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Abstract

We study the behavior of oscillatory solutions to convection-diffusion prob-
lems, subject to initial and forcing data with modulated oscillations. We quantify
the weak convergence in W−1,∞ to the ’expected’ averages and obtain a sharp
W−1,∞-convergence rate of order O(ε) – the small scale of the modulated oscil-
lations. Moreover, in case the solution operator of the equation is compact, this
weak convergence is translated into a strong one. Examples include nonlinear
conservation laws, equations with nonlinear degenerate diffusion, etc. In this con-
text, we show how the regularizing effect built-in such compact cases smoothes
out initial oscillations and, in particular, outpaces the persisting generation of
oscillations due to the source term. This yields a precise description of the weakly
convergent initial layer which filters out the initial oscillations and enables the
strong convergence in later times.
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1 Introduction

In this paper we study the behavior of oscillatory solutions for equations of the form

ut = K(u, ux)x + h(x, t), (x, t) ∈ IR × IR+ , (1.1)

where K = K(u, p), is a nondecreasing function in p := ux,

Kp ≥ 0 ∀(u, p) . (1.2)

This large family includes equations which mix both types – hyperbolic equations dom-
inated by purely convective terms (Kp ≡ 0), or, parabolic equations dominated by
possibly degenerate diffusive terms (Kp ≥ 0). Due to the possible degeneracy, weak
entropy solutions are sought; i.e., u = limδ↓0 uδ, where uδ is the classical solution which
corresponds to Kδ = K + δp.

We are concerned with the initial value problem for (1.1) where the initial data,
uε

0(x), and the forcing data, hε(x, t), are subject to modulated oscillations. Specifically,
we are interested in the behavior of uε, the entropy solution of

uε
t = K(uε, uε

x)x + hε(x, t), uε(x, 0) = uε
0(x), (1.3)

where the modulation of the initial and forcing data takes the form

uε
0(x) = u0(x,

x

ε
), hε(x, t) =

1

ελ
h(x,

x

ε
, t) , fixed λ ∈ [0, 1), ε ↓ 0. (1.4)

Assumptions.
{i} smoothness. The data, u0 and h, are assumed to have a minimal necessary amount
of smoothness. Thus, throughout the paper we assume u0(x, y) ∈ BVx(Ω × [0, 1])
and h(x, y, t) ∈ BVx(Ω(t) × [0, 1]), where Ω, Ω(t) denote bounded intervals in IRx, and
BVx(Ω × [0, 1]) denotes the space of all bounded functions which are 1-periodic in y,
have a bounded variation in x and are constant for x /∈ Ω (the last assumption covers
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the case of compactly supported data).
{ii} compatibility. There holds

λ · h̄(x, t) ≡ 0, h̄(x, t) =

∫ 1

0

h(x, y, t)dy.

Thus, in the case of ’amplified’ modulation (λ > 0), the average h̄(x, t) is assumed to
vanish – a necessary compatibility requirement for the convergence statements stated
below.

As ε ↓ 0, uε
0(x) and hε(x, t) approach the corresponding averages,

uε
0(x) ⇀ ū0(x) :=

∫ 1

0

u0(x, y)dy, hε(x, t) ⇀ h̄(x, t) :=

∫ 1

0

h(x, y, t)dy .

Note that this convergence statement (and similarly, the ones that follow), makes sense
for λ > 0 only when h̄(x, t) ≡ 0. Then, the entropy solution, uε(x, t), is shown to
approach the corresponding entropy solution of the homogenized problem

ut = K(u, ux)x + h̄(x, t), u(x, 0) = ū0(x) . (1.5)

We quantify the convergence rate of uε towards u in the weak W−1,∞-topology†. Fur-
thermore, in case the solution operator is compact, we are able to translate this weak
convergence into a strong one, with Lp-convergence rate estimates for every t > 0. We
also provide a precise description of the initial layer in which the weakly convergent
oscillations are filtered out to enable the strong convergence which follows.

