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1 Introduction

Over the past couple decades, much work has gone into the construction, anal-

ysis, and implementation of modern numerical algorithms for the approximate

solution of systems of nonlinear hyperbolic conservation laws of the form:

(u)t + f(u)x + g(u)y + h(u)z = 0. (1)

Numerical solutions of these equations are of tremendous practical importance

as they govern a variety of physical phenomena in natural and engineering

applications, including astrophysical, geophysical, and thermochemical fluid

flows. A number of high-resolution schemes were developed and tested for

this purpose [1–6]. The first-order Lax-Friedrichs scheme [7] is actually the

forerunner for a large class of central high-resolution schemes that have seen

much development in recent years. One of the main differences between high-

resolution schemes and other methods, e.g. Godunov or upwind methods, is

that instead of using a single cell average (which contains relatively little

information), neighboring cell averages are used to reconstruct an approximate

polynomial solution within each cell. This paper presents the formulation and

testing of such 3D high resolution semi-discrete schemes developed first by

Nessyahu and Tadmor [2].

The paper is organized as follows: In section 2 we briefly describe the back-

ground with regard to the development of semi-discrete central schemes. This

is followed by the mathematical formulation in sections 3 and 4. Section 5

presents a set of three 3D test cases and their results obtained using the semi-

discrete schemes formulated in this paper, including a parallel scaling analysis.

Section 6 summarizes the entire study.
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2 Background

The focus of this paper is on central schemes, all of which can be viewed

as an extension of the well-known Lax-Friedrichs scheme [7]. The first-order

Lax-Friedrichs scheme enjoys a major advantage of simplicity over most up-

wind schemes, in that no approximate Reimann solvers or characteristic de-

compositions are involved in its construction, thereby offering a rather sim-

ple realization for complicated multidimensional systems. However, the Lax-

Friedrichs scheme suffers from excessive numerical dissipation, resulting in

poor resolution of discontinuities and rarefaction waves. To circumvent this

deficiency, Nessyahu and Tadmor introduced a second-order non-oscillatory

central scheme (NT scheme) in 1990, [2], which was further extended to higher

orders of accuracy [8–10], as well as to multidimensional systems [11,12,3].

The main ingredient in the construction of the NT method is a second-order

non-oscillatory, monotonic upstream scheme for conservation laws (MUSCL)-

type [13], piecewise linear interpolant (instead of the piecewise constant one

employed in the Lax-Friedrichs scheme) in combination with an higher-order

solver for the time evolution [4]. However, applying the fully discrete NT

scheme to the second-order convection-diffusion equations still does not pro-

vide the desired resolution of discontinuities (see [14–16]). This loss of resolu-

tion occurs due to the accumulation of excessive numerical dissipation, which

is typical of fully discrete schemes with small time steps since ∆t ∝ (∆x)2

[4,16]. This led Kurganov and Tadmor [16] to the development of a set of

second-order semi-discrete central schemes. These schemes have smaller dis-

sipation than the original NT scheme and, unlike the fully discrete central

schemes, they can be efficiently used with time steps as small as required by

3



the CFL stability restriction due to the diffusion term.

In the study of Kurganov and Tadmor [16], a non-staggered semidiscrete cen-

tral method was derived by first integrating over non-equally spaced volumes,

out of which a new piecewise linear interpolant was reconstructed and finally

projected on its cell-avergaes [17]. The schemes in [16] were further extended

to third-order in [4], where a new central weighted essentially non-oscillatory

(CWENO) reconstruction, originally proposed in [3], was used to provide a

third-order accurate interpolant, built from the given cell-averages such that it

is non-oscillatory in the essentially non-oscillatory (ENO) sense [18,19]. Such

weighted essentially non-oscillatory (WENO) reconstructions were introduced

first in an upwind framework [20], after which they were extended to a central

framework [9,12,3]

More recently Balbas and Tadmor [21,6] presented extensions of the semidis-

crete central schemes of [16] with arbitrary order, r, specifically third- and

fourth-order reconstructions with the possibility of additional reconstructions

in the diagonal directions. While the schemes in [21,6] were presented for two-

dimensional systems, a 3D formulation of such semidiscrete central schemes

has not been published to the best of the authors’ knowledge. In this paper,

we present and test the third-order accurate semidiscrete central schemes of

Balbas and Tadmor [6] for 3D systems of equations.
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3 Formulation

3.1 Governing equations

In this paper, we present third-order accurate, non-oscillatory semi-discrete

central schemes for the approximate solution of several hyperbolic conservation

laws, including the single non-linear scalar equation given by

(u)t + (u2)x + (u2)y + (u2)z = 0, (2)

Euler equations of gas dynamics given by

(ρ)t +∇ · (ρv) = 0 (3)

(ρv)t +∇ ·
[
(ρvvT ) + pI

]
= 0 (4)

(E)t +∇ ·
[
(

γ

γ − 1
p+

1

2
ρv2)v

]
= 0 (5)

and the system of equations for ideal magnetohydrodynamics (MHD) given

by

(ρ)t +∇ · (ρv) = 0 (6)

(ρv)t +∇ ·
[
(ρvvT ) + (p+

1

2
B2)I −BBT

]
= 0 (7)

(B)t −∇× (v ×B) = 0 (8)

(E)t +∇ ·
[
(

γ

γ − 1
p+

1

2
ρv2)v − (v ×B)×B

]
= 0 (9)

Here ρ and E are scalar quantities representing the mass density and total

internal energy, respectively, v = (u, v, w)T is the velocity field with Euclidean

norm v2 :=|| v ||2, and B = (B1, B2, B3)T and B2 :=|| B ||2 represent the

magnetic field and its norm, respectively. The pressure, p, is coupled to the

total internal energy, E = 1
2
ρv2 +p/(γ−1) + 1

2
B2 (B = 0 in (3)-(5)). Further-

more, the system of MHD equations ((6)-(9)) is augmented by the solenoidal
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constraint, that is, if the condition ∇ · B = 0 is satisfied initially at t = 0,

then by (8) it remains invariant in time.

