2  Central Schemes and Systems of
Balance Laws

Introduction

The development of shock capturing schemes for the numerical approximation of the so-
lution of conservation laws has been a very active field of research in the last two decades.
There are several motivation for this effort. First, the challenge is a mathematical one.
Solutions of conservation laws may develop jump discontinuities in finite time. To un-
derstand how to obtain numerical approximations that converge to the (discontinuous)
solution has been a non trivial task. The mathematical theory of quasilinear hyperbolic
systems of conservation laws has been used as a guideline in the development of modern
shock capturing schemes. The concept of entropy condition and total variation dimin-
ishing are common to mathematical analysts and numerical analysts who deal with the
problem. Another motivation for the development of shock capturing schemes is provided
by the large number of applications. Complex flows in gas dynamics require the use of
efficient and accurate schemes, which are able to deal with complex geometries. Unstruc-
tured mesh or adaptive mesh refinement become necessary so solve realistic problems.
The schemes that are used for practical problems are usually different from the schemes
for which theoretical results can be proven. For example, very little is known about the
convergence property of high order schemes.

As a research field, I find it is one of the most fascinating in numerical analysis. In fact,
it requires the knowledge of many areas of basic numerical analysis, from approximation
theory to the theory of methods for ordinary differential equations (many sophisticated
concepts developed in the context of numerical methods for ODE’s are now being im-
ported and used for the development of numerical methods of PDE’s), it is based on the
mathematical theory of weak solutions for conservation laws, and it is strongly motivated
by the several applications in many physical systems, from gas dynamics, MHD, reacting
flows, semiconductor modeling, and so on.

A good introductory book which deals with wave propagation and shock capturing
schemes (mainly upwind, in one space dimension) is the book by LeVeque [37]. A math-
ematically oriented reference book on the numerical solutions of conservation laws is the
book by Godlewski and Raviart [19]. Several schemes, mainly based on Riemann solver,
with a lot of numerical examples are considered in the book by Toro [66]. A good review
of modern numerical techniques for the treatment of hyperbolic systems of conservation
laws is given in the lecture notes of a CIME course held in 1998 [14].

Most schemes for the numerical solution of conservation laws are based on the Godunov
scheme, and on the numerical solution of the Riemann problem [34]. For numerical pur-
pose it is often more convenient to resort to approximate solvers, such as the one proposed
by Roe for gas dynamics [54].
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Although such solution or its numerical approximation is known in many cases of phys-
ical relevance, there are other cases, such as gas in Extended Thermodynamics, or hy-
drodynamical models of semiconductors, in which the eigenvalues and eigenvectors of
the matrix of the system are not known analytically, and for which the solution to the
Riemann problem or its numerical approximation is hard to compute. In such cases it is
desirable to use schemes that do not require the knowledge of the solution of the Riemann
problem.

We call such schemes “Central schemes”. The prototype central scheme is Lax-Friedrichs
scheme. It is well known that Lax-Friedrichs scheme is more dissipative than first order
upwind scheme, however it is simpler to use, since it does not require the knowledge of
the sign of the flux derivative or the eigenvector decomposition of the system matrix (see
for example [37] for a comparison between Lax-Friedrichs and upwind schemes).

Second order central schemes have been introduced in [50] and [57]. After that, central
schemes have developed in several directions. We mention here the improvement of second
order central scheme and the development of semidiscrete central scheme in one space
dimension [32], the development of high order central schemes in one dimension [45, 11,
12, 38, 31], central schemes in several space dimensions on rectangular grids [6, 25, 28,
39, 40, 41, 43, 56, 57], and on unstructured grids [7, 8, 20], the development of central
schemes to hyperbolic systems with source term [10, 46, 51], and the application of central
schemes to geometrical optics [16], Hamilton-Jacobi equation [33, 44], incompressible
flows, [30, 42, 29], hydrodynamical models of semiconductors [1, 4, 5, 55, 67]. The above
list is far from being complete. It is meant to give an idea of the spreading of the recent
spreading of central schemes in the numerical community.

The plan of the chapter is the following. In the next section we give a brief review on
hyperbolic systems and their numerical approximation. Then we describe the popular
Godunov method, based on the solution of the Riemann problem. Finally we present the
second order Nessyahu-Tadmor scheme, with a few numerical examples. The next section
is devoted to the development of high order central schemes in one space dimension.
They are based on accurate non-oscillatory reconstruction of a function from cell-averages
(Weighted Essentially Non-Oscillatory reconstruction), and on accurate evaluation of the
integral of the flux, through the use of Runge-Kutta methods with Natural Continuous
Extension. Section 2.3 is devoted to second and high order central schemes in two space
dimensions. Some application to gas dynamics is presented. In the last section of the
chapter we describe the treatment of systems with source terms, with particular emphasis
on stiff sources. Finally, we describe possible developments of central schemes for systems
with source.

2.1 Second order central schemes

2.1.1 Hyperbolic systems

Let us consider a system of equations of the form

Ou , 9f(u)

ot or

=0 (2.1)
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where u(z,t) € R is the unknown vector field, and f : R? — R? is assumed to be a
smooth function. The system is hyperbolic in the sense that for any v € R? , the Jacobian
matrix A =V, f(u) has real eigenvalues and its eigenvectors span R? .

Such system is linear if the Jacobian matrix does not depend on wu , otherwise it is called
quasilinear.

Linear hyperbolic systems are much easier to study. For these systems, the initial value
problem is well posed, and the solution maintains the regularity of the initial data for
any time.

Such systems can be diagonalized, and therefore they can be reduced to d linear scalar
equations.

The situation is much different with quasilinear systems. For them the initial value prob-
lem is well posed locally in time. In general, the solution loses the regularity of the initial
data after finite time. Even in the case of the single scalar equation, i.e. d =1, the strong
solution ceases to exist, and it is necessary to consider weak solutions. These have the
general appearance of piecewise smooth functions, which contain jump discontinuities
[35].

If we denote by zx the position of the discontinuity and by Vx its velocity, then the
jump conditions across ¥ read

Ve [ul +[f]=0 (2.2)
where for any quantity h(z), [h] = h(zy;) — h(zy) denotes the jump across the discon-
tinuity interface ¥ .

As an example, figure (2.1) shows the solution of Burgers equation, for which d =1 and
f =wu?/2, with the initial condition

u(z,0) =1+ %sin(nx) (2.3)

z € [—1,1], and periodic boundary conditions. A discontinuity forms at time t = 2/7 ~
0.6366 . The figure shows the initial condition, and the solution at times ¢t = 0.5 and
t = 0.8. In the latter case, the parametric solution constructed by the characteristics
is multi-valued. Single valued solution is restored by fitting a shock discontinuity at a
position that maintains conservation [69].

Piecewise smooth solutions that satisfy the jump conditions are not unique. Entropy
condition is used to guarantee uniqueness of the solution, at least in the scalar case.

Entropy condition states that for any convex function 7(u) there exist an entropy flux
¥ (u) such that the pair [n,))] satisfies

on | OY(u)
5 T 5o S0 (2.4)

for any weak solution of the equation, and the equal sign holds for smooth solutions.

In the scalar case the entropy condition ensures that the weak solution is the unique
viscosity solution, i.e. it is obtained as the limit

M €
lim u(z,1),
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Figure 2.1 Burgers equation at different times (¢ = 0,0.5,0.8)

where uf satisfies the equation

out  Of(uf)  0%u
ot + dr o9z

For the relation between entropy condition and viscosity solutions in the case of systems
see, for example, [35].

The mathematical theory of hyperbolic systems of conservation laws is used as a guideline
for the construction of schemes for the numerical approximation of conservation laws.
Consider, for example, the conservation property. Integrating Eq.(2.1) over an interval

[a,b] one has
b

). u(z,t) dr = f(u(a,t)) — f(u(d,t))

if u(a,t) = u(b,t) (for example if the boundary conditions are periodic) then the quantity
f: u(z,t) is conserved in time. Such conservation property is directly related to the jump
condition (2.2).

It is important that a similar conservation property is maintained at a discrete level. In
this way the schemes will provide the correct propagation speed for the discontinuities.

2.1.2 Conservative schemes

Most commonly used schemes for the numerical approximation of conservation laws are
finite element, finite difference, and finite volume schemes. We shall mainly consider here
finite volume schemes.
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These are obtained by discretizing space into cells Ij = [z;_1/2,Zj41/2], and time in
discrete levels ¢, . For simplicity we assume that the cells are all of the same size Ax = h,
so that the center of cell j is z; = xo 4+ jh. This assumption is not necessary for finite
volume schemes.

Integrating the conservation law on a cell in space-time I; X [tn,tnt1] (see figure (2.2))
one has

tn+1

L,

Xj-1/2 Xj+1/2

Figure 2.2 Integration over a cell and Godunov methods

/ T etan) = / T ) - / Pl o) = g 0)) . (25)

Tj—1/2 Tj—1/2 n
This (exact) relation suggests the use of numerical scheme of the form

At

j i T(FjJrl/Z - Fi_1/3), (2.6)

where @} denotes an approximation of the cell average of the solution on cell j at time
tn,and Fji;/5, which approximates the integral of the flux on the boundary of the cell,
is the so called numerical fluz, and depends on the cell average of the cells surrounding

point ;,;/> . In the simplest case it is
Fipry2 = F(uj,U41)

with F'(u,u) = f(u) for consistency. Such schemes, called conservative schemes, have the
properties that they satisfy a conservation property at a discrete level. This is essential
in providing the correct propagation speed for discontinuities, which depend, through
Eq. (2.2), uniquely on the conservation properties of the system.

Furthermore, Lax-Wendroff theorem ensures that if u(z,t) is the limit of a sequence of

discrete solutions a7 of a consistent conservative scheme, obtained as the discretization

parameter h vanishes, then wu(z,t) is a weak solution of the original equation.
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Lax-Wendroff theorem assumes that the sequence of numerical solutions converges strongly
to a function u(z,t) . Convergence of numerical schemes is studied through the TVD (To-
tal Variation Diminishing) property. A discrete entropy condition is used to guarantee
that the numerical solution converges to the unique admissible solution of Eq. (2.1). For
a discussion on these issues see the book by LeVeque [37] of Godlewski and Raviart [19].

2.1.3 Godunov scheme

The prototype of upwind schemes for conservation laws is the Godunov scheme. It is
based on two fundamental ideas. The first is that the solution is reconstructed from cell
averages at each time step as a piecewise polynomial in z . In its basic form, the solution
is reconstructed as a piecewise constant function

u(z,tn) & R(z;u") = Zﬂ}’xy'(w) (2.7)

where x;(z) is the indicator function of interval I; = [z;_1/2,7j41/2] . The second is
that for a piecewise constant function, the solution of the system, for short time, can be
computed as the solution of a sequence of Riemann problems.

A Riemann problem is a Cauchy problem for a system of conservation laws, where the
initial condition is given by two constant vectors separated by an interface

u_ =<0

uy x>0 (2:8)

uw0) = {

For the scalar equation the solution to the Riemann problem is known analytically. For
a system of conservation laws, the solution consists of a similarity solution that depends
on the variable z/t. In several cases of interests, such as gas dynamics with polytropic
gas, the solution to the Riemann problem is known analytically [35].

Sometimes, for efficiency reason, it is more convenient to use approximate solutions to
the Riemann problem [54].

Once the solution to the Riemann problem is known, it can be used for the construction
of the Godunov scheme.

