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Abstract

We present a new high-resolution, non-oscillatory semi-discrete central scheme for one-dimensional

shallow-water flows along channels with non uniform cross sections of arbitrary shape and bottom topog-

raphy. The proposed scheme extends existing central semi-discrete schemes for hyperbolic conservation

laws and enjoys two properties crucial for the accurate simulation of shallow-water flows: it preserves the

positivity of the water height, and it is well balanced, i.e., the source terms arising from the geometry

of the channel are discretized so as to balance the non-linear hyperbolic flux gradients. In addition to

these, a modification in the numerical flux and the estimate of the speed of propagation, the scheme

incorporates the ability to detect and resolve partially wet regions, i.e., wet-dry states. Along with a

detailed description of the scheme and proofs of its properties, we present several numerical experiments

that demonstrate the robustness of the numerical algorithm.

1 Introduction

Many geophysical and atmospheric flows are characterized by their large length scale relative to their depth

(i.e., they are shallow). They are often modeled by the shallow-water equations, a nonlinear hyperbolic
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conservation law with geometric source terms that results from the cross sectional averaging of Euler equa-

tions. Non-trivial (nearly) steady flows are of particular interest as they arise commonly in nature, e.g.,

channel and strait flows, flows through mountain passes, etc. The accurate approximation and simulation

of these require the delicate balance between the nonlinear flux gradients and the geometric source terms of

the hyperbolic system.

Recent years have seen a rapidly growing interest in development of numerical methods for shallow-water

systems in various numerical frameworks [4, 5, 12, 15, 17, 18, 21, 22, 23, 24, 25, 26], see also the recent book [6]

and references therein. Most relevant for this manuscript are works involving shallow water-flows in variable

geometry, including [11, 16, 28] where an upwind scheme for the single layer shallow water is derived and

generalized to rectangular channel flows, [14] where the model was generalized to arbitrary cross-sectional

areas, and [8] where the Q-scheme introduced in [7] is used to solve the two layer shallow-water system, and

the central schemes introduced in [5], and [9, 29], as well as the central-upwind scheme in [18] .

In this paper we present a new high-resolution semi-discrete central scheme for shallow-water flows along

channels with non-uniform cross-sections of arbitrary shape and bottom topography. The interplay between

the bottom topography and the varying width of the channel affects and controls the flow. Numerical schemes

for shallow-water flows must, therefore, pay special attention to the discretization of the channel’s geometry

so as to make it consistent with the well-balance and positivity properties sought. In this case, we ensure

the well-balance property by describing the channel’s floor and walls with piecewise linear segments, a choice

that renders piecewise trapezoidal cross sections (see Figure 1).
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Figure 1: Schematic of channel cross section

The paper is structured as follows, in §2 we provide a description of the system (1), its properties, and

the challenges that these properties pose for computing numerical solution. In §3 we describe the proposed

numerical scheme and prove that it preserves the positivity of the water height, it is well-balanced, i.e., it

recognizes and preserves the steady-state of rest, and that it is capable of identifying and resolving wet-

dry regions. Numerical solutions for a variety of flow regimes are presented in §4, validating the scheme’s

accuracy and robustness and demonstrating its ability to simulate a wide range of flows.
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2 The Model

The shallow water equations for flows through channels with variable cross-section are given by, [14],

∂A

∂t
+

∂Q

∂x
= 0 (1a)

∂Q

∂t
+

∂

∂x

(

Q2

A
+ I1

)

= I2 − gσBhB′, (1b)

where h denotes the depth of the layer, u the the cross-sectional velocity, B(x) the bottom topography,

σ(x, z) the width of the channel, A =
∫ B+h

B
σ(x, z) dz is the cross-sectional wet area, and Q = Au is the

flow rate or discharge, σB(x) = σ(x, B(x)) denotes the channel width at z = B(x), and g the acceleration of

gravity. The terms I1(x) and I2(x) that appear in the flux and the source term stand, respectively, for the

integrals

I1(x) = g

∫ w

B

(w − z)σ(x, z) dz = Ap, I2(x) = g

∫ w

B

(w − z)σx(x, z) dz, (2)

where w denotes the total water elevation, w = h + B, and p the cross-sectional average of the hydrostatic

pressure, (See Figure 1).

2.1 Properties of the System

In quasilinear form the system reads







A

Q







t

+







0 1

c2 − u2 2u













A

Q







x

=







0

c2 (hI3 − σBB′)






, (3)

where I3(x) = 1
h

∫ w

B
σx(x, z) dz is the averaged width variation, and c2 = gA/σT , where σT = σ(x, h + B) is

the width of the channel at the water surface. Notice that c2 reduces to the familiar expression c2 = gh for

rectangular channels.

The system (1) is hyperbolic, with eigenvectors and eigenvalues

R =







1 1

u − c u + c






Λ =







u − c 0

0 u + c






, (4)

3



and the flows it describes are characterized by the nondimensional Froude number F , where F 2 =
u2

c2
. The

Froude number captures the essential non-linearity of the flow; a flow is said to be subcritical for F 2 < 1

and supercritical for F 2 > 1.

The system is endowed with an entropy function

E = A

(

1

2
u2 + g(h + B)

)

− I1,

Strict hyperbolicity is lost for h = 0, when eigenvectors coincide, representing a so-called “dry state”.

2.2 Steady-State Solutions

Smooth steady-state solutions are characterized by two invariants, the flow rate Q, and E, the energy per

unit of cross sectional area

Q ≡ Au = Const, E ≡ 1

2
u2 + g(h + B) = Const, (5)

among which it is easy to recognize the steady state of rest

u = 0, h + B = Const. (6)

Exact solutions –to machine precision– for smooth steady-states can be found by solving (using a rootfinding

method)

E =
1

2

Q2

A2
+ g(h + B), (7)

with prescribed boundary conditions Qin at the inflow boundary and h + B = wout at the outflow. And

non smooth steady-states –characterized by a stationary jump– by prescribing the depth of the flow at some

point between the inflow boundary and the location of the discontinuity. A detailed discussion about these

solutions for channels with (nonuniform) rectangular cross-sections is presented in [2, 3, 10].