3.2 Third-order semi-discrete schemes

Starting with a general hyperbolic conservation law in three-space dimensions,

(u)t + f(u)x + g(u)y + h(u)z = 0, (10)

let the sliding averages of u over the cells Ci,j,k := [xi−1/2, xi+1/2]×[yj−1/2, yj+1/2]×

[zk−1/2, zk+1/2] (see Fig. 1) at time level, n, be

ūni,j,k :=
∫
Ci,j,k

u(x, y, z, tn) dx dy dz, (11)

where dx, dy and dz are the cell widths in the x-, y- and z-directions, respec-

tively. The local speeds of wave propagation are approximated by

ani+ 1
2
,j,k := max

[
ρ

(
∂f

∂u
(uLCi+1,j,k)

)
, ρ

(
∂f

∂u
(uRCi,j,k)

)]
,

bni,j+ 1
2
,k := max

[
ρ

(
∂g

∂u
(uBCi,j+1,k)

)
, ρ

(
∂g

∂u
(uTCi,j,k)

)]
,

cni,j,k+ 1
2

:= max

[
ρ

(
∂h

∂u
(uBaCi,j,k+1)

)
, ρ

(
∂h

∂u
(uFCi,j,k)

)]
;

(12)

where the supercripts LC,RC,BC, TC,BaC and FC stand for the Left,

Right, Bottom, Top, Back and Front Centers respectively (Fig. 2). The cell
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interface values in the x-,y-, and z-directions,

uRCi,j,k := pni,j,k(xi+ 1
2
, yj, zk),

uLCi,j,k := pni,j,k(xi− 1
2
, yj, zk),

uTCi,j,k := pni,j,k(xi, yj+ 1
2
, zk),

uBCi,j,k := pni,j,k(xi, yj− 1
2
, zk),

uFCi,j,k := pni,j,k(xi, yj, zk+ 1
2
),

uBaCi,j,k := pni,j,k(xi, yj, zk− 1
2
).

(13)

are calculated via a non-oscillatory piecewise polynomial reconstruction,

R (x, y, z; ūn) =
∑
i,j,k

pni,j,k(x, y, z)1Ci,j,k
; (14)

Details about the derivation of the polynomials and their properties can be

found in [6].

The resulting semi-discrete scheme in the limit as ∆→ 0 is as follows:

d

dt
ūi,j,k(t) = −

Hx
i+ 1

2
,j,k

(t)−Hx
i− 1

2
,j,k

(t)

∆x
−
Hy

i,j+ 1
2
,k

(t)−Hy

i,j− 1
2
,k

(t)

∆y

−
Hz
i,j,k+ 1

2

(t)−Hz
i,j,k− 1

2

(t)

∆z
(15)

with numerical fluxes

Hx
i+ 1

2
,j,k(t) =

1

2

[
f(uLCi+1,j,k) + f(uRCi,j,k)

]
−
ai+ 1

2
,j,k(t)

2

[
uLCi+1,j,k + uRCi,j,k

]
Hy

i,j+ 1
2
,k

(t) =
1

2

[
g(uTCi,j+1,k) + g(uBCi,j,k)

]
−
bi,j+ 1

2
,k(t)

2

[
uTCi,j+1,k + uBCi,j,k

]
Hz
i,j,k+ 1

2
(t) =

1

2

[
h(uFCi,j,k+1) + h(uBaCi,j,k )

]
−
ci,j,k+ 1

2
(t)

2

[
uFCi,j,k+1 + uBaCi,j,k

]
(16)

for the third-order CWENO reconstruction without any diagonal smoothing

(diagonal smoothing described in the next section). If diagonal smoothing is
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to be applied, the numerical fluxes are given by,

Hx
i+ 1

2
,j,k(t) =

1

24

[
f(uLTFi+1,j,k) + f(uRTFi,j,k ) + 4

(
f(uLTBai+1,j,k) + f(uRTBai,j,k )

)
+2

(
f(uLCi+1,j,k) + f(uRCi,j,k)

)
+4

(
f(uLTFi+1,j,k) + f(uRBFi,j,k )

)
+f(uLBBai+1,j,k)+f(uRBBai,j,k )

]

−
ai+ 1

2
,j,k(t)

24

[
uLTFi+1,j,k + uRTFi,j,k + 4

(
uLTBai+1,j,k + uRTBai,j,k

)
+

2
(
uLCi+1,j,k + uRCi,j,k

)
+ 4

(
uLTFi+1,j,k + uRBFi,j,k

)
+ uLBBai+1,j,k + uRBBai,j,k

]
(17)

Hy

i,j+ 1
2
,k

(t) =
1

24

[
g(uLBBai,j+1,k) + g(uLTBai,j,k ) + 4

(
g(uLBFi,j+1,k) + g(uLTFi,j,k )

)
+2

(
g(uBCi,j+1,k) + g(uTCi,j,k)

)
+4

(
g(uRBBai,j+1,k) + g(uRTBai,j,k )

)
+g(uRBFi,j+1,k)+g(uRTFi,j,k )