Let us denote by u*(u_,uy) the solution of the Riemann problem at z = 0. Then the
exact solution of Eq.(2.1) can be computed from Eq.(2.5):

At

—n+1 __ ano_ =

Ui =Y Az

(f (u*(@j-1,a5)) — f(w(@5,8541))) (2.9)

J

This relation is exact if the Riemann fan does not reach the boundary of the cell (see
figure (2.2)), i.e. if the following CFL condition is satisfied

Az
At < —— 2.10
o) 210
where p(A) = maxi<;<q|Ai(A4)| is the spectral radius of the Jacobian matrix A =V, f,
A; denoting the i-th eigenvalue.
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Once the cell averages are computed at the new time ¢,,1, then the solution at this
time is again approximated by a piecewise constant solution of the form (2.7).

Godunov scheme is first order accurate, it is Total Variation Diminishing, and it satisfies
a discrete entropy inequality. When applied to a linear system, Godunov method is
equivalent to first order upwind scheme (see [37]).

Higher order version of Godunov scheme can be constructed. They are based on high
order non oscillatory reconstruction and on the solution to the generalized Riemann
problem.

High order non-oscillatory reconstruction is a crucial step, and we shall discuss it in detail
when we deal with high order central schemes.

For the moment, we assume we are able to compute such reconstruction, of the form

u(z,ty) =~ R(z;u"™) = ZRj(m)Xj (z) (2.11)

Then high order Godunov-type schemes are obtained by solving the system

% . _f(U*(u]'_+1/25u;_+1/2)) - f(U*(u;_l/Qau;__1/2))
dt h

(2.12)

where u’,,, = Rj(xj41/2) , uj++1/2 = Rjy1(xj41/2) - Because the values Ui/ and
u].++1 /2 depend on the reconstruction, which depends on the cell averages, it turns out
that system (2.13) is a system of ordinary differential equations for the evolution of cell
averages.

Such system may be solved by a suitable ODE solver, for example a Runge-Kutta method,
which maintains the accuracy of the spatial discretization (see [58] and references therein).

These methods are based on the (exact or approximate) solution to the Riemann problem.
Such solution is not always available or inexpensive. As an alternative to these high order
extension of the Godunov method, simpler schemes can be constructed, which make use
of less expensive numerical flux function.

The general structure of such schemes is given by

diy _ FlGy 55 p) = Py 0y 0)

where uiy /2 and “;1 Jo are defined as above, and the the numerical flux function

F(u~,u™) defines the scheme. The simplest choice of the numerical flux function is the
so called Local Lax-Friedrichs flux:

Flu ") = S(fu") + fu®) —a(u® —u")) (2.14)

DN | =

where « = max(p(A(u~)),p(A(ut))), and p(A) denotes the spectral radius of matrix
A . The advantage of the local Lax-Friedrichs flux is that it does not require the knowledge
of the solution to the Riemann problem, nor the exact knowledge of the eigenvalues and
eigenvectors of the Jacobian matrix. Only an estimate of the largest eigenvalue is needed.
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The disadvantage of this flux with respect to the Riemann solver is that it introduces a
larger numerical dissipation.

Other flux functions are available. Common requirements that they have to satisfy are
the following: they have to be

i) locally Lipschitz continuous in both argument

ii) nondecreasing in the first argument and non-increasing in the second argument (sym-
bolically F(1,)).

iii) consistent with the flux function, i.e. F(u,u) = f(u).

Popular flux functions (for scalar equation), besides the local Lax Friedrichs described
above, are the Godunov flux

_ | ming<u<s f(u) ifa<b
F(ab) = { maxsene, f(u)  ifa>b

and the Engquist-Osher flux [15]

a b
Fap) = /0 max(f'(u),0) du + /0 min(f'(u),0) du + £(0)

Godunov flux is the least dissipative, and the Lax-Friedrichs the most of the three.

Notice, however, that the numerical dissipation is proportional to the jump u™ —u~,
which is extremely small for high order schemes and smooth solution. For a scheme of
order p, in fact, it is ut — u~ = O(hP) . Therefore the numerical dissipation becomes
large only near discontinuities, i.e. where it is most needed. As a result, the difference
between exact Riemann flux and local Lax-Friedrichs flux is very pronounced for low
order schemes, but it is not so dramatic for very high order schemes [58].

We shall come back to discuss about high order schemes later.

Now let us consider again a piecewise polynomial reconstruction and let us integrate the
equation (2.1) on a staggered grid, as shown in Fig.(2.3).

Integrating on the staggered grid one obtains

[ et = [ e - [ (Guan) - e 219

J J n

Once again, this formula is ezact. In order to convert it into a numerical scheme one has
to approximate the staggered cell average at time t, , and the time integral of the flux
on the border of the cells.

Let us assume that the function u(z,t,) is reconstructed form cell averages as a piecewise
polynomial function. Then the function is smooth at the center of the cell and its discon-
tinuities are at the edge of the cell. If we integrate the equation on a staggered cell, then
there will be a fan of characteristics propagating from the center of the staggered cell,
while the function on the edge (dashed vertical lines in the figure) will remain smooth,
provided the characteristic fan does not intersects the edge of the cell, i.e. provided a
suitable CLF condition of the form
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th+1, —® *— *—

Xj-1/2 Xj+1/2

Figure 2.3 Integration on a staggered grid

Az
At< o (2.16)

is satisfied.

The simplest central scheme is obtained by piecewise constant reconstruction of the
function, and by using a first order quadrature rule in the evaluation of the integrals.
The resulting scheme is

Wyaje = 30+ 0l4) = AT (@) — 1) (2.17)

where A\ = At/Axz denotes the mesh ratio. Such scheme is just Lax-Friedrichs scheme
on a staggered grid. The advantage of the Lax-Friedrichs scheme over upwind scheme
is that it is much simpler to apply, since no knowledge is required of the characteristic
structure of the system. However, the disadvantage is that it is much more dissipative
that the upwind scheme.

As an example, let us consider the numerical solution of the Riemann problem for the
simple linear equation

1 <0

0 >0 (2.18)

u +u, =0, u(z,0)= {
The result for upwind and Lax Friedrichs schemes are shown in Fig.(2.4), obtained with
100 grid points on the interval [—0.2,1.8], tmax = 1.4 and At/Az = 0.8 for the upwind
scheme and At/Az = 0.4 for the staggered Lax-Friedrichs. Both schemes are exact for
the linear equation when the maximum mesh ratio (1 for upwind and 1/2 for LxF) is used.
Notice that the first order upwind scheme performs slightly better than the staggered
Lax-Friedrichs, in spite of the fact that it uses half time steps (due do the more severe
stability condition of the latter).
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0 | | | | | |
1 11 12 13 1.4 15 1.6 1.7

Figure 2.4 Comparison between staggered Lax-Friedrichs (continuous line) and first order
upwind (dashed line). A¢/Az is 0.8 for upwind scheme and 0.4 for Lax-Friedrichs scheme

2.1.4 The Nessyahu-Tadmor scheme

A second order scheme is obtained by using a piecewise linear approximation for the
reconstruction of the function, and a second order quadrature rule (for example the
midpoint rule) for the computation of the time integral of the flux on the edges of the
cell.

Such scheme has been proposed by Nessyahu and Tadmor [50], and independently by
Sanders and Weiser [57].

The staggered cell average is given by

_ 1 Tj+1 _ 1 Tj+1 Tj+1/2 ,
Ujiypy = E/ R(z;u") dx = 7 / s Li(z)dz +/ Ljti(z) dx
zj z;+ zj

1, _ 1
= §(U?+U§l+1) - g(u}+1 _U;')a

where Lj(z) = @} + uj(z — z;)/h is the linear reconstruction in cell I;. . Here u/h
denotes a first order approximation of the derivative of the function in the cell. The value
of the field u at the node of the midpoint rule, U?H/ 2 , can be computed by first order
Taylor expansion, which is equivalent to forward Euler scheme,

uft =@ — (A/2) 1)

Here f;/h denotes a first order approximation of the space derivative of the flux.

In order to prevent spurious oscillations in the numerical solution, it is essential that these
derivatives are computed by using a suitable slope limiter. Several choices are possible
for the slope limiter. The simplest one is the MinMod limiter. It is defined according to
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min(a,b) if a<0 AND b<0
MM(a,b) =  max(a,b) if a>0 AND b>0
0 if ab<0

Such simple limiter, however, degrades the accuracy of the scheme near extrema. A better
limiter is the so called UNO (Uniform Non Oscillatory) limiter, proposed by Harten et
al. [23].

Such limiter can be written as
1 1
’LL; = MM(d]_l/Q + §MM(Dj71,Dj),dj+1/2 — §MM(D],DJ+1)), (219)

where
djpr2 = ujpr —uj, Dj =ujpn —2uj +uj.

Other limiters are possible (see [50]).

The quantity f; can be computed either by applying a slope limiter to f(a}) or by
using the relation

=A@l

n+1
j+1/2
repeats a similar step, and after the second step, the solution at time ¢,42, {u}‘“} is
determined on the original grid.

After one time step, one finds the solution {a } on the staggered cells. Then one

Theoretical properties of the scheme, such as TVD property and the so called “cell
entropy inequality” are discusses in [50].

As an example we show here some numerical tests performed by the NT scheme. Figure

2

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 2.5 NT scheme applied to the linear equation. Mesh ratio At/Ax =0.45. tmax = 5.
N =20. MM limiter (circles) and UNO limiter (+). The line represents the exact solution.

(2.5) represents the computation on the linear equation wu;+u, = 0, performed by using
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the two limiters described above. The initial condition is w(z,0) =1+ 0.5sin(27x) , and
the boundary conditions are periodic in [0,1]. The solution is computed after 5 periods.
The clipping effect due to the MinMod limiter is evident, while the NT scheme with
UNO limiter maintains good accuracy after a long time.

The computation shown in Figure (2.1) was performed by NT scheme with 1000 grid
points.

More interesting test concerns the solution of the Euler equation of gas dynamics.

Such equations are of the form (2.1), with

p pv
u=| pv |, f=| p’+p |, (2.20)
E v(E +p)

where p, v, p, and E denote, respectively, the density, velocity, pressure and energy
density per unit volume of the gas. For a polytropic gas, energy and pressure are related
by

p=(n-1)(E- %pvQ),

where v = ¢,/c, is the polytropic constant, ¢, and ¢, denote the specific heat at
constant pressure and volume, respectively. For a monoatomic gas it is v = 5/3, and for
a biatomic gas, like air, it is v = 7/5. Typical test problems for gas dynamics are the
Sod and Lax tests. These are defined by the initial condition

(pl,(p’l})l,E’l) = (1,0,2.5), z < 0.5,
{ (pry(pv)r,Ey) = (0.125,0,0.25), = > 0.5. Sod problem (2.21)

Lax problem (2.22)

(o1, (pv)1, ) = (0.445,0.311,8.928), = < 0.5,
(pr,(pv)r,Er) = (0.5,0,1.4275), z > 0.5.

The polytropic constant is v = 1.4 and the final time is ¢y = 0.16.
The result of NT scheme applied to the Sod problem is shown in Figure (2.6).

2.2 High order central schemes

In most applications, second order schemes have been successfully used. There is, however,
a great interest in constructing and using high order (or it would be more appropriate
to say high resolution) schemes.

It may seem strange to look for high order schemes for the numerical solution of quasi-
linear hyperbolic systems, since the solution itself is not regular, and in general presents
jump discontinuities. However, we shall show that there are several reasons for using high
order schemes.
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0.5

0 9
0 0.5 1

Figure 2.6 NT scheme applied to the Sod problem of gas dynamics. N = 100. tmax = 0.16.
UNO limiter. Courant number 0.475. Density (o), velocity (*), and pressure (+). The line is the
reference solution computed by 1000 grid points.