In the case of a straight channel, smooth steady solutions satisfy (here h′ = hx)

(F 2 − 1)h′ = B′. (8)

That is, at the crest, i.e., B′ = 0, the solution is either critical (F 2 = 1) or symmetric (h′ = 0). If the
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channel is rectangular with variable cross sectional width σ = σ(x), then

(F 2 − 1)h′ = B′ − hσ′

σ
F 2 . (9)

Implying that if the crest (B′ = 0) and the throat (σ′ = 0) occur at the same point, the right hand side of

(9) vanishes there and the flow is either symmetric or reaches criticality at that point. Otherwise, criticality

occurs where

B′ =
h

σ
F 2σ′ (10)

which occurs somewhere between the crest and the throat. For the channels with arbitrary geometry con-

sidered in this work, steady-state solutions satisfy

(F 2 − 1)h′ =

(

1 − (σT − σB) F 2

σT

)

B′ − hI3

σT
F 2, (11)

and their exact solution can be calculated (to machine precession) with a root finding method by imposing

the appropriate boundary conditions, Qin and wout for smooth flows, and those plus h (or w) at some other

point for non smooth flows.

2.3 Numerical Simulation of Shallow-water Flows

The nonlinear flux in (1) together with the properties described above and the interplay between the flow

quantities and the channel geometry pose a number of challenges when computing the numerical solution of

(1): The nonlinearity of the flux implies that the balance law admits discontinuous solutions, and requires

robust numerical schemes that are suitable for calculating discontinuous flows. Another difficulty arises when

computing solutions where h → 0 (e.g., dam break), round off errors may cause the depth of the water layer,

h, to become negative leading to the loss of hyperbolicity and causing the computation to fail. Positivity

preserving schemes have the desirable property that if the data has positive (non-negative) depth, so does

the numerical solution, and they enjoy enhanced stability near dry states. Changes in the solution of (1)

in time arise when flux gradients are out of balance with the source terms, so numerical schemes that are

able to recognize and respect such a balance often give superior results when computing near steady-state

flows. Perfectly recognizing such a balance may not always be possible, and schemes that respect steady-

state solutions either exactly or to the order of the numerical approximation are often called ‘well-balanced’.

However, the ability of a scheme to detect steady-state solutions and to converge to them, and to preserve
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the positivity of the water layer may not be sufficient to preserve steady-states of rest exactly in all scenarios.

For instance, in a channel with piecewise discontinuous bottom topography one could encounter two states

of rest with the deeper part of the channel holding a positive water layer (wet) and the higher ground being

dry. The evolution of such wet-dry front could create spurious oscillations at the interface between the two

states leading to instabilities.

In §3 we take all these challenges into consideration and we incorporate into our central scheme the

necessary techniques to properly address them.

3 Numerical Scheme

In this section we construct a central scheme for the accurate simulation of shallow-water flows described

by the balance law (1). In particular, we seek a scheme that is positivity preserving and well-balanced.

The scheme extends previous works in [5, 17, 18, 19] to flows along channels with variable geometry. This

extension is not trivial; the varying geometry of the channel leads to fluxes and source terms that require the

approximation of integral terms, making the balance of them more difficult; while in channels with constant

width (σ ≡ 1), well-balancing may be accomplished solely by choosing an appropriate discretization of the

source term, in the variable geometry case, the conserved variables A =
∫ B+h

B
σ(x, z) dz and Q = Au depend

on the geometry σ, which renders steady-state preservation and positivity more strongly coupled with, for

example, the polynomial reconstruction of the conserved variables.

To this end, it is convenient –following [19]– to reformulate (1) in terms of the total elevation of the free

water layer, w = h + B and its total area, AT = A +
∫ B

0 σ(x, z) dz, that is

∂AT

∂t
+

∂Q

∂x
= 0 (12a)

∂Q

∂t
+

∂

∂x

(

Q2

AT −
∫ B

0 σ(x, z) dz
+ I1

)

= I2 − gσB(w − B)B′. (12b)

This formulation allows the numerical scheme to detect changes (or the lack of them) in the total water

elevation, w, which in turn, facilitates ensuring preservation of steady-states of rest.
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3.1 Semi-discrete Central Formulation

We write the modified balance law, (12), in the more general form

vt + f(v)x = S(v, x), (13)

with

v =







AT

Q






, f(v) =







Q

Q2

AT −
R

B

0
σ(x,z) dz

+ I1






, (14)

on the left hand side, and with the source term

S =







0

I2 − gσB(w − B)B′






. (15)

Fixing a spatial scale ∆x, we partition the solution domain into the grid cells Ij := [xj − ∆x
2 , xj + ∆x

2 ], and

denote by vj(t) the cell average of v(x, t) over the cell Ij ,

vj(t) =
1

∆x

∫ x
j+ 1

2

x
j− 1

2

v(x, t) dx. (16)

Integrating equation (13) over the cells {Ij}j , we obtain the semidiscrete formulation

d

dt
vj(t) +

1

∆x

(

f(v(xj+ 1
2
, t)) − f(v(xj− 1

2
, t))
)

=
1

∆x

∫ x
j+ 1

2

x
j− 1

2

S(v(x, t), x) dx, (17)

which is approximated by

d

dt
vj(t) = −

Hj+ 1
2
− Hj− 1

2

∆x
+

1

∆x

∫ x
j+ 1

2

x
j− 1

2

S(v, x) dx, (18)

where the flux at the cell interfaces, f(v(xj± 1
2
), t), is approximated by the numerical flux Hj± 1

2
(t) given by,

[20],

Hj± 1
2
(t) =

f
(

v+
j± 1

2

(t)
)

+ f
(

v−
j± 1

2

(t)
)

2
−

aj± 1
2

2

(

v+
j± 1

2

(t) − v−
j± 1

2

(t)
)

. (19)
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Here, the interface point-values v±
j± 1

2

(t) are recovered from the cell averages via a non-oscillatory piecewise

polynomial reconstruction

v−
j+ 1

2

:= pj(xj+ 1
2
), and v+

j+ 1
2

:= pj+1(xj+ 1
2
), (20)

and aj± 1
2

stands for an estimate for the maximum wave speed of the balance law, approximated by

aj± 1
2

= max
{∣

∣

∣u−

j± 1
2

∣

∣

∣+ c−
j± 1

2

,
∣

∣

∣u+
j± 1

2

∣

∣

∣+ c+
j± 1

2

}

. (21)

In addition to the non-oscillatory polynomial reconstruction –which must ensure the positivity of the free

surface– and the wave speed estimate, the implementation of the scheme requires a discretization of the

source term integral on the right hand side of (18) that balances the numerical fluxes, a mechanism to

identify and resolve wet-dry regions, and an evolution routine to update the resulting ODE system. The

description of all these ingredients follows.