]

−
bi,j+ 1

2
,k(t)

24

[
uLBBai,j+1,k + uLTBai,j,k + 4

(
uLBFi,j+1,k + uLTFi,j,k

)
+

2
(
uBCi,j+1,k + uTCi,j,k

)
+ 4

(
uRBBai,j+1,k + uRTBai,j,k

)
+ uRBFi,j+1,k + uRTFi,j,k

]
(18)

Hz
i,j,k+ 1

2
(t) =

1

24

[
h(uRTBai,j,k+1) + h(uRTFi,j,k ) + 4

(
h(uLTBai,j,k+1) + h(uLTFi,j,k )

)
+2

(
h(uBaCi,j,k+1) + h(uFCi,j,k)

)
+4

(
h(uRBBai,j,k+1) + h(uRBFi,j,k )

)
+h(uLBBai,j,k+1)+h(uLBFi,j,k )

]

−
ci,j,k+ 1

2
(t)

24

[
uRTBai,j,k+1 + uRTFi,j,k + 4

(
uLTBai,j,k+1 + uLTFi,j,k

)
+

2
(
uBaCi,j,k+1 + uFCi,j,k

)
+ 4

(
uRBBai,j,k+1 + uRBFi,j,k

)
+ uLBBai,j,k+1 + uLBFi,j,k

]
(19)

where the superscriptsRTF,LBBa,RBF,LTBa, LTF,RBBa, LBF , andRTBa

stand for Right-Top-Front, Left-Bottom-Back, Right-Bottom-Front, Left-

Top-Back, Left- Top-Front, Right-Bottom-Back, Left-Bottom- Front, and

Right-Top-Back, respectively (Fig. 3).

This particular version of the numerical fluxes results from using Simpson’s

quadrature rule to approximate the intergrals of the fluxes f , g and h along
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the cell boundaries [xi− 1
2
, xi+ 1

2
], [yj− 1

2
, yj+ 1

2
] and [zk− 1

2
, zk+ 1

2
], respectively, and

it incorporates information from the corner interface values,

uRTFi,j,k := p̂ni,j,k
(
xi+ 1

2
, yj+ 1

2
, zk+ 1

2

)
uLBBai,j,k := p̂ni,j,k

(
xi− 1

2
, yj− 1

2
, zk− 1

2

)
uRBFi,j,k := p̂ni,j,k

(
xi+ 1

2
, yj− 1

2
, zk+ 1

2

)
uLTBai,j,k := p̂ni,j,k

(
xi− 1

2
, yj+ 1

2
, zk− 1

2

)
uLTFi,j,k := p̂ni,j,k

(
xi− 1

2
, yj+ 1

2
, zk+ 1

2

)
uRBBai,j,k := p̂ni,j,k

(
xi+ 1

2
, yj− 1

2
, zk− 1

2

)
uLBFi,j,k := p̂ni,j,k

(
xi− 1

2
, yj− 1

2
, zk+ 1

2

)
uRTBai,j,k := p̂ni,j,k

(
xi+ 1

2
, yj+ 1

2
, zk− 1

2

)

(20)

into the scheme. These corner values are recovered again via a non-oscillatory

reconstruction.

4 Implementation of Semi-Discrete Central Schemes

This section provides a third-order non-oscillatory reconstruction in three-

space dimensions, that was implemented for computing the solutions of (2),

(3) - (5) and (6) - (9).

4.1 Corner Reconstructions

The reconstruction of the point values of u presented in this section is the

third-order CWENO polynomial reconstruction of Kurganov and Levy [4]. The

properties of the piecewise quadratic polynomial, that is used here, were pre-

sented in [4] and [6]. In each cell Ci,j,k = [xi− 1
2
, xi+ 1

2
]×[yj− 1

2
, yj+ 1

2
]×[zk− 1

2
, zk+ 1

2
],
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the polynomials [pni,j,k(x, y, z)] in Eqns. (13) and (20) are written as a convex

combination of three polynomials P−1(x, y, z), P0(x, y, z), and P1(x, y, z). In

the x-direction they are as follows:

pni,j,k(x, y, z) = w−1P−1(x, y, z) + w0P0(x, y, z) + w1P1(x, y, z), (21)∑
m∈−1,0,1

wm = 1

where the linear polynomials

P−1(x, y, z) = ūni,j,k +
ūni,j,k − ūni−1,j,k

∆x
(x− xi), (22)

and

P1(x, y, z) = ūni,j,k +
ūni+1,j,k − ūni,j,k

∆x
(x− xi) (23)

conserve the pair of cell averages ūni−1,j,k, ū
n
i,j,k and ūni,j,k, ū

n
i+1,j,k, respectively,

and the parabola centered around xi is given by,

P0(x, y, z) = ūni,j,k −
1

12

(
ūni−1,j,k + ūni+1,j,k − 6ūni,j,k + ūni,j−1,k + ūni,j+1,k+

ūni,j,k−1 + ūni,j,k+1

)
+
ūni+1,j,k − ūni−1,j,k

2∆x
(x− xi)

+
ūni+1,j,k − ūni,j,k + ūni−1,j,k

∆x2
(x− xi)2. (24)

The conservation of the cell averages ūni−1,j,k, ū
n
i,j,k, ū

n
i+1,j,k and the accuracy

property (property P2 in [6]) are guaranteed [6] by any symmetric choice of

weights cm (e.g., c−1 = c1 = 1/4, c0 = 1/2). The non-oscillatory behavior

(property P3 in [6]) is attained with non-linear weights

wm =
αm∑
l αl

, with αm =
cm

(ε+ ISm)2
, m, l ∈ {−1, 0, 1} (25)