Although the mathematical theory of quasilinear hyperbolic systems is developed in the
space of bounded variation functions, in most practical cases the solutions are more reg-
ular than that. In fact in many practical cases they are piecewise smooth functions, very
well represented by piecewise polynomials. This is the reason why numerically computed
convergence rate are better than the sharpest theoretical estimate: the convergence rate
is computed on piecewise smooth solutions, while the theoretical estimates are computed
on BV functions. Pointwise error estimates for the convergence of viscosity solution to
the scalar conservation law are considered in [63, 64].

High order schemes give good accuracy of the solution in the smooth regions. They also
provide sharp resolution of the discontinuities. These two benefits justify the use of high
resolution schemes.

A warning, however, is necessary. Most schemes for the treatment of discontinuous so-
lutions are non linear, and with variable order. They adjust themselves, so that near
nonlinear discontinuities the right amount of numerical dissipation is introduced in order
to prevent the formation and amplification of spurious oscillations.

The loss of accuracy near the discontinuities may affect the accuracy even in the smooth
regions, since small perturbations formed near the shock may propagate in the inner flow.
Such effect is usually small, and it is presently subject of investigation [17].

There is a more subtle reason for desiring high resolution central schemes: economy. We
shall see that it is possible to design high resolution central schemes that are very easy to
use, and that can be easily adapted to a large variety of systems, without any knowledge
of the solution of the Riemann problem. These are the Central WENO schemes, that we
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describe in the next sections, and their semidiscrete analogue, i.e. the WENO schemes
with local Lax-Friedrichs flux function. Although such schemes are more dissipative than
state-of-the-art Riemann-based flux functions, the difference in the resolution is sensible
at the level of low (first and second) order schemes, while the difference is almost negligible
for high resolution schemes. For this reason, it is sometimes more convenient to use a
third order central scheme than a second order upwind scheme.

In the construction of high order central schemes, let us start from relation (2.15). We
assume that the solution at time ¢, is reconstructed as a piecewise polynomial function
as in (2.11). Then, by approximating the integral of the flux by a quadrature formula,
one obtains the general scheme

Tjt1

—n 1 —n
ujj_'llm = A_x/ R(z;a"™)dx (2.23)

Zj

A ulf (@t + BIAY) = f@(zjnta + BAD)]  (2:24)
i=0

The parameters v; and f; are the weights and the nodes of the particular quadrature
formula, and @ are the intermediate values of the field at the nodes, predicted by Runge-
Kutta method (see below). For a fourth-order method one can use, for example, Simpson’s
rule.

The staggered cell-averages at time ¢, , uy /2> are given by

J Ti+1/2

1 [%i+ 1 Tjt1/2 Ti+1
E?H/Q = E/ R(z;a")dz = 7 / Rj(:r)da:+/ Rjpi(x)dx|. (2.25)

2.2.1 Time evolution: Runge-Kutta methods with Natural Continuous Ex-
tension

Consider the Cauchy problem
{ y' = F(ty(t))
y(to) = vo.

We adapt to our context the notation used in [70] according to which the solution at the
(n + 1) -th time step obtained with a v stage Runge-Kutta scheme can be written as

y =yt ALY biKO, (2.26)
i=1
where the K ’s are the Runge-Kutta fluxes
i1
KO = F [ "+ Ate;, y" + At Y ayKY) |,
j=1

and the ¢; are given by ¢; = Zj ai; . The method is completely determined by the vector
b and the matrix a, which is lower triangular with zero diagonal for explicit schemes.
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In our case we are solving a sequence of Cauchy problems in order to obtain the predicted
mid-values required for the quadrature of the fluxes. At the j-th grid point we have

y; (T) = F(T,yj (7')) = _fm (y(a:],t" + T))
{ yi(r=0) = R(zj;u"). (2.27)

Thus the computation of the i-th Runge-Kutta flux K () requires the evaluation of
the x-derivative of f at the intermediate time ¢t = t" + ¢;At. The predicted point-
values of w; at time ¢t = t"™ + ¢;At are used to compute the point-values, f(u;).
These predicted values of f are then used for reconstructing an interpolant from which
the point-values of the derivative (f;); are computed. To maintain high accuracy and
control over oscillations in the evaluation of f, required in (2.27), the reconstruction of
the interpolant of both f and w is essentially the same and is described in §2.2.2.

Following [11], we use here Natural Continuous Extensions (NCE) of Runge-Kutta schemes
which provide a uniform accuracy of the solution in the time interval [t™t"*1] gconsult
[70]). Each v -stage Runge-Kutta method of order p has an NCE u of degree d <p in

the sense that there exist v polynomials b;(f), i =1,---,v of degree at most d, such
that

Lou(t™ +0At) ==y + At Y7 bi(f) KD 0<6<1;

2. u(th) =y and w(t™ + At) =gyt

3. max<i<int At |w(l) —u®(t | = At)d+1-hy, 0<I<d,

where y" is the numerical solution computed with the RK scheme at time level t” , and
w(t) is the exact solution of the equation with w(#") = y™ . Note that the polynomials
b;(#) depend only on the Runge-Kutta method chosen and not on the particular ODE
being solved. In the next sections we shall show how to use Runge-Kutta methods with
NCE in order to guarantee high order accuracy in time.

We end this section listing the NCE’s which are of interest for our schemes.

1) RK1 (for second-order scheme)
d=v=p=1
2) RK2 (for third-order scheme)
d=v=p=2
bi1(6) = (b —1)6° + 6
b2 (9) = b292;
3) RK3 (Not used since no NCE of degree d = 3 exists in this case)  (2.28)
d=2,v=p=3
bl(t‘)) = 3(26, - ].)ble2 + 2(2 - 361)1)19 1 =123
4) RK4 (for fourth-order scheme)
d=3,v=p=
by (9) = (1 b1)93 + 3(3b1 — 1)92 +6
bi(0) = 4(3c; — 2)b;60° + 3(3 — 4c;)b;6* i=234

No NCE of degree d = 4 exists in this case.
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In our case, we used the following set of coefficients. For our third order method:

() e(22) e

For our fourth order method:

1/6 0O 0 00

N RYE 12 0 o0 o0

b=1 13 1o 1200 (2.30)
1/6 0 0 10

We proceed in the next section by presenting the Centrall WENO (CWENO) recon-
struction which supplies the required elements, R; , for the overall piecewise-polynomial
interpolant (2.11).

2.2.2 The Central-Weno (CWENO) Reconstruction

In this section, we present our new Central-WENO (CWENO) piecewise-parabolic re-
construction which will be then utilized to construct a fourth-order method.

Let u be the exact solution at time ", and @} the numerical approximation of its cell
average on the cell I; . Starting from the data {ﬂ;’} we apply the reconstruction scheme,
obtaining the function R(z;a"). By construction, R(z;a") = ; R;(z)x;(z), where in
this case R;(x) is a polynomial of degree 2. We require that our reconstruction satisfies
the following properties:

1. Accuracy

i) Cell averages We shall require that Eq. (2.25) provides a high order accurate
approximation of the staggered cell averages at time t™  i.e.

—n 1 [ot n s
Uji1/2 = E/ u(z,t") dz + O(h®),

i
where s denotes the spatial order of the method. This requirement is satisfied by
imposing that the polynomial reconstruction from cell-averages must satisfy:

T T
1 R(z;u™)dz = L u(z,t™)dx + O(h?), (2.31)
2h J,._, 2h J,.
i=1/2 i=1/2
1 Tit+1/2 1 Tit1/2
o /z,- R(z;a™)dr = % /z]- u(z,t™)dx + O(h®).

ii) Pointwise values We look for a reconstruction, R(z;@"), that satisfies the
following requirements

R(zj;u") = u(z;,t") + O(h®). (2.32)
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iii) Space derivatives of the flux A separate reconstruction R(z;f") of f
will be used for the derivatives of the fluxes, 0, f(u(z,t)), for which we require

R'(zj; f) = 8, f(u(z;,t")) + O(h*1). (2.33)

2. Conservation
For the function reconstruction R we require

1 _
7 /I]- Rj(x)dx = a;. (2.34)

3. Non-oscillatory Reconstruction
Avoid spurious oscillations in the sense of ENO/WENO reconstruction ([23], [47]).

As we shall see, in general different reconstructions are obtained for R and R, since the
accuracy requirements are different.

In each cell, I, we reconstruct three polynomials of degree 2, Pj_q(z),P;(x),Pjt1(x) .
Each of these polynomials is constructed by posing the following interpolation require-
ments:

% fIk—l Py (z)dx = Ug—1,
L[ Py(z)dz = ay, k=j—1jj+1  (2.35)

% f1k+1 P (1‘)d1‘ = Up+1-

The reconstruction is created by considering a convex combination of the above polyno-
mials, Py(z),
Rj(x) = wy ' Pi_1(x) + w)Pj(x) + wj P (), (2.36)

where the weights w#,k = —1,0,1, satisfy w} >0, and Sy wh=1.

A basic fact of interpolation theory states that each polynomial Py, k=j—1,5,j+1,
is uniformly third order accurate in the cell j [58].

Pk(m)_u(x;tn):O(h3)7 k:]_1>.77.7+]-7 I'EI]'

If we consider a convex combination of these three polynomials, we have two more degrees
of freedom, which may be used to impose more order conditions. For example we can
impose that the pointwise value of the polynomial is fifth order accurate at a given point,
or we can impose that the half-cell average of it is fifth order accurate. Classical WENO
schemes are based on imposing fifth order accuracy at the edge of the cell [26].

The stencil used in the reconstruction of the second degree polynomial R;(x) contains
five points. Note that this convex combination retains the interpolation requirement
(2.34) for R;(z) in I; , but otherwise does not fulfill any other interpolation requirements
in the neighboring cells.

Since deg(Py(xz)) =2, k=j—1,j,j+ 1, one can rewrite

1
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The reconstructed point-values, 1, and the reconstructed discrete first and second
derivatives, 4},q} , are uniquely determined by the interpolation requirements (2.35),
as

. _ Up—1 — 2Up + Up41
Ug = U —

24 ’
- Uk+1 — Uk—1
, = @ — 2.38
U, 2h ) ( )
N Upy1 — 2Up + Up—1 . ..
’U,Z = 72 y k:]_17]7.7+1

All that is left in order to end the reconstruction is to determine the weights, wf,k: =
—1,0, 1. Two ingredients are taken into account in the construction: the accuracy re-

quirements and the non-oscillatory requirements.

The two requirements will be satisfied by the procedure described below. Following the

notations of [26], in order to guarantee convexity, Z,lg:_l wf =1, the weights, w;“ , are
written as

k of

wh=——39_  k=-1,0,1 (2.39)
J —1 0 1°? MY )
Q; + a; + a;

where o

b= —k __ p=_101 (2.40)

7 (e+18Ey”
The constants, C} , €, p, and the smoothness indicator, IS? , will be determined below.

Since we can not satisfy all the accuracy requirements simultaneously, we split the com-
putation into two parts and by that we are led to two different sets of constants Cj .
The first set corresponds to the accuracy requirement in the reconstruction of the cell-
averages (2.31), the second set of constants corresponds to the accuracy requirements in
the reconstruction of the pointwise values, and the third set corresponds to the accuracy
requirements in the computation of the flux derivatives (2.33). Due to cancellation, any
symmetric choice of coefficients will result in a fourth-order approximation of the point-
values in the center of the cells (s = 4 in (2.32)). In order to satisfy (2.32) for s =5
one has to use non-positive constants, namely a non-convexr combination of the stencils.
The treatment of negative weights has been recently investigated by Shu [59]. We shall
describe later the use of this technique.