The paper is organized as follows. In §2 we show the W−1,∞-convergence of uε to u,
proving a sharp convergence rate estimate of order O(ε1−λ) (Theorem 2.1). The proof
is based upon two ingredients: a precise W−1,∞-error estimate for modulated limits
(Lemma 2.1), and a familiar W−1,∞-stability of (1.1) with respect to both the initial
and forcing data (Proposition 2.1).

This weak W−1,∞-convergence need not imply strong convergence unless the solution
operators associated with (1.3) and (1.5) are compact. Specifically, we seek solution
operators which are W s,r-regular, in the sense that they map initial data in L∞-bounded
sets into bounded sets in W s,r

loc , s > 0, r ∈ [1,∞] †. Such a regularizing effect is clearly
linked to the nonlinear nature of the equations and is responsible for the immediate
cancellation of initial oscillations, as well as the forcing oscillations.

In §3 we note that if we are granted such regularizing property (mapping L∞ →
W s,r, s > 0), then we may interpolate our weak W−1,∞-error estimate and the W s,r

loc -
bound to obtain strong Lp-convergence, uε(·, t) → u(·, t), t > 0, as well as convergence
rate estimates. We are therefore led to study the regularizing effect of convective-
diffusive equations. There are numerous works in this direction and we refer to [12] for
a recent contribution and for a partial list of relevant references.

†‖g‖W−1,r(a,b) := ‖ ∫ x

a g‖Lr(a,b), r ∈ [1,∞]. In case we do not specify the interval we refer to the
whole real line.

†Throughout this paper we identify W s,r with the homogeneous space Ẇ s,r, e.g. (for s < 1), the
space equipped with the seminorm ‖g‖W s,r := (

∫ ∫ |g(x) − g(y)|r/|x − y|1+srdxdy)1/r .
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In the next sections we demonstrate our results for a variety of convection-diffusion
equations (1.1) which are equipped with a certain W s,r-regularity. We begin, in §4, with
convex hyperbolic conservation laws which render BV -regular solutions. In §4.1 we deal
with the homogeneous case (no forcing term, h ≡ 0). Here, we obtain Lp-convergence
rate estimates of uε(·, t) to u(·, t) for a fixed t > 0, as well as a precise description of
the initial layer t ∼ 0. In §4.2 we study the inhomogeneous case. We show how the
nonlinear regularizing effect outpaces the persisting generation of modulated oscillations
due to the oscillatory forcing term, ε−λh(x, x/ε, t), and still yields strong convergence,
though of a slower rate than in the homogeneous case.

In §5 we consider various types of nonlinear, mixed convection-diffusion equations
with possibly degenerate diffusion, and we link their nonlinearity to an appropriate
W s,r-regularity. Our first examples, in §5.1, consist of degenerate parabolic equations
augmenting a convex hyperbolic flux. These equations are BV -regular and therefore
admit convergence rate estimates similar to the ones obtained in §4 for the purely con-
vective conservation laws. In §5.2 we extend these results to a rather general class of
nonlinear convective fluxes, where convexity is relaxed by requiring only a non-vanishing
high-order(≥ 2) derivative. Next, we focus on the regularizing effect due to the nonlin-
earity of the degenerate diffusivity. In §5.3 we deal with the prototype porous media
equation, ut = (um)xx, m > 1, u ≥ 0. In the context of its regularizing effect, we
identify m = 2 as a critical exponent: when m > 2 the equation is known to posses
W s,∞-regularity with s = 1

m−1
< 1, consult [1]; when m ≤ 2, however, we have an

improved W 2,1-regularity which results in better convergence rate estimates. We close
this section, in §5.4, with a revisit of the general mixed convection-diffusion equations,
this time quantifying their regularizing effect (and hence convergence estimates) due to
the nonlinearity of the degenerate diffusion. The W s,r-regularity of the general mixed
convective-diffusive case is analyzed in terms of the velocity averaging lemma along the
lines of [12].