3.2 Positivity Preserving Non-oscillatory Reconstruction

In order to recover the interface point values vj± 1
2
(t) from the cell averages vj(t), we seek a piecewise

polynomial reconstruction

v(x, t) = R (x; v(t)) :=
∑

j

pj(x). (22)

This reconstruction procedure is at the heart of high-resolution non-oscillatory central schemes, and requires

the coefficients of the polynomials {pj(x)} to be determined so that R(x; v(t)) satisfies the following essential

properties:

• P1 — Conservation of cell averages: pj(x) = vj(t).

• P2 — Accuracy: R(x; v(t)) = v(x, t) + O((∆x)2) (in smooth regions).

• P3 — Non-oscillatory behavior of
∑

j pj(x).

• P4 — Flux gradient and source balancing: the interface values of the total area AT (and those of w)

must be reconstructed so as to satisfy

w±

j+ 1
2

= Const, (23)

when the data is that of a steady-state of rest (6), wj = Const.
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• P5 —Positivity: the reconstructed values w±

j± 1
2

(t) must yield h±

j± 1
2

(t) ≥ 0, so as to ensure the positivity

of hj(t + ∆t).

To this end, we choose

pj(x) = vj + v′j(x − xj), (24)

with the limited slopes v′j calculated as, [27],

v′j =
1

∆x
minmod(α∆−v̄j , ∆0v̄j , α∆+v̄j), (25)

where 1 ≤ α < 2, and

minmod(x1, x2, x3, . . . , xk) =























minj(xj) if xj > 0 ∀j

maxj(xj) if xj < 0 ∀j

0 otherwise

.

3.2.1 Steady-state of Rest and Positivity – Properties P4 and P5

This minmod reconstruction procedure will satisfy properties P1 − P3 above when applied to any (smooth

or non-smooth) piecewise data –property P3 is characterized by the the TVD property for scalar hyperbolic

conservation laws, [27]. However, in order to enforce P4 and P5, the reconstruction is applied to Q and w

–whose cell averages are recovered from those of AT deconvolving A
T

j =
∫ wj

0 σ(xj , z) dz. Reconstructing the

pointvalues from the data {wj} instead of {AT

j } the well-balance property, P4, is trivially satisfied, but not

the positivity of h±

j± 1
2

. As illustrated in Figure 2, the different signs of the finite differences compared by

the minmod limiter may lead to zero numerical derivatives and render interface values w±

j± 1
2

smaller than

the corresponding values of the bottom topography Bj± 1
2
. To prevent this numerical artifact, we follow [18]

and check the minmod reconstructed pointvalues w±

j± 1
2

, correcting them –if necessary– as follows

if w+
j− 1

2

< Bj− 1
2

=⇒ w′
j = 2(wj − Bj− 1

2
) =⇒















w+
j− 1

2

= Bj− 1
2

w−

j+ 1
2

= wj + 1
2w′

j

(26)

else
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if w−

j+ 1
2

< Bj+ 1
2

=⇒ w′
j = 2(Bj+ 1

2
− wj) =⇒















w−

j+ 1
2

= Bj+ 1
2

w+
j− 1

2

= wj − 1
2w′

j

, (27)

which yields

h−

j+ 1
2

:= w−

j+ 1
2

− Bj+ 1
2
≥ 0, (28)

and

h+
j− 1

2

:= w+
j− 1

2

− Bj− 1
2
≥ 0. (29)

Figure 2: Modified reconstruction of total water height, w, over the piecewise linear approximation of bottom
topography (dashed line). The minmod reconstruction is depicted by dotted lines over cell averages (black
dots), the modified reconstruction is depicted by a black solid line, the interface pointvalues of w, wj± 1

2
, are

depicted by black squares.

The pointvalues of the total area, AT,±

j± 1
2

, are then recovered from these by integrating the interface width,

AT,±

j± 1
2

=

∫ w±

j± 1
2

0

σ(xj± 1
2
, z) dz. (30)

3.2.2 Regularization of Flow Velocity and Discharge for Small A

We shall remark however that while this modified minmod reconstruction will ensure the positivity of the

water height at the cell interfaces, these pointvalues may still be very small (i.e., arbitrarily close to zero) and

may lead to large values of the velocity of the flow, u, or, equivalently, of the term Q2

AT −
R B(x)
0 σ(x,z) dz

= Qu
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in the second component of the flux f in (14). In order to prevent this, after reconstructing Q, w, and AT

at the cell interfaces, we use the regularization technique suggested by [18],

u±

j± 1
2

=

√
2Q±

j± 1
2

A±

j± 1
2

√

(

A±

j± 1
2

)4

+ max
(

(A±

j± 1
2

)4, δ4
)

, (31)

with

A±

j± 1
2

=

∫ w±

j± 1
2

B
j± 1

2

σj± 1
2
(z) dz, σj±1/2(z) := σ(xj±1/2, z). (32)

And then recalculate the interface values of the discharge as

Q±

j± 1
2

= A±

j± 1
2

u±

j± 1
2

. (33)

The value of δ was empirically determined, usually choosing δ = 5 × 10−3 in this paper.