Clearly, the use of different sets of constants imposes absolutely no problems on the
implementation of the algorithm.

A straightforward computation results with the desired constants which are displayed in
Table 2.1.

C_4 Co o accuracy
cell-averages | 3/16 5/8 3/16 h®
derivatives 1/6 2/3 1/6 h*
point-values | —9/80 49/40 —9/80|  nS

any symmetric combination ht

Table 2.1 The constants of the Central-WENO reconstruction

By setting
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ab =0, k=-1,0,1 (2.41)

instead of (2.40), one obtains a linear high order scheme, which would give good accuracy
in the smooth regions, and would produce oscillations near discontinuities. The nonlinear
weights are used to prevent oscillations. The basic idea is that one should weight the
stencils so that only stencils that do not contain the discontinuity will be used in practice
in the reconstruction. This is obtained by formula (2.40) and by suitable smoothness
indicators, which are a quantitative measure of the local roughness of the solution.

Several different ways to determine the smoothness indicator were suggested in the liter-
ature (see, e.g., [47] and [26]). Here we use the measure taken from [26], which amounts
to a measure on the L?-norms of the derivatives:

ISk = Z/

where P denotes the [-th derivative of Py (z) . An explicit integration of (2.42) yields
k g
13

j+1/2 !
RYPYde,  k=-1,0,1, (2.42)

j—1/2

_ _ _ 1 _ _ _
IS;" = E(u],2 =201 + )" + (i — 451 + 35)°,
0 13 1 _ _ 2
IS; = 12( — 2Uj + 1) + Z(“jfl — Ujt1)7, (2.43)
1 13 1. _ _ 2
ISj = 5@ — 28541+ j42)° + (385 — 441 + Gjy2)"
In smooth regions, a Taylor expansion of (2.43) gives
1
ISk = (@'h)? + 1—‘;’(11"}{")2 +0(h%), k=-1,0,1. (2.44)

Hence, IS¥ = O(h?), and in critical points it is O(h*). In non-smooth regions, IS¥ =
O(1), and by that the normalized weight of the corresponding stencil will be negligible.
Therefore, our reconstruction follows the WENO methodology by automatically avoid-
ing the information coming from non-smooth regions which are the cause for spurious
oscillations.

The remaining parameters to be determined in (2.40) are ¢ and p. The constant ¢ was
inserted in the denominator in order to prevent it from vanishing. In [26] an ¢ = 10~°
and p = 2 were selected. We shall use the same values.

In short, our reconstruction from cell averages routine accepts in input the values {a;}
of cell averages at time ¢" , and produces in output the point values w;,u’,u” which com-
pletely determine the reconstruction polynomial Rj;(z) = u;+u’(z—=z;)/h+(1/2)uf(z—
zj)/h* .

A few modifications are needed to compute the reconstruction from point values for the
flux f; = f(u;) which is needed in the Runge-Kutta step.

Here the candidate polynomials P} satisfy the interpolation requirements (compare with
(2.35)):

Py(xr-1) = fr-1,
Pk(mk):fky k:]_1)37]+1 (245)

Py(zk41) = fryr
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Thus the reconstructed point values fr and the reconstructed first and second derivatives
fi and f;! are given by:

Fozfo fl= et = fe—1 z ferr = 2fk + fr
k— Jk» k= ) ) k — 12 )
For the evaluation of the intermediate values, all that will be needed is a pointwise
reconstruction of the space derivative f]’ which is given by:

fi=w i+ hfi) 0l fi 4+ wi(fjy — hf]L). (2.46)

The computation of the weights in (2.46) is the same as above (2.39)—(2.44). Here, we use
the second set of constants C} ’s of Table 2.1, and the computation of the smoothness
indicators IS; in (2.43) involves the point values f;, instead of the cell averages.

k:]_17]).7+1

Three different families of smoothness indicators have to be computed: one for the cell
average, one for the pointwise values and one for the flux derivative. The latter, in
principle, has to be computed at each stage of the Runge-Kutta method. Numerical
experiment show that it is enough to compute it only once per time step, at the beginning
of each step.

We shall only construct a fourth order scheme, therefore we shall use only positive
weights. For the pointwise reconstruction we use the same set of constants used for
the calculation of the cell average. In this way only two families of smoothness indicators
have to be computed at each time step.

2.2.3 Numerical results

In this section we test the fourth-order scheme. We start from a single scalar equation
where we numerically compute the order of accuracy of our schemes. We also demonstrate
on a model problem how the smoothness indicators trigger the selection of the correct
stencil when discontinuities are present.

The construction of the smoothness indicators is more delicate for systems of equations
than in the scalar case. A naive component by component extension of the scalar scheme
does not yield the best results. Better results are obtained by using a global smoothness
indicator which is the same for all components of vector w .

We then apply our scheme to some classical test problems of gas dynamics. Our results
show that the use of the same smoothness indicator for all the components produces bet-
ter results and is computationally cheaper compared with the componentwise indicator.

Scalar equation

As an application of the central WENO schemes we study the performance of our schemes
by applying them to the Burgers equation.

ug + (%u2)z =0,

u(z,t =0) =1+ $sin(rz),

periodic boundary conditions on [-1,1],
integration times: 7' = 0.33 and 7" = 1.5.
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Burgers equation, ug = 1+ 1/2sin(nz)
N L' error | L' order | L error | L™ order
20 | 0.2926E-02 0.9462E-02
40 | 0.2459E-03 | 3.5728 | 0.1139E-02 3.0549
80 | 0.1419E-04 | 4.1150 | 0.8631E-04 3.7216
160 | 0.6821E-06 | 4.3787 | 0.4461E-05 4.2742
320 | 0.3227E-07 | 4.4017 | 0.2296E-06 4.2800
640 | 0.1766E-08 | 4.1916 | 0.1269E-07 4.1779

Table 2.2 Convergence test for the fourth order CWENO scheme. T = 0.33, A = 0.66 * 2,
e=10"%, p=2.

Here T = 0.33 is used for convergence tests, and 7" = 1.5 for the shock capturing test
(the shock develops at Ts = 2/ ).

Convergence tests are useful when testing a nonlinear scheme. First they are used to
check the correctness of the code. Second, because the schemes are nonlinear, one should
check that the nonlinear weights do not destroy the accuracy.

If the expected accuracy is not reached, then it is useful to perform the check on a smooth
solution with a linear scheme, where the weights equal the constant C}, . In this way one
verifies whether the lack of accuracy is due to the nonlinear weights or to a programming
error.

The computational parameters used in the following tests are e = 107¢, p = 2. The
mesh ratio was chosen as while A\ = 0.66\,ax for the nonlinear (Burgers) equation. The
parameter Apnax was computed in order to satisfy stability conditions and it depends on
the scheme. We used Amax = 2/7.

First we perform an accuracy test, computing the order of accuracy at T=0.33, well
before the shock formation time T' = 2/x . The results appear in Table 2.2.3. We observe
the correct order of accuracy.

The shock-capturing properties of the CWENO scheme are illustrated in Figure 2.7 for
the Burgers equation. The pictures on the left refer to the solution before shock formation
(T=0.5) and the pictures on the right refer to the solution after shock formation (T=1.5).
The bottom part of the picture shows the weights wf computed in the reconstruction
from cell averages. In particular, the central weight corresponds to w? , while the left
weight corresponds to wj_1 . Before the shock formation, the weights remain close to
their equilibrium values (given in Table 1). An abrupt change can be seen after the
shock formation. Here the stencils that would yield oscillations are assigned almost a
zero weight. Thus the solution is oscillation-free even after the shock forms. The shock

transition occurs within two cells.

Systems of equations

We apply our schemes to the system of Euler equations of gas dynamics for a polytropic
gas with constant v = 1.4. The variables p, v, E, and p, denote the density, velocity,
total energy per unit volume and the pressure, respectively. We consider the test problems
(2.21) and (2.22).
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Burgers equation. Solution and weights

T=15N=80

1.5

s -05 0 0.5 1 s -05 0 05 1
Gentral weight Central weight

-1 -0.5 0 0.5 1 -1 -05 0 0.5 1
Left weight Left weight

Figure 2.7 Weights computed from cell averages, m = 4

In both cases the computational domain is [0,1]; we integrate the equations up to T =
0.16, i.e. before the perturbations reach the boundary of the computational region. The
mesh ratio here is A = 0.1, which is the optimal one for Lax initial data.

The number of cells, N, was taken as N = 100 in order to compare with the upwind
literature, and also as N =400 to show the behavior of the weights: when the solution
is well resolved, the weights coincide almost everywhere with the linear weights.

We apply one smoothness indicator for all the components:

1. 1 2
ISk = = /
=i (2

Tj—-1/2

G ()
h (PMW) de ), k=-1,0,1. (2.47)
Here d is the number of equations, and Py, denotes the k-th polynomial for the r-th
component. The quantity ||i,||2 is a scaling factor, and it is defined as the L? norm of
the cell averages of the r-th component of u, namely:
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Global Smoothness Indicator

N=100, m=4

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Central weight Central weight

Figure 2.8 Density (top) and Central weights (bottom) for Sod’s problem: A = 0.1, T = 0.16..
The weight shown is computed once per time step during the reconstruction from cell-averages

1/2

This choice is not crucial if all components are of the same order. However it would be
more appropriate to use ||u,||3 as a scaling factor, so that the smoothness indicators
will be scale-invariant with respect to a change in the physical units of the component
of the field vector w .

The integral in (2.47) can be exactly integrated (see (2.43)).

This strategy will be called “Global smoothness indicators”: its results on Sod’s problem
are shown in Figure 2.8. A comparison between componentwise and global smoothness
indicators is shown in the case of the Lax test (see Figure 2.9).

To summarize, the “Global smoothness indicators” strategy is much less expensive and
gives better results than the “Componentwise smoothness indicators” strategy.
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Componentwise and Global Smoothness Indicators

Component-Wise Smoothness Indicator Global Smoothness Indicator
15} | | | | 15
1 L
0.5}
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Central weight Central weight

0.8

W |
0.6 y

0.4

0.2

Figure 2.9 Density (top) and Central weights (bottom) for Lax’ problem: A =0.1, 7' =0.16,
m =4, N =400 . The weight shown is computed once per time step during the reconstruction
from cell-averages for the density

2.2.4 Improvements

The Centered WENO schemes described before are not optimal for two reasons.

First, because of the restriction on the uniform accuracy of NCE of Runge Kutta methods,
a fourth order RK scheme has been used to compute the predictor values for the fourth
order CWENO scheme. This requires the computation of the stage values, and then the
evaluation of the flux at the nodes of the quadrature formula.

Second, only fourth order CWENO is obtained with three parabola, because when look-
ing for a fifth order scheme, negative weights appear. Here we mention how it is possible
to optimize CWENO schemes, by using fourth order RK scheme for constructing a fourth
order CWENO, without the additional evaluation of the flux at the nodes of the quadra-
ture formula, and how to use a fifth order Runge-Kutta method for a fifth order scheme
[52].