Finally, in §6, we provide illustrated examples for our convergence analysis.

2 W−1,∞-Stability and Convergence

In this section we prove that uε, the solution of the oscillatory equation (1.3)–(1.4),
converges in W−1,∞ to u, the solution of the homogenized equation (1.5). To this end
we start by proving the following fundamental lemma which is interesting for its own
sake:

Lemma 2.1 Assume that g(x, y) ∈ BVx(Ω × [0, 1]), Ω being a possibly unbounded in-

terval in IRx, and let gε(x) := g(x, x
ε
) and ḡ(x) :=

∫ 1

0
g(x, y)dy . Then

‖gε(x) − ḡ(x)‖W−1,∞ ≤ Cε, C = ‖g‖L1([0,1];BV (IRx)). (2.6)

Proof. For each fixed x0 ∈ Ω we let a = a(x0, ε) denote the largest value in the left
complement of Ω for which n := x0−a

ε
is integral (a = −∞ if Ω is left unbounded). This
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enables us to break the primitive of gε(x) − ḡ(x) over consecutive intervals of size ε as
follows:∫ x0

−∞
(gε(x) − ḡ(x))dx =

n∑
j=−∞

∫
Ij

(gε(x) − ḡ(x))dx, Ij = [aj−1, aj ], aj := a + jε.

Change of variable and the 1-periodicity of g(x, ·) yield that∫
Ij

gε(x)dx = ε

∫ j+a/ε

j−1+a/ε

g(εy, y)dy = ε

∫ 1

0

g(yj, y
ε)dy, yj := aj−1+εy ∈ Ij , yε :=

a

ε
+y.

The 1-periodicity of g(x, ·) enables us to express ḡ(x) as ḡ(x) =
∫ 1

0
g(x, yε)dy; using

Fubini’s Theorem we get that∫
Ij

ḡ(x)dx =

∫
Ij

∫ 1

0

g(x, yε)dydx =

∫ 1

0

∫
Ij

g(x, yε)dxdy =

∫ 1

0

εg̃j(y
ε)dy ,

where g̃j(y
ε) is some intermediate value in [ess infIj

g(·, yε), ess supIj
g(·, yε)]. Finally,

using the last three equalities, we conclude that

|
∫ x0

−∞
(gε(x) − ḡ(x))dx| ≤ ε

∫ 1

0

n∑
j=−∞

|g(yj, y
ε) − g̃j(y

ε)|dy ≤

ε

∫ 1

0

n∑
j=−∞

‖g(·, yε)‖BV (Ij) ≤ ‖g‖L1([0,1];BV (IRx)) · ε .

Remarks.

1. Let f(x) ∈ BV and g(x, y) ∈ BVx(Ω×[0, 1]) have a zero average,
∫ 1

0
g(x, y)dy ≡ 0 .

Applying Lemma 2.1 to G(x, y) = f(x)g(x, y), we conclude that for every a and b
there exists a constant C such that∣∣∣∣

∫ b

a

f(x)g(x,
x

ε
)dx

∣∣∣∣ ≤ Cε .

This result plays a key role in previous works on homogenization by B. Engquist
and T.Y. Hou (e.g., [6, Lemma 2.1], [9, Lemma 2.1]). Here we improve in both
generality and simplicity: the corresponding result in [6, 9] was restricted to
f(x), g(x, y) ∈ C1.

2. The sharpness of estimate (2.6) is illustrated by the following example. Assume
that α(x) ∈ BV and β(y) is a bounded 2π-periodic function. Let ᾱ, β̄ denote,
respectively, the averages of α and β in [0, 2π]. Then, by taking g(x, y) = α(x)β(y)
and ε = 1/n, it follows from Lemma 2.1 that

lim
n→∞

1

2π

∫ 2π

0

α(x)β(nx)dx = ᾱ · β̄ ,
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and furthermore, thanks to the bounded variation of α,∣∣∣∣ 1

2π

∫ 2π

0

α(x)β(nx)dx − ᾱ · β̄
∣∣∣∣ ≤ Const

n
.