ε� 1 prevents the denominator from being zero (ε = 10−6), and the smooth-

ness indicators provide a local measure of the derivatives Pm(x, y, z), and in
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this case they read

IS−1 = (ūni,j,k − ūni−1,j,k)
2

IS1 = (ūni+1,j,k − ūni,j,k)2

IS0 =
13

3
(ūni+1,j,k − 2ūni,j,k + ūni−1,j,k)

2 +
1

4
(ūni+1,j,k − ūni−1,j,k)

2

(26)

In the case of systems of equations, the smoothness indicators are given by

the norm-scaled average of the componentwise indicators, IS(nq)
m , given by

ISm =
1

EQ

EQ∑
nq=1

1

‖u(nq)‖2 + ε
IS(nq)

m , m ∈ {−1, 0, 1}, (27)

where u(nq) stands for the (nq)th component of u, and

‖u(nq)‖2 =
∑
i,j,k

| u(nq)
i,j,k |2 ∆x∆y∆z (28)

represents its l2 norm over the discretized solution domain.

The interface values are now given by

uRCi,j,k = w−1

[
ūni,j,k +

1

2

(
ūni,j,k − ūni−1,j,k

)]
+ w0

[
ūni,j,k

− 1

12

(
ūni−1,j,k + ūni+1,j,k − 6ūni,j,k + ūni,j−1,k + ūni,j+1,k + ūni,j,k−1 + ūni,j,k+1

)
+

1

2

(
ūni+1,j,k − ūni−1,j,k

)
+

1

4

(
ūni+1,j,k − ūni,j,k + ūni−1,j,k

)]

+ w1

[
ūni,j,k +

1

2

(
ūni+1,j,k − ūni,j,k

)]
(29)

and

uLCi,j,k = w−1

[
ūni,j,k −

1

2

(
ūni,j,k − ūni−1,j,k

)]
+ w0

[
ūni,j,k

− 1

12

(
ūni−1,j,k + ūni+1,j,k − 6ūni,j,k + ūni,j−1,k + ūni,j+1,k + ūni,j,k−1 + ūni,j,k+1

)
− 1

2

(
ūni+1,j,k − ūni−1,j,k

)
+

1

4

(
ūni+1,j,k − ūni,j,k + ūni−1,j,k

)]

+ w1

[
ūni,j,k −

1

2

(
ūni+1,j,k − ūni,j,k

)]
(30)
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Similar reconstructions can be carried out in the y− and z− directions and the

interface values uFCi,j,k, u
BaC
i,j,k , u

TC
i,j,k and uBCi,j,k can be derived in a straightforward

manner. For example, the interface values uTCi,j,k and uBCi,j,k will be given by

uTCi,j,k = w−1

[
ūni,j,k +

1

2

(
ūni,j,k − ūni,j−1,k

)]
+ w0

[
ūni,j,k

− 1

12

(
ūni,j−1,k + ūni,j+1,k − 6ūni,j,k + ūni−1,j,k + ūni+1,j,k + ūni,j,k−1 + ūni,j,k+1

)
+

1

2

(
ūni,j+1,k − ūni,j−1,k

)
+

1

4

(
ūni,j+1,k − ūni,j,k + ūni,j−1,k

)]

+ w1

[
ūni,j,k +

1

2

(
ūni,j+1,k − ūni,j,k

)]
(31)

and

uBCi,j,k = w−1

[
ūni,j,k −

1

2

(
ūni,j,k − ūni,j−1,k

)]
+ w0

[
ūni,j,k

− 1

12

(
ūni,j−1,k + ūni,j+1,k − 6ūni,j,k + ūni−1,j,k + ūni+1,j,k + ūni,j,k−1 + ūni,j,k+1

)
− 1

2

(
ūni,j+1,k − ūni,j−1,k

)
+

1

4

(
ūni,j+1,k − ūni,j,k + ūni,j−1,k

)]

+ w1

[
ūni,j,k −

1

2

(
ūni,j+1,k − ūni,j,k

)]
(32)

4.2 Diagonal Reconstructions

Furthermore, if reconstructions are implemented along the diagonal directions

(Fig. 3), then the corresponding polynomials are given by ([22])

p̂ni,j,k(x, y, z) = ŵ−1P̂−1(x, y, z) + ŵ0P̂0(x, y, z) + ŵ1P̂1(x, y, z) (33)

where the linear polynomials are given by

P̂−1(x, y, z) = ūni,j,k+

ūni,j,k − ūni−1,j−1,k−1

∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
, (34)
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P̂1(x, y, z) = ūni,j,k+

ūni+1,j+1,k+1 − ūni,j,k
∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
, (35)

and

P̂0(x, y, z) = ūni,j,k−
1

12

(
ūni+1,j+1,k+1+ūni−1,j−1,k−1−8ūni,j,k+ū

n
i+1,j−1,k−1+ūni+1,j−1,k+1+

ūni+1,j+1,k−1 + ūni−1,j+1,k+1 + ūni−1,j+1,k−1 + ūni−1,j−1,k+1

)
+

ūni+1,j+1,k+1 − ūni−1,j−1,k−1

2∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
+

ūni+1,j+1,k+1 − ūni,j,k + ūni−1,j−1,k−1

∆2

(
∆

2∆x
(x−xi)+

∆

2∆y
(y−yj)+

∆

2∆z
(z−zk)

)2

.