3.3 Well Balance

If, at time t, the computed flow variables satisfy the trivial steady-state conditions (6), i.e., wj = Const.

and Qj = 0 for all j, the reconstructed pointvalues AT,±

j± 1
2

, (30), will trivially yield

dA
T

j (t)

dt
= 0, ∀ j, (34)

and thus A
T

j (t+∆t) = A
T

j (t) as desired. Satisfying also the well balance property for Qj(t) requires additional

considerations; the cell average of the source term, Sj , in (15) needs to be discretized so as to balance the

numerical fluxes (19). In order to find such discretezation, we start by writing the second component of the

numerical flux difference in (18) for the rest conditions (6). Under these conditions, noting that the minmod

reconstruction of Q will trivially yield Q±

j± 1
2

= 0, this difference amounts to

HQ

j+ 1
2

− HQ

j− 1
2

∆x
=

1

2∆x

[(

fQ(v+
j+ 1

2

) + fQ(v−
j+ 1

2

)
)

−
(

fQ(v+
j− 1

2

) + fQ(v−
j− 1

2

)
)]

(35)

=
g

∆x





∫ w
j+ 1

2

B
j+ 1

2

(wj+ 1
2
− z)σ(xj+ 1

2
, z) dz −

∫ w
j− 1

2

B
j− 1

2

(wj− 1
2
− z)σ(xj− 1

2
, z) dz



 ,
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and it should balance the cell average of the source term in (18), that is

Sj =
g

∆x

∫ x−

j+ 1
2

x+

j− 1
2

[
∫ w

B

(w − z)σx(x, z) dz − σB(x)(w − B)B′

]

dx. (36)

Thus, the well balance property of the scheme amounts to devising a (high-order) discrete analogy of the

integral in (36) that cancels the discretized counterpart of (35) exactly when w = Const., and u = 0. To

this end, we propose:

Proposition 1. Let Bj± 1
2

= B(xj± 1
2
), and σj± 1

2
(z) = σ(xj± 1

2
, z) be the topography and geometry at the

interfaces xj± 1
2
, and define the following approximation of the cell average Sj in (36)

1

∆x

∫ x
j+ 1

2

x
j− 1

2

∫ w

B

g (w − z)σx(x, z) dz dx ≈ 1

∆x

g

2





∫ w+

j− 1
2

B
j− 1

2

+

∫ w−

j+ 1
2

B
j+ 1

2



 (wj − z)∆σj(z) dz, (37)

and

1

∆x

∫ x
j+ 1

2

x
j− 1

2

g σB(x)hBx dx ≈ g

∆x

∫ B
j+ 1

2

B
j− 1

2

(wj − z)σj(z) dz, (38)

where w±

j∓ 1
2

are the reconstructed pointvalues of w = h +B at the interfaces xj± 1
2

(in the interior of the cell

Ij),

wj =
wj− 1

2
+ wj+ 1

2

2
, ∆σj(z) = σj+ 1

2
(z) − σj− 1

2
(z), and σj(z) =

σj− 1
2
(z) + σj+ 1

2
(z)

2
.

Then the scheme (18) - (19) is well balance, i.e.,
d

dt
vj(t) = 0 for steady states of rest.

Proof. Consider a steady state at rest w = Const., u = 0. We notice that in the present case, HAT

j± 1
2

= 0.

For the discharge equation, using the discretized form Leibniz’s rule for differentiation under the integral

sign,

∆x

∫ b(x)

a(x)

f(x, z) dz =
1

2

(

∫ bL

aL

+

∫ bR

aR

)

∆xf(x, z) dz +

∫ bR

bL

f(z) dz −
∫ aR

aL

f(z) dz, (39)
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we observe that the flux difference as calculated in (35) amounts to

HQ

j+ 1
2

− HQ

j− 1
2

∆x
=

1

∆x

g

2





∫ w
j− 1

2

B
j− 1

2

+

∫ w
j+ 1

2

B
j+ 1

2



∆x ((w − z)σ) (z)dz

+
1

∆x
g

∫ w
j+ 1

2

w
j− 1

2

(w − z)σ(x, z)dz − 1

∆x
g

∫ B
j+ 1

2

B
j− 1

2

(w − z)σ(x, z)dz

=
1

∆x

g

2





∫ w
j− 1

2

B
j− 1

2

+

∫ w
j+ 1

2

B
j+ 1

2



 (wj − z)∆σj(z)dz − 1

∆x
g

∫ B
j+ 1

2

B
j− 1

2

(wj − z)σj(z) dz

= Sj(t) for steady states of rest.

Remarks:

1. The approximation (37) results from applying the trapezoidal rule in the x-direction, (38) follows from

changing the direction of integration with the change of variables z = B(x).

2. The integrals in the z-direction from the flux difference, (Hj+ 1
2
−Hj− 1

2
)/∆x, and in (37) - (38) must be

discretized consistently so as to ensure well balance. To this end, several options are available within

the second order accuracy of the scheme, for instance, one could employ the composite trapezoidal or

midpoint rules over the intervals z ∈ [Bj± 1
2
, wj± 1

2
] for both sets of integrals.

3. Quadrature formulae, however, are not the only or most convenient approach for the implementation

of the scheme. For the results presented in §4 below, we chose to sample the channel geometry, Bj± 1
2

and σj± 1
2 ,k at the points (xj± 1

2
, zk) and we connect these values with piecewise linear functions (i.e.,

the cross-sections of the channel are piecewise trapezoidal). This approach allows us to calculate the

integrals in the z-direction (and also those in (30)) exactly. Such discretization of the channel does,

indeed, amount to applying the composite midpoint rule to evaluate those integrals.

3.4 Evolution

Once the interface values, the numerical fluxes and the average of the source term have been calculated,

the ODE system (18) is integrated in time using the second order Strong Stability Preserving Runge-Kutta
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scheme [13],

v(1) = v(0) + ∆t C[v(0)] (40a)

v(2) =
1

2
v(0) +

1

2

(

v(1) + ∆t C[v(1)]
)

(40b)

v(t + ∆t) := v(2), (40c)

with the Runge-Kutta fluxes

C[v(t)] = −
Hj+ 1

2
(v(t)) − Hj− 1

2
(v(t))

∆x
+ Sj(t), (41)

and Sj(t) calculated according to (37) - (38). The time step ∆t is determined so as to satisfy the CFL

restriction
∆t

∆x
≤ 1

2 max

(

aj− 1
2

max

(

A+

j− 1
2

Aj
, 1

)

, aj+ 1
2

max

(

A−

j+ 1
2

Aj
, 1

)) . (42)

The following Proposition shows that this CFL condition guarantees the positivity of the water height

when the solution is evolved with forward Euler method:

Proposition 2. Consider the scheme (18)- (19) with the reconstruction algorithm described in §3.2 and the

discretization of the source term (37) - (38) . If the cell averages A
T
(t) are such that

wj(t) ≥
Bj− 1

2
+ Bj+ 1

2

2
∀j,

or equivalently

AT
j ≥

∫

B
j− 1

2
+B

j+ 1
2

2

0

σj(z) dz,

where

σ(z) :=
σ(xj− 1

2
, z) + σ(xj+ 1

2
, z)

2
,

then the cell averages A
T
(t + ∆t) as evolved with forward Euler’s method (40a) (i.e., vj(t + ∆t) = v(1) in

14



(40)) under the CFL limitation (42) with

aj± 1
2

= max
{∣

∣

∣u−

j± 1
2

∣

∣

∣+ c−
j± 1

2

,
∣

∣

∣u+
j± 1

2

∣

∣

∣+ c+
j± 1

2

}

, c±
j± 1

2

=

√

√

√

√g
A±

j± 1
2

σT,±

j± 1
2

, and σT,±

j± 1
2

= σ
(

xj± 1
2
, w±

j± 1
2

)

, (43)

will yield

ĀT
j (t + ∆t) ≥

∫

B
j− 1

2
+B

j+ 1
2

2

0

σj(z) dz ∀j,

or equivalently

wj(t + ∆t) ≥
Bj− 1

2
+ Bj+ 1

2

2
∀j.

Proof. For λ = ∆t
∆x , the updated cell average of AT satisfies

A
T

j (t + ∆t) = A
T

j (t) − λ

2

[

(Q+
j+ 1

2

+ Q−

j+ 1
2

) − aj+ 1
2

(

AT,+

j+ 1
2

− AT,−

j+ 1
2

)

− (Q+
j− 1

2

+ Q−

j− 1
2

) + aj− 1
2

(

AT,+

j− 1
2

− AT,−

j− 1
2

)]

= A
T

j (t) +
λ

2

[

(aj+ 1
2
− u+

j+ 1
2

)A+
j+ 1

2

+
(

aj− 1
2

+ u−

j− 1
2

)

A−

j− 1
2

]

−λ

2

[

(aj+ 1
2

+ u−

j+ 1
2

)A−

j+ 1
2

+
(

aj− 1
2
− u+

j− 1
2

)

A+
j− 1

2

]

≥ A
T

j (t) − λ

2

[

(aj+ 1
2

+ u−

j+ 1
2

)A−

j+ 1
2

+
(

aj− 1
2
− u+

j− 1
2

)

A+
j− 1

2

]

,

and applying the CFL restriction (42), we obtain

ĀT
j (t + ∆t) ≥ ĀT

j − λ
[

aj+ 1
2
A−

j+ 1
2

+ aj− 1
2
A+

j− 1
2

]

≥ A
T

j (t) − Āj(t) =

∫

B
j− 1

2
+B

j+ 1
2

2

0

σj(z) dz,

which concludes the proof.

Remark: The second-order SSP Runge-Kutta scheme (40) consists of a convex combination of successive

forward Euler steps, therefore, for scalar equations, proving that a particular property of the semi-discrete

formulation (18) - (41) holds when the system of ODEs is evolved with forward Euler’s method will suffice to

prove such property holds when higher-order SSP Runge-Kutta schemes are employed, [13]. For the shallow-

water system discussed here, however, positivity can only be proven for the first-order Euler’s method since
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the minmod reconstruction is not TVD for systems and the techniques suggested to ensure positivity at the

cell interfaces and the regularization of the velocity, (31), may dictate a smaller value of ∆t for the second

stage of the evolution, (40b). The numerical results presented below, however, suggest that, in most cases,

the scheme remains stable under the CFL restriction (42) when the full second-order Runge-Kutta scheme

(40) is employed. Only in cases where the regularization of the velocity needs to be applied some oscillations

may arise, requiring a smaller value of ∆t to ensure stability.

3.5 Treatment of wet-dry states

Height

x

h(x)

B(x)

Figure 3: Wet-dry steady states at rest. The total height is piece-wise constant.

The well balance property of this scheme allows it to recognize steady states of rest, where the total height

w = h + B is constant and u = 0. However, steady states of rest with piece-wise constant total height are

possible when we have a discontinuous topography. The total height might be a constant (and positive) on

one side and zero layer’s depth h = 0 on the other side, as illustrated in Figure 3. The discretization derived

in §3.3 will recognize steady states at rest with constant total height. However, when this condition is not

met in discontinuous steady states at rest, spurious oscillations will be generated near the jump in w.

Figure 4 shows the evolution in time of a wet-dry steady state at rest at time t = 0 (left) and t = 0.03 (right)

in a channel with straight walls (σ ≡ 1) and piece-wise constant topography. The numerical approximation

does not stay stationary and noise generated near the jump starts propagating westwards. A modification

of the scheme will be needed to enable it to preserve wet-dry steady states. The next section explains how

to achieve it without loosing the other properties.

16



0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

0.45

0.5

h+B at t=0

0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

0.45

0.5

h+B at t=0.03

Spurious oscillations near wet-dry states are observed.

Figure 4: Numerical solution of a steady state at rest with wet-dry states.

3.5.1 An improved well-balance property

Consider an state with a combination of wet and dry states. For simplicity, assume that the change from

wet to dry happens in cell j, with Bj+ 1
2

> Bj− 1
2
. Furthermore, assume that the states to the right of cell

j are dry and the states to the left are wet. We call this a wet-dry steady state at rest provided that the

velocity is zero everywhere, u = 0, and











wk− 1
2

= wwet = const < Bj+ 1
2

for k ≤ j

wk− 1
2

= Bk− 1
2

for k > j

j+1/2

x
j−1 x x x

xj
j+1/2

j+1
j−1/2

x j−2 x j−3/2

o

o

o

o o
B

B

B

j+1/2

j−1/2

j−3/2

B

B

j

j−1

j+1/2

j−1/2

j

j−1

j+1

w

w

ww

w

=B

Figure 5: Wet-dry steady states at rest. The total height is piece-wise constant.
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In particular, it implies that wj =
w

j− 1
2
+B

j+ 1
2

2 < Bj+ 1
2
, otherwise we expect the flow to move and inundate

the right side of cell j. Figure 5 illustrates the case described above.