Let us write Eq.(2.1) in the form
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ou

ot
where F' = —30f/0z . By applying a v -stage Runge-Kutta to Eq. (2.48), one obtains an
expression for the approximation of the pointwise value of wu(z,t + At)

= F(u), (2.48)

w(wt+ A1) = u(zt)+ > biKD(w), (2.49)
i=1
i—1
K9(x) = Flulet)+AtY agKWD(@), i=1,...,v (2.50)
=1

By integrating Eqgs. (2.49) and (2.50) between z; and z;41 one has

artl, = +1/2+At2b i (2.51)
i=1
i 1 .
KW, = —5 i (t+ D) = flu(t +edn)), i=1..0  (252)

where w;(t + c;At) denotes the stage value of the field w at grid point z; . The scheme
can be therefore summarized as follows

e Compute the stage values (predictor)

i—1
ul) =l + ALY agF () (2.53)
=1
e compute the new cell average (corrector)
_n ! !
“]il/z =0y = /\Z bilf 511 (ug ] (2.54)

CWENO reconstruction will be used to compute

o cell average, huf,,,, = fj””z Rj(x da:+ff’:1/2 Rjti1(z)dx

e pointwise values of the field u} at point z;, uj = Rj (x;)
o flux derivative, F(u ;l)) ~ —R'(z;)

Notice that, as usual, three different CWENO reconstructions will be used, according to
the objective.

By using this technique, fourth order RK predictor can be used to obtain a fourth order
CWENO scheme. No additional flux evaluation is needed, since the fluxes used in the
corrector are computed at the stage values, and therefore v — 1 of them have already
been computed during the predictor stage.

In order to obtain a fifth order scheme, then the constants C = (—9/80,49/40, — 9/80)
have to be used for the reconstruction of the pointwise values (see table (2.1)).
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Note that negative weights appear in the reconstruction of pointwise values from cell
averages. Straightforward use of WENO reconstruction with negative weights would pro-
duce spurious oscillations (and possibly blow-up of the numerical solution). This problem
can be overcome using a technique recently developed by Shu [59]. First, use two sets
of positive constants, C;",C; , such that C; = C;" — C;, i = —1,0,1. This is done in
such a way that the constants are well bounded away from zero. Shu proposes

(3

1 1
G = 501G + i), CF = 5(01Ci| = i),
and uses # = 3. Then compute

) c*
a,=—— i=-101
(IS" +¢)?

Finally, compute the two sets of weights

wh = Z : Z
+ - b — b
El_fl aly 21_71 at 2

=—1

The final reconstruction is obtained by

2.2.5 Semidiscrete central schemes

One of the drawbacks of NT and many other central schemes is staggering. There is a
non-staggered version of the scheme, which is developed in [24].

The central schemes we have considered so far are based on a simultaneous discretization
in space and time. There is a procedure to derive semidiscrete central schemes, which are
discretized only in space. The discretization in time can then be performed by a suitable
ODE solver (method of lines). A second order semidiscrete central scheme has been
derived by Kurganov and Tadmor [32]. The derivation is based on a different treatment
of the the region which lies in the characteristic fan from the region of the mesh which lies
in the smooth region. The authors derive a fully discrete second order scheme, which is
less dissipative that Nessyahu-Tadmor scheme, and then, by letting the time step vanish,
they deduce a semidiscrete scheme. When applied to conservation laws, the scheme is
basically equivalent to a second order monotone finite volume scheme with local Lax-
Friedrichs flux function. The authors apply the scheme to several problems containing a
source term, such as convection diffusion equations. However, they are not interested in
the treatment of very stiff sources. A third order extension of the scheme is carried out
in [31], and applied to several balance laws. A we shall remark later, semidiscrete central
schemes can be used as building blocks for the construction of high order schemes for
systems with stiff source.
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2.3 Multidimensional central schemes

In this section we describe how to derive second and higher order central schemes, and
we show some applications to gas dynamics.

Central schemes can be extended to problems in several dimensions. Second order central
schemes on rectangular grids have been considered by Jiang and Tadmor [25], Sanders
and Weiser [57], and by Arminjon et al. [6]. They have been extended to unstructured
grids by Arminjon et al. [7]. High order central schemes in two dimensions have been
considered in the papers [39], [40], [41]

Consider the two-dimensional system of conservation laws
ug + f(u)e + g(u), =0, (2.55)

subject to the initial values
u(x7y7t:0) = 'U/O(m,y),

and to boundary conditions, which we do not specify at this point. The flux functions
f and g are smooth vector valued functions, f,g : RY — R?. The system (2.55) is
assumed to be hyperbolic in the sense that for any unit vector (n;,n,) € R?, the matrix
Ny Vuf + 1y Vg has real eigenvalues and its eigenvectors form a basis of R? . In order
to integrate numerically (2.55), we introduce a rectangular grid which for simplicity
will be assumed to be uniform with mesh sizes h = Ax = Ay in both directions. We
will denote by I, ; the cell centered around the grid point (z;,y;) = (iAz,jAy), i.e.,
Lij =[x — h/2,@; + h/2] x [y; — h/2,y; + h/2]. Let At be the time step and denote
by uj; the approximated point-value of the solution at the (i,j)-th grid point at time
t" =nAt. Finally, let 4}'; denote the cell average of a function u evaluated at the point
(muy]) ’ 1
up; = 7z /Ii‘j u(z,y,t") dr dy.

Given the cell-averages {ﬂ;‘]} at time t", Godunov-type methods provide the cell-
averages at the next time-step, t"*!, in the following way: first, a piecewise-polynomial
reconstruction is computed from the data {a;} resulting with

i,j

Here, R; j(x,y) is a suitable polynomial (which has to satisfy conservation, accuracy and
non-oscillatory requirements), while x; ;(z,y) is the characteristic function of the cell
I; j . Thus, in general, the function u™(z,y) will be discontinuous along the boundaries
of each cell I; ;.

In order to proceed, the reconstruction, u™(z,y), is evolved according to some approx-
imation of (2.55) for a time step At. We will use the fact that the solution remains
smooth at the vertical edges of the staggered control volume, I; /2 j+1/2 X [t7, i)
provided that the time-step At satisfies the CFL condition

h 1

At < - ——————.
2 max(|ozl,|oy|)
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Here, Ii11/2j+1/2 = [Ti,Tip1] X [yj,9541] (see figure 2.10; the edges at which the solution
remains smooth are denoted by dotted vertical lines), and o, and o, are the largest
(in modulus) eigenvalues of the Jacobian of f and g, respectively.

th+l
G n+1 -
i+1/2,+1/2
t
th
_

Figure 2.10 The Two-Dimensional Stencil

An exact integration of the system (2.55) with data u™(z,y) over the control volume
Ii+1/27j+1/2 X [tn,tn+1] results with

n 1 n
ﬂi:;j_i_% = ﬁ// u"(zy) dr dy (2.57)
Ii+%,j+%
1 tntt Yji+1
= [ ) - £ )l dy i
r=tn | Jy=y;

gt

- %/T:tn {/:H 9 (w(z,yj41,7)) — g (u(e,y;,7))] d:c} dr.

=x;

The first integral on the RHS of (2.57) is the cell-average of the function u™(z,y) on the
staggered cell I;;1/s j41/2 - Given the reconstructed function u"(z,y), (2.56), this term
can be computed exactly: it will consist of a contribution of four terms, resulting from
averaging Riy1 j+1(z,y), Rij+1(xy), Riy1,j(z,y),and R; ;(z,y), on the corresponding
quarter-cells.

The advantage of the central framework appears in the evaluation of the time integrals ap-
pearing in (2.57). Since the solution remains smooth on the segments (z;,y;) x [¢t",t" 1],
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we can evaluate the time integrals with a quadrature rule using only nodes lying in these
segments.

A second order scheme is obtained by approximating the integral of the flux f as

|-

and likewise for the integral of the flux ¢. By applying the same discretization used for
the Nessyahu-Tadmor scheme, one obtains the two dimensional counterpart, which has
been introduced in [6] and, independently, in [25]. First, in each cell (i,j) the field « is
reconstructed by a piecewise linear approximation,

trtt

Yi+1 At n n
[ s yar S5 (1 s pii) 2y

Yy—Yj

T — x;
Lij(zy) = af; +uj ;—— +u\j W

LT p,
where w'/h and u/h denote, respectively, first order approximations of z- and y-
partial derivatives, and can be computed by using a suitable slope limiter, as in the one
dimensional case. The resulting scheme has a compact form similar to the one dimensional
one, and can be written as

—n+1 e ik

z+1/2,]+1/2 - i+1/2,j+1/2
A
—S U + S ) = S35 ) = S
A n+1/2

~5 o) + g ) — gl — g i) (2:59)

where A = At/h, and
=N _ _(—TL _+_—TL +—n _+_—’n, )+i( ! _ !
Uir1/2,541/2 — 1 Wij T Wigy,5 T Uipq 41 T Uit 16 Ui j = Uit1,5
! !
T i1 — Uiy i1 T Wi — Wi g1 + Witj — Wig,54+1) (2.60)

and the predictor values are evaluated as

+1/2 A A
Wi =aly = S - S (2.61)
Once again, the first order approximation fi”j and g¢\; ; can be computed either by a
slope limiter acting on f(@;;) and ¢(@;;) or by

= Awij)u; ;, g\ = B j)un j,

where A and B are the Jacobian matrices A = V,f, B = V,g. The above second
order central scheme is very simple to use, and it has been successfully applied to a
large variety of problems, such as double Mach reflection [25], MHD equations [65].
Modifications and improvements of the above second order central scheme have been
considered by several authors (see [28, 56, 43]).

Two dimensional central schemes have been extended to unstructured grids [7]. Two
dimensional central schemes on unstructured grids are very flexible, and they provide
good resolution even for complex flows. Theoretical convergence results for such schemes
are available [8, 20].
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Here we consider the development of high order central schemes in two space dimensions.
For a fourth-order method one can use Simpson’s rule for the time integrals

tntt
flu(ziy;r))dr = (2.62)

At
T 6

[ (uty) + a5 (V%) + £ ()] + 0 (A1)

and the following centered quadrature rule in space for the integrals in space,

Tig1 h
[ f@hs = Sl fassa) + 136 (i) + 135w — flai)] +O00). (26)
T

In this way, the quadrature rule for approximating the integrals of the fluxes involves
only nodes on the segments (z;,y;) x [t",t"T].

The quadrature in time, (2.62), requires the prediction of the values of the solution at
later times. In the case of Simpson’s rule, one has to generate the values of u;; at times
t"t1/2 - ¢ntl (The point-value ul'; can be obtained directly from the reconstruction
u;,; (") = u”(x;,y;) ). Once again we use the smoothness of the numerical solution along

the segments (z;,y;) x [t",t"T!] to consider the sequence of Cauchy problems

Ui (1) = F(rvii(n) = = fov(@iy; 1" + 7)) = gy (0(wisg; " + 7)),
(2.64)
i, (T =0) = u(z4,y;).

In order to obtain the mid-values at t"t1/2 and ¢"*!, all that is required is to solve
(2.64) up to these times using a Runge-Kutta scheme. When more than one intermediate
value is required (as in the case of Simpson’s rule), it is possible to solve (2.64) once
with the largest time required, and then reconstruct the other values with the required
accuracy using the Natural Continuous Extension (NCE), [70]. More details will follow
below.

2.3.1 Multidimensional CWENO reconstruction

In this section we will describe in detail our new reconstruction step. We start with
the reconstruction from cell-averages, (2.56), which is needed at the beginning of each
time-step. We then proceed with the reconstruction from point-values which is used for
evaluating the fluxes in the RK step (2.64). This section ends with a discussion of the
modifications to the algorithm which are required for solving systems of equations.