(36)

for the RTF − LBBa axis,

P̂−1(x, y, z) = ūni,j,k+

ūni,j,k − ūni−1,j−1,k+1

∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
, (37)

P̂1(x, y, z) = ūni,j,k+

ūni+1,j+1,k−1 − ūni,j,k
∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
, (38)

and

P̂0(x, y, z) = ūni,j,k−
1

12

(
ūni+1,j+1,k+1+ūni−1,j−1,k−1−8ūni,j,k+ū

n
i+1,j−1,k−1+ūni+1,j−1,k+1+

ūni+1,j+1,k−1 + ūni−1,j+1,k+1 + ūni−1,j+1,k−1 + ūni−1,j−1,k+1

)
+

ūni+1,j+1,k−1 − ūni−1,j−1,k+1

2∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
+

ūni+1,j+1,k−1 − ūni,j,k + ūni−1,j−1,k+1

∆2

(
∆

2∆x
(x−xi)+

∆

2∆y
(y−yj)+

∆

2∆z
(z−zk)

)2

.

(39)

13



for the RTBa− LBF axis,

P̂−1(x, y, z) = ūni,j,k+

ūni,j,k − ūni−1,j+1,k−1

∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
, (40)

P̂1(x, y, z) = ūni,j,k+

ūni+1,j−1,k+1 − ūni,j,k
∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
, (41)

and

P̂0(x, y, z) = ūni,j,k−
1

12

(
ūni+1,j+1,k+1+ūni−1,j−1,k−1−8ūni,j,k+ū

n
i+1,j−1,k−1+ūni+1,j−1,k+1+

ūni+1,j+1,k−1 + ūni−1,j+1,k+1 + ūni−1,j+1,k−1 + ūni−1,j−1,k+1

)
+

ūni+1,j−1,k+1 − ūni−1,j+1,k−1

2∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
+

ūni+1,j−1,k+1 − ūni,j,k + ūni−1,j+1,k−1

∆2

(
∆

2∆x
(x−xi)+

∆

2∆y
(y−yj)+

∆

2∆z
(z−zk)

)2

.

(42)

for the RBF − LTBa axis, and

P̂−1(x, y, z) = ūni,j,k+

ūni,j,k − ūni−1,j+1,k+1

∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
, (43)

P̂1(x, y, z) = ūni,j,k+

ūni+1,j−1,k−1 − ūni,j,k
∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
, (44)
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and

P̂0(x, y, z) = ūni,j,k−
1

12

(
ūni+1,j+1,k+1+ūni−1,j−1,k−1−8ūni,j,k+ū

n
i+1,j−1,k−1+ūni+1,j−1,k+1+

ūni+1,j+1,k−1 + ūni−1,j+1,k+1 + ūni−1,j+1,k−1 + ūni−1,j−1,k+1

)
+

ūni+1,j−1,k−1 − ūni−1,j+1,k+1

2∆

(
∆

2∆x
(x− xi) +

∆

2∆y
(y − yj) +

∆

2∆z
(z − zk)

)
+

ūni+1,j−1,k−1 − ūni,j,k + ūni−1,j+1,k+1

∆2

(
∆

2∆x
(x−xi)+

∆

2∆y
(y−yj)+

∆

2∆z
(z−zk)

)2

.

(45)

for the RBBa− LTF axis.

The weights in Eqn. (33) are calculated in the exact same manner as in Eqn.

(25). With regard to indicators and corner values, for example, for the RTF −

LBBa axis they read as

IS−1 = (ūni,j,k − ūni−1,j−1,k−1)2

IS1 = (ūni+1,j+1,k+1 − ūni,j,k)2

IS0 =
13

3
(ūni+1,j+1,k+1 − 2ūni,j,k + ūni−1,j−1,k−1)2 +

1

4
(ūni+1,j+1,k+1 − ūni−1,j−1,k−1)2

(46)

and

uRTFi,j,k = w−1

[
ūni,j,k +

1

2

(
ūni,j,k − ūni−1,j−1,k−1

)]
+ w0

[
ūni,j,k

− 1

12

(
ūni+1,j+1,k+1 + ūni−1,j−1,k−1−8ūni,j,k+ ūni+1,j−1,k−1 + ūni+1,j−1,k+1 + ūni+1,j+1,k−1

+ ūni−1,j+1,k+1 + ūni−1,j+1,k−1 + ūni−1,j−1,k+1

)
+

1

2

(
ūni+1,j+1,k+1 − ūni−1,j−1,k−1

)
+

1

4

(
ūni+1,j+1,k+1 − ūni,j,k + ūni−1,j−1,k−1

)]

+ w1

[
ūni,j,k +

1

2

(
ūni+1,j+1,k+1 − ūni,j,k

)]
(47)
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and

uLBBai,j,k = w−1

[
ūni,j,k −

1

2

(
ūni,j,k − ūni−1,j−1,k−1

)]
+ w0

[
ūni,j,k

− 1

12

(
ūni+1,j+1,k+1 + ūni−1,j−1,k−1−8ūni,j,k+ ūni+1,j−1,k−1 + ūni+1,j−1,k+1 + ūni+1,j+1,k−1

+ ūni−1,j+1,k+1 + ūni−1,j+1,k−1 + ūni−1,j−1,k+1

)
− 1

2

(
ūni+1,j+1,k+1 − ūni−1,j−1,k−1

)
+

1

4

(
ūni+1,j+1,k+1 − ūni,j,k + ūni−1,j−1,k−1

)]