Proposition 3. The numerical scheme (40), (41), (19) with modified numerical flux at cell j, given by the

following averaged cross-sectional hydrostatic pressure

IWD
1,j± 1

2
=

g

2∆x





∫ w±

j∓ 1
2

B
j± 1

2

(wj − z)σj± 1
2
(z) dz +

∫ w∓

j± 1
2

B
j± 1

2

(wj − z)σj± 1
2
(z) dz



 , (44)

and

aWD
j± 1

2
= max

(

max
(

u+
j± 1

2

, u−

j± 1
2

)

, min
(

|u−

j± 1
2

| + c−
j± 1

2

, |u+
j± 1

2

| + c+
j± 1

2

))

(45)

preserves wet-dry steady states at rest.

Remark: The modified formulas above need only be applied near a wet-dry state, which can be tracked using

a threshold, e.g., when wj − Bj < ǫ and wj+1 − Bj+1 > ǫ; and vice versa. In the results shown in the next

sections we set ǫ = 10−3.

The diffusion coefficients aj± 1
2

are an estimate to the maximum wave speed, which is needed for stability.

However, the estimate aj± 1
2

in equation (43) does not recognize wet-dry steady states since it does not vanish

at the wet-dry interface. The modified estimate (45) vanishes at a wet-dry interface, while still satisfying

aj± 1
2
≥ |uj± 1

2
|, which is needed for positivity.

Proof. Assume for simplicity that the wet-dry interface is located at only cell j (for some j) as in Figure 5

in the case above. Then w+
j− 1

2

= wwet, where wwet is the wet state, and w−

j+ 1
2

= Bj+ 1
2
. This guarantees that

all cells besides j stay constant in the next time step. It suffices to show then that cell j stays constant too.

Since w+
j− 1

2

= w−

j− 1
2

= wwet, w+
j+ 1

2

= w−

j+ 1
2

= Bj+ 1
2

and u = 0, then the first entry of the numerical fluxes

HAT

j± 1
2

vanishes. And since u = 0 and c±
j+ 1

2

= 0, then aWD
j+ 1

2

= 0, the second component of the numerical flux

at the left cell interface reads

HQ

j− 1
2

= IWD
1,j− 1

2
=

g

2





∫ w−

j+ 1
2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz +

∫ w+

j− 1
2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz





=
g

2





∫ B
j+ 1

2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz +

∫ wwet

B
j− 1

2

(wj − z)σj− 1
2
(z) dz



 ,
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and at the right cell interface

HQ

j+ 1
2

= IWD
1,j+ 1

2
=

g

2





∫ w+

j− 1
2

B
j+ 1

2

(wj − z)σj+ 1
2
(z) dz +

∫ w−

j+ 1
2

B
j+ 1

2

(wj − z)σj+ 1
2
(z) dz



 =
g

2

∫ wwet

B
j+ 1

2

(wj−z)σj+ 1
2
(z) dz.

Therefore, the flux difference amounts to

HQ

j+ 1
2

− HQ

j− 1
2

∆x
=

g

2∆x





∫ wwet

B
j+ 1

2

(wj − z)σj+ 1
2
(z) dz −

∫ B
j+ 1

2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz −

∫ wwet

B
j− 1

2

(wj − z)σj− 1
2
(z) dz



 .

On the other hand, the cell average of the source term is given by

Sj(t) =
g

∆x





∫ w+

j− 1
2

B
j− 1

2

+

∫ w−

j+ 1
2

B
j+ 1

2



 (wj − z)∆σj(z) dz − g

∆x

∫ B
j+ 1

2

B
j− 1

2

(wj − z)σj(z) dz

=
g

2∆x

∫ w+

j− 1
2

B
j− 1

2

(wj − z)∆σj(z) dz − g

∆x

∫ B
j+ 1

2

B
j− 1

2

(wj − z)σj(z) dz

=
g

2∆x

∫ w+

j− 1
2

B
j− 1

2

(wj − z)σj+ 1
2
(z) dz − g

2∆x

∫ w+

j− 1
2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz

+
g

2∆x

∫ B
j− 1

2

B
j+ 1

2

(wj − z)σj+ 1
2
(z) dz − g

2∆x

∫ B
j+ 1

2

B
j− 1

2

(wj − z)σj− 1
2
(z) dz

=
HQ

j+ 1
2

− HQ

j− 1
2

∆x
,

which concludes the proof.

This approach has been tested in the numerical results in the next section.

4 Numerical Results

In this section we present the numerical solution of several prototype problems aimed at demonstrating the

properties of our central scheme and its ability to capture non-trivial steady flows. We begin by validating

the well balance property of the scheme and its behavior under small perturbations from the trivial steady-

state, (6). These include perturbations from piecewise trivial steady states so as to test the ability of the

scheme to identify and resolve correctly wet-dry states. We also study the convergence of solutions evolved
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with the central scheme to non-trivial steady state solutions by comparing them to exact steady flows. To

conclude, we test the positivity preserving property by considering first an oscillating mass of water that

changes parts of the channel from dry to wet and wet to dry as time evolves, and with a dam break problem

where water is allowed to flow out of the channel onto a dry bed.

The flows are calculated along channels with arbitrary geometry and bottom topography. We consider

the geometry described by the width functions

σ1(x, z) = 1 +
3

4
cos(πx) − 1

4
χ[0.4,0.6](x) (cos(π(x − 1/2)/0.1) + 1)

+
√

z

(

1 − 1

4
χ[0.1,0.7](x) (cos (π(x − 0.4)/0.3) + 1)

)

(46)

− 1.2χ[0,1]

(

(x − 0.3)2 + (z − 1.4)2

r2
1

)

cos

(
√

(x − 0.3)2 + (z − 1.4)2

r2
1

π

2

)

− 1.2χ[0,1]

(

(x − 0.75)2 + (z − 1.4)2

r2
2

)

cos

(
√

(x − 0.75)2 + (z − 1.4)2

r2
2

π

2

)

,

where r1 = 0.28, r2 = 0.2. Here χ[a,b] is the characteristic function on any interval [a, b], and

σ2(x, z) =
1

2

(

1 +
√

z

(

1 − 1

4
(cos (π(x − 0.6)/0.2) + 1)χ[0.4,0.8](x)

))

. (47)

These width functions are combined with different bottom topographies so as to render geometries suitable

to create the flows that are most challenging for the properties of the scheme to be tested on each case.