2.3.2 The Reconstruction from Cell Averages

In every cell I;; we reconstruct a bi-quadratic polynomial, R;;(x,y), which is written
as a convex combination of nine bi-quadratic polynomials, P; ;(z,y) , centered in the cells
around I ; ,
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Z w z+l,]+k( vy)' (265)

lLk=—1

The bi-quadratic polynomials P; ;(z,y), which serve as the building blocks for the re-
construction (2.65), interpolate the data {@"} in the sense of cell averages (see below).
They approximate the function u(z,y) whose cell averages are {@"} with third order
accuracy. The combination (2.65) is designed to increase accuracy and to avoid spurious
oscillations.

The weights w'* in (2. 65) are computed using a nonlinear algorithm which satisfy a

i,j
positivity requirement, w > 0, and a conservation requirement, Zl k1 wlj =1.
For simplicity of notation, let us introduce the 3 x 3 matrices:

(Qij)y = wih Lk =—1,0,1.

%77

Thus each matrix ;; contains the nine non-constant weights needed to compute the
reconstruction on the cell I; ;. Note that the first index, [, is associated with the z-
variable, while the index k is associated with the y -variable.

-1,1 0,1 1,1
i i i

-1,0 0,0 1,0
i i i

-1,-1 0,-1 1-1
i w i i

Figure 2.11 The Weight Matrix €; ;
Let I, m = 1,...,4, denote the four quarters of the cell [;;, with 11] being the
upper-right quarter whlle the other three quarters are numbered clock-wise (see figure
2.12). In order to obtain a fourth-order computation of the first term on the RHS of
(2.57), the reconstructed polynomial, R; ;(z,y), must recover the averages over the four
quarter cells with fourth-order accuracy,

pom) _ L n _ 1 n 4 _
R = e /Im R; j(x,y,t")dzedy = 2 /Im u(zy,t™) + O(h*), m=1,...4, (2.66)

where wu(z,y,t") denotes the exact solution of the equation at time ¢". On the other
hand, the derivatives of the fluxes should be recovered with third-order accuracy. We
therefore need to accurately evaluate the intermediate values, u(z,y,t"™ + $;At), with

= 1/2 and f2 = 1, (see (2.26),(2.28) and (2.62)), and in particular, we need an
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i-1/2,j+1/2 i+1/2,j+1/2

i-1/2,j-1/2 i+1/2,j-1/2

Figure 2.12 The Quarter Cells

accurate reconstruction of the point-values of the solution at the integer grid points (7,7)
at time t".

The output of the reconstruction routine from cell averages at the beginning of the time

step must therefore provide a fourth-order approximation of

(a) the four quarter-cell averages

R = Z / Pirjen(my)dedy, m=1,...4 (267
lkf—l I

(b) the point-values at the integer grid-points

R; ; xz:y] Z w Pz+l j+k(~75uyj) (2-68)
lk=—1

The reconstruction routine from point values called at each evaluation of the Runge-
Kutta fluxes must provide a third order approximation of the derivatives of the flux at
the integer grid points

1

R j(wiy;) = Y wib0uPrjik(wiy)), (2.69)
Lk=—1
1
R} (i) = Z wﬁjfayPiJrl,Hk(wi,yj)a (2.70)
Lk=—1
where the polynomials Pji; ;yr interpolate the data f(u(-,-)) in (2.69), while in (2.70)

the polynomials Pji;;y, interpolate the data g(u(-,-)) . Generally, the weights wl;” in

(2.67) and in (2.68) will be different from the weights in (2.69) and (2.70) due to the
different accuracy requirements.

We would like to stress that there is no need to explicitly compute all the coefficients
of the polynomial R; ;j(x,y) . All that is needed are the point-values and the quarter-cell
averages of these polynomials, or their derivatives at the grid points.

We are now ready to present the construction of the fundamental bi-quadratic polyno-
mials, P;;(z,y).
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2.3.3 The Bi-Quadratic Polynomials

In this section we explicitly give the coefficients of the interpolating polynomials P; ;(z.y) ,
which serve as the building block for the reconstruction of R;;(x,y) in (2.65). In each
cell, I; ; , we write the polynomial P; ;(x,y) as
Pijlzy) = bo+bi(z — i)+ by —ys) + bs(x — i)y — ;) + (2.71)
+ba(z — 23)* + b5 (y — ;) + bs(z — 2:)*(y — ;) +
+br(x —a:)(y —y;)* + bs(z — 2:)*(y — y;)°,
where for simplicity we have omitted the indices (i,j) from the coefficients {b,,}. The

nine coefficients b, are uniquely determined by the interpolation conditions
1 [rits+h ryi+Stkh
ﬁ / Pz,](may)dydm - ai+l,j+k7 lak - _170)17
;=% +ith Jy;—B+kh

i.e., the polynomials P; j(x,y) interpolate the data {@;;} in the sense of cell-averages.
The resulting expressions of the coefficients are

bo =1 — %(am + tyy) + %ﬂwwyw by =ty — %aryy’

by = ay - %ﬁzzy; bz = azy;

b4 = %ﬂzz - Z_;ﬂzzyyy b5 - %ﬂyy Z_;ﬂzzyyy
b6 = %ﬂzzy; b7 - %ﬂzyyv

bS = %amcyya
where the following notation for divided differences was used,

Uit1,j — i1, _ Uiy — Ui

Ug;; = oh ) Uy; ; = 2h )
i _ o Uit1,y = 2Uij + Ui a0 Wi = 20 Uiy
TTi,j - h2 ? YYii — h2 ’
- Uit — W11 — Ui—1,5+1 T Uio151
Uzyi; = 4h2 J
X _ (@igr 41 = 20i41,5 + Uigr,j—1) — (i1 i1 — 20i1,5 + Uim1,j-1)
Uzyy;; — 2h3 )
i _ o Wi = 205500 + By ) = (Biga 1 — 20551 + B 1)
TXTY;i, 5 - 2h3 9
N 1r. _ ~ ~ _ _
Uaoyyi; = 7 |(@itget = 201 + Girrjo1) = 2Bigar = 2ai5 + i) +

+(Wim1,j41 — 201 5 + ﬂi—l,j—l)]-

2.3.4 The Weights

The weights wif in the reconstruction (2.65) are computed following the WENO/CWENO
ideas presented in [47], [26] and [38]. The goal is to choose weights such that
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(a) In smooth regions maximum accuracy is obtained.

(b) In non-smooth regions, information coming from non-smooth stencils should be
switched off in order to prevent the onset of spurious oscillations.

In order to achieve these goals, the weights wi? are written as

Lk
1,k @
wi,j = 1 Ik’ (272)
El,k:—l ]

where -

Lk c

= 2.73)

i,j Ik (

(e+ Isi,j )P

Here, C"* are the constants which are chosen in order to maximize accuracy in smooth
regions, ISi;c are the “smoothness indicators” (see below), p is a constant and ¢ is
introduced in order to prevent division by zero. Following previous works (e.g. [38]), in
all our numerical experiments we use p =2 and e = 107%.

The “smoothness indicators”, ISif , are designed to measure the smoothness (or, more
precisely, the roughness) of the polynomials P,y j+x in the cell I; ;. This is done by
evaluating a suitable function of the norms of the derivatives of the polynomial on the
cell I;;, namely

1k
IS} = / (102 Piyt jri > + 10y Piv jru > + B2|02, Pt jak|” + h?105, Pivrjyi|*) da dy.

! (2.74)
The integrals in (2.74) can be computed exactly, but they involve a large number of func-
tion evaluations. We compute the integrals were evaluated with a Gaussian quadrature
with four nodes on the rectangle I; ; .

All is left is to compute are the constants C'F in (2.73).

We seek the values of a set of constants, C** | such that the integral of the reconstruction
on each quarter-cell is fourth-order accurate.

We start with the upper-right quarter cell and use symmetry considerations to label
CY* as qi,...qs, such that, C%' = ¢, C'0 = CO! = ¢,, C~V! = OV~ = ¢3,
C 0 =0%1=¢q, O =¢g5 and C%° = ¢g, (see figure 2.13). Since C** >0 and
S iie 1 CVF =1, we have

‘Jﬁzl—Q1—292—2‘J3_2(I4—Q57 QmZOa mzl:"'76'

Imposing the accuracy requirements (2.66) for the upper-right quarter cell, results with
the following system
G2 = —q1 + g4+ gs,

Q3=%—(I4—(I5,

while ¢1,q4 and g5 remain arbitrary.
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q3 gp) 99
e a, Ay

Figure 2.13 The Nine Weights

One possible solution is to choose ¢ = q4 = ¢5 = %, from which it follows that

Q2 = q3 = % and gg = % . This gives a symmetric combination which can be therefore
used for all four quarter-cell averages (and not only for the upper-right quarter cell),

1/16 1/16 1/16
c=| 1/16 1/2 1/16 |. (2.75)
1/16 1/16 1/16

By symmetry, this specific choice of C also gives fourth-order accuracy for the compu-

tation of point-values at the center of the cell.

As in the one dimensional case, the smoothness indicators are computed only once, at
the beginning of each time step.

2.3.5 The Reconstruction of Flux Derivatives

In order to compute each RK flux in (2.64), it is necessary to evaluate the function
F(U)i,j = _fz(u) - gy(u) ij, (276)

where wu is evaluated at each intermediate time t; = t" + At ¢; of the RK scheme, (2.26).
It is therefore necessary to compute the intermediate values of u :

-1
ul) =l + Aty @ K, 1=1,. . (2.77)
k=1

Given the intermediate values in (2.77) we can evaluate f (uEl;) and g(uglg) , which can
be then used to compute the discrete derivatives of f and ¢ required in (2.76). These
derivatives can be calculated using a procedure which is equivalent to the reconstruction

procedure that was used earlier. This time, however, we require that the point-values of
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the derivative of the reconstruction will be third-order accurate. For simplicity, assume
that we start with the function w;;. As before, we write the final reconstruction as a
convex combination of interpolating polynomials (compare with (2.65)),

1
Rij(zy) = Z lbi':?PiJrl,jJrk(m:y)- (2.78)
l,k=—1

This time, the polynomials interpolate the data in the sense of point-values

Py j(Tit1,Yjtr) = Uit j+r Lk =—10,1.
where @y j+r denotes either f(witrj+r) Or g(Witi jtk) -

The non-constant coefficients in (2.78) are (compare with (2.72)),

Lk
Lk Q; j
i,j i Lk’
1 k=—1 %5

where for the derivative in the z-direction, one has
ALk
dl,k _ Cz
4,j T Lky\y’
(e +1S;7)P

and a similar expression holds for the derivative in the y-direction. The smoothness
indicators are the same as those computed at the beginning of the time-step. Since we
are interested in an accurate reconstruction of the derivatives in (2.76), the constants
CL% must be chosen in order to satisfy

A straightforward computation results with the possible choice of CN’ék as

) 0 0 0
ctk=1 1/6 2/3 1/6 |. (2.79)
0 0 0

For the y -derivative one can choose the transpose of (2.79), CLF = (CL*)t. With this
choice, the mixed terms of the bi-quadratic polynomials do not play any role and the
differentiation formulas become very simple:

L .
OR; ; _ W0 0Py,
B = i g
T (i) = T (2.80)
OR; ; _ Z 0k OPijik
2,
dy (wi,y5) k=—1 ! Oz

2.3.6 The Algorithm

We would like to summarize the different stages of the algorithm obtained in the previous

sections. Given 4f;, compute a?jfm j41/2 according to (2.57), i.e.,
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_n+1
:l+1/2 j+1/2 — =1 + 1o,
where
/ / (z,y) dz dy,
+1 + 1
and

L= - wmf { / [f(u(xm,y,r))—f(u(wi,yf))ldy}df

=Yj
At

1 Tit1
- A s - sty o) ar
T=t" r=x;
7, is the sum of the four quarter-cell averages defined in (2.67),

1 4
= R} + R\ +RY 0 + R

where the polynomials Pji; jyr(z,y) appearing in (2.67) are given by (2.71) and the

weights w, ;”

The integrals in Z, are replaced by the quadrature (2.62) and (2.63).

are given by (2.72).

tn+1

[ st =

= 3077 () +af () 4 £ ()] + 0 (A09).

and

/zi“ f(z)dx = Qf;[ F(mig2) + 13f(zip1) + 13f(z;) — f(zi1)] + O(RP).

i

The time quadrature required the prediction of the mid-values, which can be obtained
with the RK scheme, (2.26), and their NCE (2.28). This ODE solver requires on the
RHS the values of the derivatives of the fluxes given by (2.80), which are evaluated at
the integer grid-points (and therefore utilizes the point-values recovered by (2.68)).