+ w1

[
ūni,j,k −

1

2

(
ūni+1,j+1,k+1 − ūni,j,k

)]
(48)

and for the RTBa− LBF axis they read as

IS−1 = (ūni,j,k − ūni−1,j−1,k+1)2

IS1 = (ūni+1,j+1,k−1 − ūni,j,k)2

IS0 =
13

3
(ūni+1,j+1,k−1 − 2ūni,j,k + ūni−1,j−1,k+1)2 +

1

4
(ūni+1,j+1,k−1 − ūni−1,j−1,k+1)2

(49)

and

uRTBai,j,k = w−1

[
ūni,j,k +

1

2

(
ūni,j,k − ūni−1,j−1,k+1

)]
+ w0

[
ūni,j,k

− 1

12

(
ūni+1,j+1,k+1 + ūni−1,j−1,k−1−8ūni,j,k+ ūni+1,j−1,k−1 + ūni+1,j−1,k+1 + ūni+1,j+1,k−1

+ ūni−1,j+1,k+1 + ūni−1,j+1,k−1 + ūni−1,j−1,k+1

)
+

1

2

(
ūni+1,j+1,k−1 − ūni−1,j−1,k+1

)
+

1

4

(
ūni+1,j+1,k−1 − ūni,j,k + ūni−1,j−1,k+1

)]

+ w1

[
ūni,j,k +

1

2

(
ūni+1,j+1,k−1 − ūni,j,k

)]
(50)
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and

uLBFi,j,k = w−1

[
ūni,j,k −

1

2

(
ūni,j,k − ūni−1,j−1,k+1

)]
+ w0

[
ūni,j,k

− 1

12

(
ūni+1,j+1,k+1 + ūni−1,j−1,k−1−8ūni,j,k+ ūni+1,j−1,k−1 + ūni+1,j−1,k+1 + ūni+1,j+1,k−1

+ ūni−1,j+1,k+1 + ūni−1,j+1,k−1 + ūni−1,j−1,k+1

)
− 1

2

(
ūni+1,j+1,k−1 − ūni−1,j−1,k+1

)
+

1

4

(
ūni+1,j+1,k−1 − ūni,j,k + ūni−1,j−1,k+1

)]

+ w1

[
ūni,j,k −

1

2

(
ūni+1,j+1,k−1 − ūni,j,k

)]
(51)

The details regarding the indicator functions and the corner values correspond-

ing to the rest of the diagonal axes (RBF −LTBa and RBBa−LTF ) are not

provided here in order to avoid repetition, but can be deduced in a straight-

forward manner. The next section presents specific test cases related to the

governing equations presented above along with a parallel scaling analysis of

the implementation of such schemes on multiple platforms.

5 Numerical Test Cases

This section presents results from the solutions of Eqn. (2) and systems of

equations Eqns. (3)-(5) and Eqns. (6)- (9) in applications of a scalar convec-

tion problem, the Richtmeyer-Meshkov instability, and the Orzsag-Tang vor-

tex problem, respectively. For all the calculations presented here, we choose

a uniform grid in physical space. For temporal discretization, the third-order

Strong Stability-preserving (SSP) Runge-Kutta [23,24] is used and the time

step is dynamically calculated to satisfy the CFL restriction given by

∆t =
CFL√

(max |ai,j,k|)2
(∆x)2

+
(max |bi,j,k|)2

(∆y)2
+

(max |ci,j,k|)2
(∆z)2

(52)
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where ai,j,k, bi,j,k and ci,j,k are the speeds of propagation (Eqns. (12) ). The

CFL number was chosen to be 0.5 in all the cases presented here.

5.1 Single scalar equation: Inviscid Burgers equation

The presentation of three-dimensional semi-discrete schemes, formulated in

the previous section begins with the solution of a single scalar equation given

by Eqn. (2). The equation is solved in a 3D computational domain of size

1× 1× 1 with a total of up to 1003 points, and the initial conditions are such

that the variable u is given by

u = 0.5; 0.1 ≤ x ≤ 0.5, 0.1 ≤ y ≤ 0.5, 0.1 ≤ z ≤ 0.5, (53)

and zero elsewhere.

Firstly Fig. 4 presents instantaneous solutions at time t = 0.4 for two different

grid sizes 503 and 1003. Very slight differences between the solutions exist in-

dicating a grid-independent solution. The rest of the results presented in this

section are those with the fine grid (1003). Figures 5 and 6 present solutions

of Eqn. (2) using the polynomial reconstructions without and with diagonal

smoothing respectively. Iso-surfaces at two different values and the slices in

two different directions are shown at various times. The non-zero region or

”cube” moves towards the corner (1, 1, 1) as time progresses. There is a signif-

icant difference between the evolution of the solutions in the two cases. The

edges of the ”cube” are considerably smoothed in the case where a polynomial

reconstruction is applied in the diagonal directions (Fig. 6). This leads to an

increased dissipation of the sharp discontinuities (or in this case the edges of
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the ”cube”) and hence the smoothing.

5.2 Parallel performance analysis for system of equations

The computational requirements for the solution of hyperbolic problems could

become prohibitive in the case of three-dimensional, geometrically complex

enclosures. These requirements increase further when realistic fluid flows like

viscous or turbulent flows are considered, thereby requiring larger compu-

tational effort and memory. Recent developments in high-performance com-

puting promise a substantial increase in computational speed and offer new

possibilities for more accurate simulations. Three-dimensional domain decom-

position is used to speed the calculations, where the computational domain

is decomposed into a number of rectangular blocks with each processor being

responsible for a single block. An example of this decomposition can be seen

by the gaps in the grid in Fig. 7 for the specific case of 16 processors.