Unless otherwise stated, for the results presented below the value of the acceleration of gravity is taken

as g = 9.81 and the time step, ∆t, satisfies the CFL restriction

∆t

∆x
≤ τ

max

(

aj− 1
2

max

(

A+

j− 1
2

Aj
, 1

)

, aj+ 1
2

max

(

A−

j+ 1
2

Aj
, 1

)) , τ < 1. (48)

where aj± 1
2

stands for the estimates of the maximum speeds of propagation at the cell interfaces, calculated

as (43) (or (45) where appropriate). We shall note here that while the proof of proposition 2 requires τ < 1
2 ,

all but one of the numerical experiments below were computed with values 1
2 < τ < 1. The same flows

simulated with a more restrictive CFL number, τ < 1
2 , did not yield substantially better results. Except for

the perturbation of a steady state of rest in §4.1 where we use τ = 0.45 to reduce oscillations caused by the
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narrowed areas of the channel, and the oscillating lake simulation in §4.4 that was computed with τ = 0.6

and α = 1 (in equation (25)) to reduce oscillations too, all flows were calculated with τ = 0.9 and α = 1.5.

4.1 Perturbations of Steady State of Rest

In this test, the geometry of the channel is given by the width (46) and a bottom topography described by

a spline as shown in Figure 6 (bottom).

Figure 6: 3D-view of the channel (top) and bottom topography (bottom).

The proposed numerical scheme preserves steady states at rest by construction. It has been shown in

related works (e.g., [11, 14, 28]) that recognizing steady states at rest is enough to enable the scheme to

recognize and compute near steady state solutions accurately. We begin testing our numerical scheme with

the evolution of a perturbation from a steady state. These perturbation should propagate in both directions.

Once the perturbation leaves the free boundary, only the flat states should remain in our computational

domain, and the flow should converge to the trivial steady state (6).

The initial height is w = 1.9 and a perturbation of size ǫ = 10−2 is applied on the interval [0.1, 0.15]. The

flow is initially at rest. The topography and geometry are non-trivial at the boundaries which requires us to

specify the values of the total height, w and the velocity u, at both boundaries so as to implement free flow

boundaries.
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Figure 7: Perturbation of steady state of rest at t = 0, 0.025, 0.2, 2. The numerical results obtained with a
Roe-type upwind scheme (solid line) and with the present scheme (dotted line) are compared, showing good
agreement.

Figure 7 shows the evolution of the perturbation at times t = 0, 0.02, 0.2, 2. We compare the numerical

results obtained by the present scheme (dotted line) to the numerical solution obtained using the upwind

Roe-type scheme (solid line) in [14]. The comparison shows a good agreement between the two schemes.

Due to the non-trivial topography and general geometry of the channel’s walls, a curved profile is developed

as the perturbation jumps over the topography and the width of the channels changes at different heights.

After the perturbation leaves the domain, we observe that an unperturbed steady state is recovered.

4.2 Test on wet-dry states

Positivity and preservation of wet-dry states are two properties achieved by this scheme. In this test we will

verify the properties proved in propositions 2 and 3 in a discontinuous topography with a dry state on one

side and a flat wet state on the other. The topography is a piece-wise spline, and a 3D-view of the channel

is shown Figure 8, the topography is shown in light brown and the side walls in gray.

22



Figure 8: 3D-view of the channel’s geometry.

A perturbation to the stationary state is applied to the left of the discontinuity in the topography. The

perturbation propagates and hits the “jump” in the topography. If the perturbation is small enough, it

is expected to reflect back without transmitting any wave to the right. When the perturbation is large,

however, part of the wave reflects back and part is transmitted, inundating the right side and leaving the

boundary through the right. We test both cases next.

4.2.1 Small perturbation

We first consider a perturbation of size ǫ = 0.1 to the left of the wet stationary state in the example above.

Figure 9 shows the 2D (top) and 3D (bottom) views of the evolution in the perturbation. As observed above,

the wave reflects back after hitting the “shore”.
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Figure 9: Small perturbation to a wet-dry state at different times. Only a reflection is observed when the
wave hits the discontinuity in the topography.

4.2.2 Large perturbation

A perturbation of size ǫ = 0.3 is applied on the left wet stationary state in the example above. Figure

10 shows the 2D (top) and 3D (bottom) views of the evolution in the perturbation. We observe the wave

24



partially reflecting back and partially transmitting the discontinuity, eventually leaving through the right

boundary.
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Figure 10: Large perturbation to a wet-dry state. The wave partially reflects back and partially transmits
through the discontinuity when it hits it.
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4.3 Convergence to Steady-States

As pointed out in §2.2, smooth steady-state flows are characterized by their constant discharge, Q, and

energy, E. These steady or near steady flows are quite common in nature. In this section, we test the ability

of the scheme to converge to such solutions when the initial conditions are close to equilibrium. In order

to simulate these conditions, we initialized the flow by confining water within the two ends of a channel

connected to two reservoirs. The reservoirs hold water with identical value of Qin but different water heights

hin and hout. At time t = 0, the water within the channel is let to flow and the solution is evolved over time

to observe whether it converges to the steady-state that is uniquely determined by the channels geometry

and the data Qin, and hout; an exact solution that we compute before hand.

The correct implementation of the boundary conditions is essential to study the convergence of these flows

to the unique steady flow determined by Qin and hout. All the flows we consider are subcritical at the left

–inflow– boundary (i.e., u−c < 0), thus for the numerical calculations, we specify the value of the discharge,

Qleft = Qin, at that boundary and the value of h (or w) is extrapolated from the computational domain. At

the right –outflow– boundary, if the flow is supercritical (i.e. u−c > 0), both h and Q are extrapolated from

the evolved solution inside the computational domain, otherwise, Q is extrapolated and the total height is

set to w = wout.