This result generalizes and illuminates the Riemann-Lebesgue Lemma, where
β(y) = eiy (see also [21, Theorem (4.15)]).

3. In the simpler case with no x-dependence, i.e, for gε(x) = g(x
ε
), a shorter alter-

native proof of O(ε) error estimate is provided in Theorem 8.1 in Appendix B
below.

We proceed with a brief proof of the W−1,∞-stability of the solution operator associ-
ated with (1.1) with respect to both the initial and forcing data. This W−1,∞-stability
agrees with the L∞-stability for viscosity solutions of Hamilton-Jacobi equations, con-
sult M.G. Crandall, H. Ishii and P.L. Lions [2]. We also refer the reader to [10] for (a
qualitative statement of) W−1,∞-stability in the context of of hyperbolic conservation
laws.

Proposition 2.1 (W−1,∞-Stability). Let u and v be entropy solutions of the following
equations:

ut = K(u, ux)x + g(x, t) ; (2.7)

vt = K(v, vx)x + h(x, t) . (2.8)

Then, for t > 0,

‖u(·, t) − v(·, t)‖W−1,∞ ≤ ‖u(·, 0) − v(·, 0)‖W−1,∞+

∫ t

0

‖g(·, τ) − h(·, τ)‖W−1,∞dτ . (2.9)

Proof. Let uδ and vδ, δ > 0, be the corresponding regularized solutions, associated
with Kδ = K + δp. The primitive of the error, Eδ :=

∫ x

−∞(uδ − vδ), satisfies the
convection-diffusion equation

Eδ
t = q1 · Eδ

x + (q2 + δ) · Eδ
xx + D . (2.10)

Here, q1 = Ku(w1, u
δ
x), q2 = Kp(v

δ, w2), with appropriate mid-values wj , j = 1, 2, and
D =

∫ x

−∞(g(ξ, t)− h(ξ, t))dξ . Since, in view of (1.2), q2 ≥ 0, we conclude that

d

dt
‖Eδ(·, t)‖L∞ ≤ ‖D(·, t)‖L∞ ,

which, by letting δ go to zero, implies (2.9).

Finally, combining Proposition 2.1 and Lemma 2.1, we conclude the following:
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Theorem 2.1 (W−1,∞-Convergence). Let uε be the entropy solution of

uε
t = K(uε, uε

x)x + hε(x, t), uε(x, 0) = uε
0(x), (2.11)

with modulated initial and forcing data, uε
0(x) and hε(x, t), outlined in (1.4). Let u be

the entropy solution of the corresponding homogenized equation

ut = K(u, ux)x + h̄(x, t), u(x, 0) = ū0(x), (2.12)

associated with the respective averages,

ū0(x) =

∫ 1

0

u0(x, y)dy, h̄(x, t) =

∫ 1

0

h(x, y, t)dy .

Then, for every t > 0 there exists a constant C(t) > 0 such that

‖uε(·, t) − u(·, t)‖W−1,∞ ≤ C(t)ε1−λ . (2.13)

Moreover, in the homogeneous case (where h ≡ 0 and λ = 0) the constant C(t) does not
depend on t and we have

‖uε(·, t) − u(·, t)‖W−1,∞ ≤ Cε . (2.14)

Proof. Lemma 2.1 with g(x, y) = u0(x, y) and g(x, y) = h(x, y, t) with fixed t > 0,
tells us that

‖uε
0(x) − ū0(x)‖W−1,∞ ≤ Cε ; ‖ 1

ελ
h(x,

x

ε
, t) − 1

ελ
h̄(x, t)‖W−1,∞ ≤ 1

ελ
· c(t)ε .