Most of the calculations in the interior of each of the sub-domains are inde-

pendent of the domain decomposition, and can continue as if being performed

serially. Problems arise near the sub-domain boundaries where, for example,

finite differences calculated adjacent to the subdomain boundaries may need

several points outside the subdomain. To support these circumstances, two

rows of “ghost points” are carried along with the interior solutions that con-

tain copies of the interior solution from the neighboring sub-domain. These

points are exchanged and updated from neighboring processors as needed to

ensure that all near-wall calculations are performed with current variable val-

ues.
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If a uniform grid is used, then the sub domains in each direction will contain

equal number of grid points. However, for a non-uniform grid, the the division

locations between the sub-domains need to be selected to provide good load

balancing, or an equivalent amount of work for each processor in each time

step. Hence, for the purpose of a scaling analysis, Fig. 8 illustrates the CPU

time, parallel speedup, Sp = Tserial/Tparallel, and the parallel efficiency, Ep =

Sp/p, where Tserial, Tparallel and p are the CPU time for serial and parallel runs

and the number of processors respectively. The scaling analysis is presented

for the numerical solutions of the Euler hydrodynamic system presented above

(Eqns. (3)- (5) ). Diagnostics for two different problem sizes are presented, one

with 1283, while the other with 2563 number of points. The simulations were

conducted on the IBM Blue Gene architecture at Argonne National Labs. Due

to the high memory requirements of the code, the lowest number of processors

on which a 1283 simulation can be run is 16, while the corresponding number

for the 2563 simulation is 32. In order to present a complete scaling analysis,

i.e. to calculate speedup and efficiency, it is assumed that these quantities are

ideal up to 16 and 32 processors for the 128 and 2563 simulations, respectively.

Figure 8 shows the simulation time for 10 time steps on a log scale, where

the point corresponding to a single processor was in fact extrapolated from

the nearest point assuming ideal efficiency (100%). The CPU time decreases

linearly with number of processors which is encouraging. On the same figure

speedup and eficiency are close to ideal (red dashed line), with efficiency values

ranging between 94% and 100%.
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5.3 Euler system of equations: Richtmeyer-Meshkov instability

The first 3D realistic problem that is considered here is the evolution of the

Richtmeyer-Meshkov instability (RMI) [25,26]. RMI arises when a shock passes

through an interface between two fluids of widely ranging densities. A generic

feature of these systems, as is the case for fluid turbulence in general, is the

existence of fluctuations on multiple length scales. Three-dimensional simula-

tions of the re-shocked RMI modeled after the Mach 1.21 experiment of Collins

and Jacobs [27] are presented in the present work. The simulations use the 3rd

order CWENO reconstruction method without diagonal smoothing (to avoid

excess dissipation resulting from it) using 1024 × 512 × 512 grid points on a

domain of 17.8×8.9×8.9 cm3. For test purposes, and in order to have a higher

resolution, the domain size here in these simulations is more than 50% smaller

in the X-direction as compared to experiments.

The initial conditions were adapted from the Mach 1.21 air/SF6 experimen-

tal shock tube configuration of Collins and Jacobs [27]. The adiabatic ex-

ponent γ = 1.24815 corresponding to an air mixture was used. The ra-

tio of densities is given by
ρSF6

ρair
= 4.063. The initial sinusoidal interface

η(y, z) = ao sin(2πy/λ) sin(2πz/λ) had pre-shock amplitude ao = 0.2 cm and

wavelength λ = 5.933 cm. An initial diffusion layer thickness of δ = 0.5 cm was

used, where the thickness function is S(x, y, z) = 1 if d ≤ 0, = exp(−α | d |8)

if 0 < d < 1 and 0 otherwise. d = (xs + η(y, z) + δ − x)/(2δ), and α = −lnβ

(β is machine zero).

The following boundary conditions were used: (a) inflow at the test section

entrance in the streamwise X-direction; (b) reflecting at the end wall of the

21



test section in the streamwise direction, and; (c) periodic in the Y and Z-

directions corresponding to the cross-section of the test section. The reflecting

boundary condition is implemented by reversing the normal component of

the velocity vector: u(x, t) = −u(x, t) at x = 17.8 cm (maximum in the

streamwise direction) and at the ghost points, which is exact and does not

generate spurious noise [28].

Figures 9, 10, and 11 show the instantaneous contour slices of density, velocity,

and isosurfaces of density, respectively, at times given by t = 1 ms, t = 2 ms,

t = 3 ms and t = 4 ms. As the RMI instability develops, spikes of SF6 fall into

the air. Following this initial growth, the spikes roll-up and additional complex

structures begin to appear. The results presented here are qualitatively similar

to other studies, e.g. [28].

5.4 Ideal Magnetohydrodynamic (MHD) equations: Orzsag-Tang vortex sys-

tem

Our next 3D problem, that is investigated is a 3D MHD problem, the Orszag-

Tang-type problem [29]. The evolution of the vortex system involves the inter-

action between several shock waves traveling at various speed regimes [30,31],

which makes the problem especially attractive for numerical experiments. The

initial data for this problem are the following:

ρ = γ2

p = γ

u = (−sin y sin z, sin x sin z, 0)

B = (−sin y sin z, sin 2x sin z, sin 2x sin y)

(54)

22



with 0 ≤ x, y, z ≤ 2π, where γ = 5/3. Again, grid independence is demon-

strated in Fig. 12 through density contours on slices across the centerlines

planes on coarse (1283) and fine grids (2563). The results presented here in

this section are those computed on the 2563 grid using the CWENO recon-

struction without diagonal smoothing.

