numerical results. We plot the evolution of
the interface and the piston with time, in three cases, obtained with our
two different methods. The agreement of the two approaches is remarkable,
considering that only 100 grid points have been used.

In the initial state the two gases are at rest, with constant pressure
throughout the domain. The piston is set into motion by the (positive) differ-
ence between external and internal pressure. Let us observe that the interface
does not move for a while. It starts moving when the acoustic wave, propa-
gating inward from the piston, reaches it.

The motion of the whole system is oscillatory. The period of oscillation for
the case γ1 = γ2 = 1.4 is larger than the period for the case γ1 = γ2 = 2.8,
and the case of two different gases γ1 = 1.4 and γ2 = 2.8 is intermediate
between the other two. This represents a qualitative test because the above
described behaviour is the correct physical one.

The second test problem is the one proposed by Karni and Abgrall [1].
The related initial conditions are (see [1], Test case 4).

(ρ1, u1, p1) = (1.0, 0.0, 500.0) 0 ≤ x < 0.5
(ρ2, u2, p2) = (1.0, 0.0, 0.2) 0.5 < x ≤ 1.0

(15)

with γ1 = 1.4 and γ2 = 1.6.
Figure 5 illustrates the numerical results obtained by the Eulerian scheme

for the two fluid problem. In Figure 6 the calculation is repeated with the
Lagrangian scheme. In both cases, we used 800 grid-points in order to permit
a comparison of numerical results with the original ones obtained by Abgrall
and Karni. The lack of resolution at the interface in Figure 6 is not due to
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Fig. 5. Abgrall-Karni Test 4. Eulerian scheme. A dashed line indicates the position

of the interface. Left: density. Center: velocity. Right: pressure.
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Fig. 6. Abgrall-Karni Test 4. Lagrangian scheme. A dashed line indicates the po-

sition of the interface. Left: density. Center: velocity. Right: pressure.

our treatment of the interface, but rather to the relatively poor performace
of central schemes (with no artificial compression) at contact discontinuities,
when compared to upwind schemes.
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