By our assumption, since either λ or h̄ vanish, we have ε−λh̄ = h̄; hence

‖hε(x, t) − h̄‖W−1,∞ ≤ c(t)ε1−λ .

Finally, (2.13) and (2.14) follow in view of Proposition 2.1 with C(t) = C +
∫ t

0
c(τ)dτ .

Remark. We may extend Theorem 2.1 by allowing amplified initial data; i.e., uε
0 =

ε−µu0(x, x
ε
) with fixed µ ∈ [0, 1) such that µ · ū0 ≡ 0. In that case, the W−1,∞-error in

(2.13) would be of order O(ε1−max(µ,λ)).

3 Strong Convergence to the Homogenized Solution

Our aim in this section is to translate the weak W−1,∞-convergence rate estimate, (2.13),
into strong Lp-convergence rate estimates. To this end we focus our attention on non-
linear equations for which the solution operator is compact. Specifically, we concentrate
on solution operators, S(t) : u(·, 0) 7→ u(·, t), which map bounded sets in L∞ into
bounded sets in the regularity spaces, W s,r

loc , s > 0, 1 ≤ r ≤ ∞. This compactness
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is clearly of a nonlinear nature and it implies that the solution operator immediately
cancels out oscillations which may have been present at t = 0. For future reference,
we refer to such equations as W s,r-regular. We remark that nonlinearity is essential for
such W s,r-regularity in the scalar case. For the interaction of a linearly degenerate field
with oscillatory nonlinear fields in hyperbolic systems, we refer to [3],[15] and the error
estimate in [8].

The following theorem translates, for W s,r-regular equations, the weak W−1,∞-
convergence into strong Lp-convergence rate estimates.

Theorem 3.1 Let uε be the solution of equation (2.11) subject to modulated data, (1.4),
and assume that the equation possesses a W s,r-regularizing effect. Then, uε converges to
u – the solution of the homogenized equation (2.12), and the following error estimates
hold

‖uε(·, t) − u(·, t)‖Lp(Ω) ≤ C · Bs,r
ε (t)1−θ · εθ(1−λ) ∀p ∈ [1, (

1

r
− s)−1

+ ] . (3.15)

Here, θ, p∗ and Bs,r
ε are given by

θ =

1
p∗ − 1

r
+ s

1 − 1
r

+ s
∈ [0, 1], p∗ := max{p, r(s + 1)} , (3.16)

Bs,r
ε (t) = ‖uε(·, t) − u(·, t)‖W s,r , (3.17)

and C is some constant which depends on p, |Ω| 1
p
− 1

p∗ and t.

Proof. By Gagliardo-Nirenberg inequality, e.g., [7, Theorem 9.3], interpolation be-
tween the W−1,∞ and W s,r-bounds yields for the intermediate Lp-norms,

‖v‖Lp ≤ cp · ‖v‖θ
W−1,∞‖v‖1−θ

W s,r, θ =

1
p
− 1

r
+ s

1 − 1
r

+ s
; (3.18)

this inequality holds for all p ∈ [r(s+1), (1
r
−s)−1

+ ]. Since by our assumption the solution
operator associated with (2.11) is W s,r-regular, so does the solution operator associated
with (2.12), and hence their difference is bounded, (3.17). We may now use (3.18) with
v = uε(·, t) − u(·, t), together with the W−1,∞-error estimate, (2.13), to conclude the
Lp-error estimate (3.15) for all p ≥ r(s + 1) in the relevant range. For the remaining
values of p < r(s + 1), the Lp-errors are dominated by the one obtained already for the

Lr(s+1)-norm, ‖ · ‖Lp(Ω) ≤ |Ω| 1
p
− 1

r(s+1)‖ · ‖Lr(s+1)(Ω) .