2.3.7 Systems of Equations

There are not that many modifications required in order to solve systems of equations
instead of solving scalar equations. Basically, one has to extend the algorithm to systems
using a straightforward component-wise approach.

The only delicate point is the computation of the smoothness indicators. A component-
wise evolution of the smoothness indicators where each component may relay on a differ-
ent stencil has some disadvantages, as already pointed out in the one dimensional case.
The simplest and most robust way to compute the smoothness indicators is to apply global
smoothness indicators: all components have the same indicator, which is computed as an
average of the smoothness indicators of each component,
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d
e 1 m m
Sii =g > | 100 P71 il + 10y Pty |+ (2.81)
m=1 4,7

-1
W10, Pl il + +h2|65folz,j+k|2)dxdy} (Il +€)

Here P”. denotes the m -th component of the vector valued interpolation polynomial,

centered on the cell I;;, and:
a1 = a1 A2,
.7

where (m) denotes the m-th component of the vector @;;. Therefore, the Global
Smoothness Indicator is an average of all componentwise Smoothness Indicators, each of
which is normalized with respect to the norm of the corresponding field.

2.3.8 Numerical Examples

In order to show the non-oscillatory and high resolution properties of the fourth or-
der CWENO scheme, we consider three test problems. The first is a convergence test
performed on the linear equation

U + Ugp + Uy =0

with initial condition u(x,y,0) = sin®(27x) sin®(27y) , with periodic boundary conditions.
The convergence results of this test are reported in Table 2.3.

Linear advection, Nonlinear weights
N L' error | L' order | L™ error | L order
10 || 8.763E-03 - 2.464E-02 -
20 || 5.092E-04 4.10 1.632E-03 3.92
40 || 3.001E-05 4.08 8.747E-05 4.22
80 || 1.828E-06 4.04 4.836E-06 4.18
160 || 1.135E-07 4.01 2.802E-07 4.11

Table 2.3 T =1, A =0.45, ug(z) = sin’(rz) sin®(ry)

It is evident that the scheme shows an accuracy of fourth order, as expected.

The second test consists in the solution of the 2D Burgers equation, with flux f(u) =
g(u) = —u?/2. The initial data, taken from [25], consists in a two dimensional Riemann
problem, and is given by

0.8 0.5
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The configuration is centered at (1/2,1/2), and the computational region is [0,1] x [0,1].
The boundary conditions are du/dn = 0. Such conditions are perfectly justified until the
signal reaches the boundary. The flux is Burgers’, f(u) = g(u) = —u?/2. The number
of grid points in each direction is N =80, and A = .25.

The solution at 7' = .5 is shown in Figure 2.14. The figure shows the absence of spurious
oscillations in a problem involving shock interaction. All discontinuities are very sharp.

Jiang and Tadmor’s 2D test

U

il

80

0 o

Figure 2.14 Burgers equation. Solution at T=.5. N =80, A =.25

The third test is described below.

Two-Dimensional Gas Dynamics Equations

We consider the system of equations for gas dynamics in 2D

U +F{U), +GU), =0,

where
p gu pv
U= pu , F— pu” +p ’ G = /;uv
pU puv pv- +p

E u(E + p) v(E +p)
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Here, p is the density, v and v are the two components of the velocity, £ = pe +
%p(u2 +v?) is the total energy per unit volume, and e is the internal energy of the gas.
The system is closed by defining the pressure p through the equation of state. For a
polytropic gas p = pe(y — 1), where the constant «y is the ratio of specific heats. In all
tests considered, v =1.4.

p 2 p 1
v | —-0.75 (7 —0.75
v | 0.5 v | -0.5
P 1 P 1
p 1 p 3
uw | | 0.75 u | 0.75
v | 0.5 v | | =05
p 1 p 1

Table 2.4 Initial condition for Configuration 5 (Figure 2.3.8
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Figure 2.15 Two dimensional Riemann Problem. Solution at time 7" = 0.23 for the initial
data reported in Table 2.4. Comparison with two different grids. On the left, the grid is 200x200 ,
on the right, the grid is 400 x 400

The test problems shown below are two dimensional Riemann problems, taken from [36].
The initial is given by a piecewise constant data in the four quadrants of R? . The initial
condition for the first one is given in Table 2.4 (denoted as Configuration 5 in [36]). These
initial data result in four interacting contact discontinuities.

The results of the computation are shown in Figure 2.3.8, at time T=0.23. On the left,
we show the density obtained with a 200 x 200 grid, while on the right we show the
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density on a 400 x 400 grid. The mesh ration one half the one chosen in [36], due to our
more restrictive CFL, namely A = 0.5 % 0.2494 .

We first note that there is a very strong increase in resolution as the cell dimensions
are halved due to the high-order accuracy of the scheme. When we compare the results
obtained on the fine grid with the corresponding ones in Figure 5 of [36], we find that the
two pictures are almost identical. Although the positive schemes used by Lax and Liu in
[36] are only second order accurate, we believe that our results are quite striking. In fact,
while the positive scheme makes use of the Jacobian and the matrix of eigenvectors of
the system of gas dynamics, our scheme requires only the definition of the fluxes. Still,
the physics of the problem, apparently, is perfectly caught.

p 1.0222 p 0.5313
u —0.6179 U 0.1
v 0.1 v 0.1
p 1 p 0.4
p 0.8 p 1
v | | 01 u | 0.1
v | | 0.1 v 0.8276
p 1 p 1

Table 2.5 Initial condition for Configuration 16 (Figure 2.16)

We end our discussion showing the results obtained for Configuration 16 of [36]. The
initial condition can be found in Table. 2.3.8. The resulting solution is composed of two
contact discontinuities, a rarefaction and a shock wave. We show the results for the density
at T'=10.2 on a 400 x 400 grid in Figure 2.16. The CFL number is A = 0.5 % 0.2494 .
These results should be compared with the corresponding ones in [36], Figure 16. We note
that the shock is sharp, and the resolution of the two contact discontinuities is also good.
Moreover, there are no spurious oscillations even though the wave pattern is complex.

2.3.9 Improvements

The same improvements considered in one dimension can be extended in the two dimen-
sional case. We discuss here only the better use of Runge-Kutta schemes, and we do not
consider the problem of the negative weights.

System (2.55) can be written in the form (2.48)
ou
D _F
5 = L)

where F(u) = —0f/0x — 0g/dy . By applying a v -stage explicit Runge-Kutta scheme

pointwise at the different stages, and taking the average of the solution at time ¢,41,
one obtains
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Figure 2.16 Two dimensional Riemann problem. 400 x 400 grid. Solution at time T = 0.2
for the initial data reported in Figure 2.3.8

k—1

u(k) (xay) = ’U,n(.’lj,y) + At Z a’le(u(l) (way))
=1

@'z + h/2y + h[2) = 0" (@ + h/2y + 1/2)
y+h
Yy

AYn] [ G h) - ) @) dg (282)
k=1

z+h
[ @+ ) - g @) di]

The above relation can be discretized on a grid, by performing a WENO reconstruction
of the function. Using the WENO reconstruction, the staggered cell average can be com-
puted. About the computation of the integral of the flux appearing in (2.82), one can
use either the quadrature formula (2.63) or a Gaussian quadrature formula with nodes
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inside the cell. The latter approach appears more robust, but is more expensive, since it
requires more function evaluations.

2.4 Treatment of the source

Several models in mathematical physics are described by quasilinear hyperbolic systems
with source term. The source may be of relaxation type, or it may represent a diffu-
sion term. In this case it is more appropriate to talk about balance laws, rather than
conservation laws.

Hyperbolic systems with relaxation appear in discrete velocity models in kinetic theory
[18], gas with vibrational degrees of freedom [68], gas in Extended Thermodynamics [49],
hydrodynamical models for semiconductors [2, 3|, shallow water equations [62], and in
several other physical models.

In this section we consider systems of balance laws of the form

ou  Of(u) 1
E—F 5 =——g(u) (2.83)

€

The parameter e represents the relaxation time. If it is very small than we say the the
relaxation term is stiff.

Several schemes have been proposed for the treatment of systems with source term. The
most common technique is based on fractional step methods.

In the simplest version, one step for (2.83) is obtained by solving, for a time step At , the
sequence of the relaxation and convection equations. Given the numerical approximation
of the solution, u™, the new approximation u™*! is obtained as

ou 1 . . n

5 = —Eg(u), i(z,0) = u"(z) (2.84)
ou ~of(a) N L
n + = 0, (x,0) = a(x,At) (2.85)

At the end of the two steps, one sets u™*(z) = a(z,At) . Such splitting provides a first
order (in time) approximation of the solution. A second order scheme can be obtained
by using the so called Strang splitting: it is obtained by solving (2.84) for a time step
At/2, then equation (2.85) for a time step At, and finally equation (2.84) for a time
step At/2 again. Of course, each step (2.84) and (2.85) has to be solved at least with
second order accuracy.

This approach can be generalized to obtain high order methods.

There are several cases, however, when the splitting approach is not very effective. When
the relaxation term is stiff, for example, Strang splitting loses second order accuracy, and
more sophisticated splitting techniques are necessary to obtain a second order scheme.

In [27], for example, a second order method for systems with stiff source is considered.
In [13], a second order scheme for hyperbolic systems with relaxation is derived, which
maintain second order accuracy both in the stiff and non stiff limit. These methods have
been developed in the context of upwind schemes.
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The same approach used in [13] can not be straightforwardly extended to central schemes.

A different approach has been proposed by Bereux and Sainsaulieu in [10], where a system
with a possibly stiff relaxation term is considered. Their scheme maintains second order
accuracy for stiff source.

A natural way to treat source term in central scheme is to include the source in the
integration over the cell is space-time. The schemes we consider here are of this form.

Integrating Eq.(2.83) over the space-time (see Fig. 2.3) one has

[ty = [ et = [ Gt 0) - st e @259

i tn

g1 poj41
+ / g(x,t) dzdt (2.87)
tn zj

Numerical schemes are obtained by a suitable discretization of the integrals.

Here we only consider second order schemes. We shall discuss later how to derive higher
order schemes.

For a second order scheme we use a piecewise linear reconstruction in each cell, as in the
Nessyahu-Tadmor scheme, and midpoint rule for the computation of the flux integral.