A way of demonstrating the accuracy of a numerical method is to determine

whether the solenoidal constraint ∇ · B = 0 is maintained throughtout the

simulation. Since ∇ · B = 0 initially, theoretically it should be remain so

throughout the simulation. However, the accumulation of numerical errors can

usually lead to non-physical phenomenon know as magnetic monopoles (when

∇ ·B is not equal to 0). The schemes presented here when first introduced in

[6] in a 1D and 2D framework did not require an explicit enforcement of the

solenoidal constraint for producing stable and reasonably accurate solutions,

and hence no such treatment is used here either. Figure 13 shows the surface

plots of ∇·B on all the Z−surfaces at a certain instant in time. The maximum

value of the magnitude of ∇ · B at this instant is 0.41, which is actually

representative of the entire simulation. Figure 14 shows a density isosurface.

Fig. 15 shows contours of density on three slices across the x = y = z = π

planes and Fig. 16 shows the 2D magnetic field vector colored by magnetic

field magnitude. These results demonstrate the ability of such higher-order

central schemes to resolve the shocks that the vortex system develops while

maintaining the simplicity and ease of implementation typical of this black-box

type of finite difference schemes.
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6 Conclusions

Extensions of the semi-discrete schemes of Balbas and Tadmor [6] to 3D are

presented and tested for the first time in this paper. The numerical test cases

chosen include evolution of (a) a single scalar equation or an inviscid Burgers

equation, (b) the Richtmeyer-Meshkov instability (RMI) using Euler hydro-

dynamic equations, and (c) the Orzsag-Tang vortex system using ideal mag-

netohydrodynamic equations. Grid independence was demonstrated for two

of the three cases presented here. The single scalar equation test case results

indicated excessive dissipation when diagonal smoothing was applied. Paral-

lel scaling analysis showed almost ideal efficiencies and speedups based on

the assumption that they hold ideal values up until 16 processors. The re-

sults obtained with these schemes for the Richtmeyer-Meshkov instability and

the Orszag-Tang vortex system confirm the ability of this type of solver to

approximate the discontinuous solutions of Eulerian gas dynamics and ideal

magnetohydrodynamics equations.
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Fig. 1. Modified central differencing in three-space dimensions.
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Fig. 2. Reconstructions in the x−, y− and z− directions.
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Fig. 3. Reconstructions in the diagonal directions.
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(a) (b)

Fig. 4. Instantaneous solutions of the non-linear scalar equation Eqn. (2) using the

CWENO polynomial reconstruction WITHOUT diagonal smoothing at time t = 0.4

for two different grid sizes: 503 (left) and 1003 (right). Shown are iso-surfaces at two

values 0.5 and 0.05, along with slices alongX = 0.3 and Z = 0.3, which are projected

to the end of the domain.
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(a) (b)

(c)

Fig. 5. Same as Fig. 4 but these solutions using the CWENO polynomial recon-

struction WITHOUT diagonal smoothing at times (a) t = 0 (b) t = 0.4 and (c)

t = 0.8.
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(a) (b)

(c)

Fig. 6. Same as Fig. 5, but these are solutions using the CWENO polynomial re-

construction WITH diagonal smoothing
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Fig. 7. Mesh and domain decomposition for 64 × 64 × 64 grid with a 4 × 2 × 2

processor configuration
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(a) (b)

(c)

Fig. 8. Parallel scaling analysis for the solution of the Euler hydrodynamics system

(Eqns. (3) - (5) ) on two different problem sizes: (a) CPU time for 10 time steps,

(b) Speedup, and (c) Efficiency; Solid line with symbols: 1283; Dashed line with

symbols: 2563. The red dashed line indicates perfect or ideal values.
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(a) (b)

(c) (d)

Fig. 9. Instantaneous contours of density across centerline Y direction (Y = 0 at

(a) t = 1 ms, (b) t = 2 ms (c) t = 3 ms and (d) t = 4 ms.
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(a) (b)

(c) (d)

Fig. 10. Instantaneous contours of X-velocity across centerline Y direction (Y = 0

at (a) t = 1 ms, (b) t = 2 ms (c) t = 3 ms and (d) t = 4 ms.
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(a) (b)

(c) (d)

Fig. 11. Instantaneous isosurfaces of density (C = 7 and C = 9) on a sub-domain

of size 4.5× 4.5× 4.5 cm3 (a) t = 1 ms, (b) t = 2 ms (c) t = 3 ms and (d) t = 4 ms.

38



(a) (b)

Fig. 12. Instantaneous contours of density across X, Y and Z direction-centerlines

(= π) at t = 0.2 for two different grid sizes 1283 (left) and 2563 (right).

39



Fig. 13. Instantaneous surface plot of the divergence of the magnetic field (∇ · B)

on all the Z-surfaces at t = 0.5 for the solution of the Orszag-Tang system.
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Fig. 14. Isosurface of the density at a value ρC = 3.0 at t = 0.2.
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(a) (b)

(c)

Fig. 15. Instantaneous contours of density across X, Y and Z direction-centerlines

(= π) at (a) t = 0.2, (b) t = 0.4 and (c) t = 0.8; (Grid: 2563).
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(a) (b)

(c)

Fig. 16. Instantaneous slices across the X-direction centerline (= π) showing vectors

of the 2D magnetic field (By, Bz) colored by the magnitude of the magnetic field at

(a) t = 0.2, (b) t = 0.4 and (c) t = 0.8; (Grid: 2563).
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