4.3.1 Subcritical Flows

The first steady flow that we investigate is a subcritical flow (i.e., its Froude number satisfies F 2 < 1

throughout the channel). The geometry of the channel is given by the width function (46) and a bot-

tom topography consisting of a 3-bump spline with nodes (x, z) = {(0.2, 0), (0.3, 0.6), (0.4, 0.4), (0.5, 0.5),

(0.6, 0.2), (0.7, 0.3), (0.8, 0)}. The flow invariants are set to Qin = 2.0494 and wout = 1.5. The flow is ini-

tially at rest and has total height wout. Figure 11 shows the solution at time t = 20. The dotted line on the

top left of the figure is the numerical solution of the subcritical flow, which is in very good agreement with

the exact solution (solid line). The solid black line on the left figure represents the topography. The top

right of the figure shows the steady variables Q and E, whose relative errors are 3.5 × 10−3 and 1.2 × 10−3

respectively. The 3D view of the subcritical flow is shown at the bottom of the figure. The topography is

shown in light brown, walls in gray and the water surface in blue.
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Figure 11: Steady state convergence at t = 20 for subcritical flows. Top left shows the side view of the
solutions, top right the steady variables Q and E, and bottom shows a 3D view of the flow. The numerical
solution (dotted line) is in very good agreement with the exact solution (solid line).

4.3.2 Smooth Transcritical Flows

In [5, 16] the effect of the channel’s width and topography on steady-state flows was studied. Depending on

the conditions at the outflow boundary, when a subcritical flow is accelerated through a contraction and/or

a bump on the channel’s floor, it may reach criticality (i.e., F 2 = 1) at some point within the channel. From

that point on, the steady flow may remain smooth and supercritical or it may jump back to subcritical so

as to match the outflow boundary conditions. In this test, we set Qin = 0.4511 and wout = 0.1425 for a

channel whose width is given by σ2(x, z), (47), and bottom topography given by

B(x) =
1

2

(

1 + cos

(

π

(

x − 1

2

)

/0.4

))

χ[0.1,0.9](x). (49)

Figure 12 shows the solution at time t = 2. The dotted line on the top left of the figure is the numerical

solution of the transcritical flow, which is in very good agreement with the exact solution (solid line). The

solid black line represents the topography. The top right of the figure shows the computed values of the flow

invariants Q and E, whose relative errors with respect to the exact solution are 1.7 × 10−3 and 6 × 10−4
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respectively. The 3D view of the transcritical flow is shown at the bottom of the figure; the topography is

shown in light brown, the walls of the channel in gray, and the water surface in blue.
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Figure 12: Steady state convergence at t = 2 for smooth transcritical flows. Top left shows the flow profile,
top right the steady variables Q and E, and bottom shows the 3D view. The numerical solution (dotted
line) is in very good agreement with the exact solution (solid line).

4.3.3 Transcritical Flow with Shock

Only certain boundary condition may be connected by smooth transcritical steady flows. If the conditions

at the outflow boundary are those of a subcritical flow, then, the supercritical flow must dissipate energy

through a stationary shock so as to match the outflow conditions. The jump occurs in the place where the

jump conditions are satisfied, [1]. In this subsection we test the convergence to such flows over time. The

boundary conditions consist of imposing Qin = 0.4511 at the inflow boundary, and wout = 0.9769 at the

outflow. Figure 13 shows the solution at time t = 2. The dotted line on the top left of the figure is the

numerical solution of the transcritical flow, which is in very good agreement with the exact solution (solid

line). The solid black line is the topography. The top right of the figure shows the steady variables Q and

E. The 3D view of the non smooth transcritical flow is shown at the bottom of the figure; the topography

is shown in light brown, the walls of the channel in gray, and the water surface in blue.
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Figure 13: Steady-state convergence at t = 2 for transcritical flows with shock. Top left shows the side view
of the solutions, top right the steady variables Q and E, and bottom shows the 3D view. The numerical
solution (dotted line) is in very good agreement with the exact solution (solid line).

4.4 The Oscillating Lake

In problems where the layer’s depth is small, e.g., flooding problems or dam break simulations, numerical

errors in the solution may lead to an unphysical negative depth of the water layer. With the following

example we test the positivity preserving property proved in proposition 2. On a channel whose geometry

is given by 46 and a centered bump described by a spline, we set initial conditions similar to those in the

oscillating lake study presented in [5], and let the flow evolve over time.

Initially, the right side of the bump consists of only dry states. Figure 14 (top) shows the solution at

times t = 0, 0.15, 0.6, 20. The top right snapshot shows how the flow starts to inundate the right side of the

bump, which was initially dry. This forms two oscillating lakes interacting several times as the water jumps

over the bump, spilling to the right side causing other oscillations until both sides reach a steady state at

rest, as can be shown at t = 200. The bottom of figure 14 shows the 3D view of the corresponding flows.
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Figure 14: Numerical solution for an oscillating lake at times t = 0, 0.15, 0.6, 20.

4.5 Dam break

The last test simulates a dam break and is also aimed at testing the positivity preserving property of our

central scheme. The topography is a 2-bump spline and the initial conditions consist of a steady-state of rest
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with total height w = 0.8. We apply reflecting boundary conditions at the (left) inflow boundary and impose

wout = 10−3 at the (right) outflow boundary. Figure 15 shows the evolution of the drainage simulation. We

observe that the water drains through the right boundary, except for the areas where the water gets trapped

between the bumps.
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Figure 15: Dam break simulation at times t = 0.1, 0.5, 1.5, 10.
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Conclusions: A model for shallow water flows in channels with arbitrary cross-sectional area was presented

and its properties discussed. Taking these properties into consideration, we designed a positivity preserving

high-resolution, non-oscillatory semi-discrete central scheme for simulating the flows described by the model,

and we proved that the scheme enjoys several desirable properties for computing these solutions: the well

balance property was achieved by finding a consistent discretization of the source term that balances the

flux gradient when the flow is at rest; a reconstruction from the cell averages of the data that preserves the

positivity of the layer’s depth at the cell interfaces together with a CFL restriction guarantees the positivity

preserving property; and the ability to detect and resolve partially wet regions was built into the scheme

by introducing a modification in the numerical flux and the estimate of the speed of propagation. Several

numerical experiments were presented so as to demonstrate the robustness of the numerical algorithm, and

its ability to capture steady-flows and resolve wet-dry fronts.
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