Different schemes are obtained, according to the discretization of the integral of the
source term. If the source is not stiff, then a fully explicit time discretization can be
used, resulting in the following scheme

At
n+1 = n+1/2 n+1/2
Ujria = U’?+1/2 + H(f(“j ) — f(Uj+1 )
At 1/2 1/2
+ 7(9(%‘+ / )+g(U§-‘L/ ) (2.88)
(2.89)
where ) )
W = 5]+ ul) + S =) (2.90)
and the predictor values u?H/ * are computed by
1/2 n A At n
W =y 2 Sg(a)) (2.91)

Note that this scheme is fully explicit, therefore it is subject to stability restriction due to
both the flux and the source term. If the stability restriction of the source term is more
severe than the one due to the flux, then not only efficiency, but also accuracy of the
calculation will be affected. In this case, in fact, one has to use a Courant number much
smaller than the one allowed by the CFL restriction. It is well known that in this case
the numerical dissipation will be larger than necessary, and the accuracy of the scheme
will be poor. This problem can be partially circumvented, for moderately stiff source, by
the use of semidiscrete schemes. (For a discussion of this issue see, for example, [32]).
When the stiffness increases it is better to treat the source implicitly. This can be done
at the stage of the predictor, as
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tn+1
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t,

Xj Xj+1/2 Xj+1

Figure 2.17 Nodes in space time for the second order Uniform Central Scheme

u?H/z =u} — %f]' + %g(u?“ﬂ) (2.92)
The time discretization used for the source is the midpoint implicit scheme, which is a
Gauss-collocation scheme with one level. Such scheme is A -stable, but not L -stable,
and therefore it is not suitable for very stiff source (see [21]). A numerical scheme which
is stable and accurate even for very stiff source has been proposed in [46]. It is obtained
by using two predictor stages, one for the flux, and one which is needed for the source.
The scheme can be written in the form

A, At
u?H/?‘ _ u?— §fj’-+7g(u?+1/2)
X, At
ufte = “?—gfﬁgg(U?HB)
Wi = T AEHED) = £577)
At . n .
+?(3g(uj+l/3) +3g(ui i) + 29(ul L) (2.93)

where ﬂ;’ 1/ is computed by 2.90. We shall call the above scheme Uniformly accurate
Central Scheme of order 2 (UCS2).

Such scheme has the following properties. When applied to hyperbolic systems with
relaxation, it is second order accurate in space and time both in the non stiff case (i.e.
e =1) and in the stiff limit (i.e. e =0).

A small degradation of accuracy is observed for intermediate values of the relaxation
parameter €.

The time discretization used in the above scheme is a particular case of Runge-Kutta
Implicit-Explicit (IMEX) scheme. Such schemes are particularly mportant when one ha
to solve systems that contain the sum of e non stiff (possibly expensive to compute) and
a stiff term. These systems may be convection-diffusion equations, or hyperbolic systems
with stiff relaxation. In these cases it is highly desirable to use a scheme which is explicit
in the non stiff term, and implicit in the stiff term.
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Runge-Kutta IMEX schemes have been studied in [9] and in [53].

Let us consider a generic system

J' = F(ty) + g(ty) (294

which may represent a system of ordinary differential equations or a discretization of a
system of partial differential equations (method of lines).
An Implicit-Explicit Runge-Kutta scheme for system (2.94) is of the form

i—1 v

1
Y, = h a;if(t ¢;ih,Y; h ii—g(t ih,Y:), 2.95
Yo + ;a]f(0+c] i)+ ]Z::lajsg(o_‘_c] 7) ( )
v 14 1
Y1 = Yo+ h ’lf)if(to + Ezh,Y;) +h wi—g(to + Clh,Y;) (296)

The matrices A = (a;;), a;; =0 for j >i and A = (a;;) are v x v matrices such that
the resulting scheme is explicit in f, and implicit in g. An IMEX Runge-Kutta scheme
is characterized by these two matrices and the coefficient vectors & = (&,...,6,)7,
W= (Wy,...0,)", ¢c=(c1,...,c,)T, w= (wy,...,w,)T. They can be represented by
a double tableau in the usual Butcher notation,

A sufficient condition to guarantee that f is always evaluated explicitly is that the
scheme for g¢ is diagonally implicit i.e. a;; =0, for j >4, and that the first column of
a is zero.

Stability analysis of the scheme is studied in [46], and the analysis of other IMEX RK
schemes is performed in [53]. In particular, the concept of A-stable scheme for a single
complex linear equation is extended to IMEX schemes. Here we report the result found
in [46].

By applying the generic IMEX scheme to the linear equation (2.94) with f(y) = Ay,
g9(y) = Xy, and yo = 1, one obtains the function of absolute stability

y1 = R(21,22) = 1+ (2107 + 200" (I — 21 A — 22 4) e, (2.97)

where z1 = Mh, 2o = Aoh, e = (1,...,1)T € R . The function R(z1,22) is the function
of absolute stability.

The region of absolute stability Sa associated to scheme (2.95, 2.96) is defined as
Sa = {(z1,22) € C* : |R(21,22)| < 1}.

It is evident that the region does not contain the set C~ x C~ . Our goal is to show
that there exist two regions of the complex plane, S; C C, Sy, C C, with the following
properties:
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Sa4 DO S x SQ, (298)
Sy D C ={zeC:R(z) <0}, (2.99)

and to compute them. In particular, one is interested in the largest set S; for which
Ss D C~ . Such region is defined by

S ={z1 € C: sup |R(z1,22)] <1}.
z2o€C—

The region S; for scheme UCS2 is reported in Figure (2.18).

We remark that this stability analysis is valid only for the scalar equation. The extension
to systems of equations is presently under investigation.

Stability regions of scheme SI2

Im(z1)
o

_2 L L L L L L
-3 -2.5 -2 -15 -1 -0.5 0 0.5 1

Re(z1)

Figure 2.18 Stability region Si in the explicit parameter for scheme UCS2 (continuous line).
The dotted and the dashed lines are the stability region of explicit Euler and explicit second
order Runge-Kutta respectively.

To show the effectiveness of the scheme, we apply it to the monoatomic gas in Extended
Thermodynamics.

Monatomic gas in Extended Thermodynamics As an application of the scheme
UCS2, we consider the a Riemann problem for a gas in Extended Thermodynamics. In
usual gas dynamics, a gas is described by the conservation laws for mass, momentum, end
energy. Pressure, stress tensor, and heat flux are related to the conservative quantities by
constitutive relations (i.e. the equation of state for the pressure and the Navier-Stokes-
Fourier relations that express stress and heat flux in terms of the gradient of velocity and
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temperature. In Extended Thermodynamics stress tensor and heat flux are independent
thermodynamical variables, for which additional balance laws can be written [49]. In one
dimension the gas is described by a system of five balance equations, the usual three
conservation equations for mass, momentum, and energy, and two additional equations
for the balance of stress ¢ (just one component in one dimension) and heat flux ¢. The
system is of the form

wet () = ~2g(w)
with
p 0
pv 0
u= 3pv° + 3p 9= 0
%pv2 +o po
pv® + 5vp + 200 + 2q %p(Qq + 3vo)
pU
pv’ +p+o
f= Lpv® 4+ Svp+ov+g

%/2)113 + 2up+ Tvo + ¢
pvt +55 + 778 4 2qv+v?(8p + 50)

As ¢ - 0 = o0 — 0,g — 0 and the equations reduce to the Euler equations for
monoatomic gas.

Such system is hyperbolic in a suitable region of the field vector u, which contains the
equilibrium manifold ¢ =0, ¢=0.

No simple expression for the eigenvalues and eigenvector is known for such system, there-
fore it would be expensive to use characteristic based methods.

We consider the following Riemann problem.

5
p=1 u=0, p:§, c=0, ¢g=0 forx<0.5,
1 1
p—g, u =0, ng’ c=0, ¢g=0 forxz>0.5.

The numerical solution to the Riemann problem is shown in figure (2.19). By compari-
son, the solution to the Euler equations corresponding to the same initial conditions is
reported. The two solutions are very close for density and velocity, because the value of
the relaxation parameter is very small.

Stress tensor and heat flux are mainly concentrated at the shock. Two schemes are
compared: UCS2 and a scheme based on second order upwind + Strang splitting. It is
evident that UCS2 gives a better resolution than the splitting scheme, because of the
loss of accuracy of the latter for small values of the relaxation parameter.

The comparison is shown between the numerical solution of the Euler equations and of
the gas in Extended Thermodynamics. It is
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Further developments

The scheme UCS2 shown above is not optimal, since it makes uses of three implicit
stages in order to obtain second order accuracy. More efficient time discretization can be
obtained. A recently developed central scheme by Pareschi guarantees uniform accuracy
in the stiff and non stiff limit with two explicit and two implicit stages [51].

There are several topics we did not have space to deal with in this chapter. We shall
briefly mention them here.

We did not say anything about boundary conditions. In all calculations we used trivial
boundary conditions, either periodic, or flat. Such boundary conditions can be easily
treated by using enough ghost cells out of the computational domain. The cells will be
then filled with a periodic replica of the computed solution (for periodic B.C.) or with
constant values (for zero flux B.C.) The latter are correct until the signal reaches the
boundary.

A case which is particularly important in the applications is given by reflecting boundary
conditions for gas dynamics. This case is treated in the usual way, i.e. pressure and
density are symmetric with respect to the boundary, and velocity is antisymmetric. Such
boundary conditions are assigned both at even and odd time steps. At odd time step,
the value of the field variables on the boundary cell can be computed if enough ghost
cells are filled.

The treatment of more complex boundary conditions goes beyond the scope of the book.

About the derivation of schemes for hyperbolic systems with stiff source, we remark that
semidiscrete central schemes can can be used as building blocks for second order IMEX
time discretization of hyperbolic systems with source term. If one is interested in higher
order schemes, however, this approach can not be straightforwardly used. Higher order
semidiscrete central scheme based on WENO reconstruction are basically equivalent to
WENO finite volume schemes developed and used by Shu [58]. However, the integration
of a source term in space-time may pose some problems for stiff problems.

Higher order IMEX time discretization can be used by using finite difference space dis-
cretization, rather than finite volume. Finite difference schemes have the same structure
of finite volume. They have a conservative form, and the basic unknown is the pointwise
value rather that the cell average of the unknown field w(z,t) . They have the advantage
of being more efficient that their finite volume counterpart. However, they have the dis-
advantage of requiring a uniform (or smoothly varying) grid, and therefore they can not
be extended to unstructured grids. An extensive treatment of high order finite difference
schemes is given in [60, 26, 58].

The development of high order finite volume schemes for systems with stiff source is still
an open problem.
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Figure 2.19 Riemann problem in Extended Thermodynamics.

Figure 2.20 Solutions of extended thermodynamics model with ¢ = 10™* for initial data
2.100 and comparison with the solution of the Euler equations of gas dynamics. Mesh ratio
At = Az/9. Top pictures: density (left) and velocity (right) computed with 200 grid points
with UCS2 for Extended Thermodynamics (gray line) and NT scheme for Euler equation (black
line). Bottom pictures: Shear stress (left) and heat flux (right) for Extended Thermodynamics
model with ¢ = 107* . Note that the =z -scale has been magnified. Mesh ratio At = Az/9.
Middle pictures: UCS2 scheme with 200 (gray line) and 400 (black line). Bottom pictures:
upwind+splitting scheme with 200 (gray line) and 400 (black line). The thin line in the bottom
pictures is the reference solution obtained by UCS2 with 1600 grid points.
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