The particular homogeneous case, h ≡ 0, where the oscillations are introduced only
at t = 0 via the initial data, is of special interest. In this case, the solution operator
of (2.11) does not depend on ε and coincides with that of (2.12). Since the initial data
for those equations, u0(x, x

ε
) and ū0(x), are uniformly bounded in L∞, we conclude that

Bs,r
ε (t), given in (3.17), is uniformly bounded with respect to ε. Hence, we arrive at the

following simplified version of Theorem 3.1 for homogeneous problems:
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Corollary 3.1 (Initial Oscillations). Under the assumptions of Theorem 2.1, if equa-
tions (2.11) and (2.12) are homogeneous and W s,r-regular, then for every t > 0 and
p ∈ [1, (1

r
− s)−1

+ ] there exists a constant C such that

‖uε(·, t) − u(·, t)‖Lp(Ω) ≤ C · εθ , (3.19)

where θ is given in (3.16).

In the inhomogeneous case, the solution operator of (2.11) depends on ε. Hence, due
to the persisting generation of oscillations by the oscillatory source term, ε−λh(x, x/ε, t),
the W s,r-bound, Bs,r

ε (t), may grow when ε ↓ 0. Therefore, in order to have strong conver-
gence in this case, we need a moderate growth of Bs,r

ε (t) so that Bs,r
ε (t)1−θεθ(1−λ) −→

ε→0
0 .

In the following sections we give examples of equations, both hyperbolic and parabolic,
homogeneous and inhomogeneous, which are W s,r-regular and derive strong convergence
estimates for them.

4 Applications to Hyperbolic Conservation Laws

In this section we demonstrate our results in the context of hyperbolic conservation laws
with convex flux f ,

ut + f(u)x = h, f ′′ ≥ α > 0 .

The convexity of the flux f implies that these equations are BV -regular – consult Propo-
sition 4.1 below. Granted this BV -regularity which we identify with the W 1,1-regularity,
we may invoke the Lp-error estimates (3.15)–(3.17) which now read,

‖uε(·, t)−u(·, t)‖Lp(Ω) ≤ C ·Bε(t)
1− 1

p∗ · ε 1−λ
p∗ ∀p ∈ [1,∞) ; p∗ := max{p, 2}. (4.20)

Here, Bε(t) abbreviates the BV -size of the difference,

Bε(t) = B1,1
ε (t) = ‖uε(·, t) − u(·, t)‖BV , (4.21)

and the constant C depends on p, |Ω| 1
p
− 1

p∗ , and (in the inhomogeneous case) also on t.

In the remaining of this section we take a closer look at the convergence rate estimate
4.20. In §4.1 we study the homogeneous case (h ≡ 0); §4.2 is devoted for the more
intricate case with inhomogeneous oscillatory data.
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4.1 The Homogeneous Case

Let uε and u be the entropy solutions of the corresponding initial value problems,

uε
t + f(uε)x = 0, uε(x, 0) = u0(x,

x

ε
) , (4.22)

ut + f(u)x = 0, u(x, 0) = ū0(x) =

∫ 1

0

u0(x, y)dy , (4.23)

where, as usual, u0 ∈ BVx(Ω× [0, 1]). Since uε(·, 0)− u(·, 0) vanish outside Ω, uε(·, t)−
u(·, t) is compactly supported, say on Ω(t), ∀t > 0 (thanks to the finite speed of propa-
gation), and therefore,

Bε(t) = ‖uε(·, t) − u(·, t)‖BV ≤ ‖uε(·, t)‖BV (Ω(t)) + ‖u(·, t)‖BV (Ω(t)) . (4.24)

If we let D denote the difference between the far right and far left values of u(·, t) and
uε(·, t), then the BV -norms of uε(·, t) and of u(·, t) can be upper-bounded in terms of
their Lip+-(semi)-norms,†

‖uε(·, t)‖BV (Ω(t)) ≤ D+2|Ω(t)|·‖uε(·, t)‖Lip+ , ‖u(·, t)‖BV (Ω(t)) ≤ D+2|Ω(t)|·‖u(·, t)‖Lip+,
(4.25)

and since f ′′ ≥ α > 0, both u and uε are Lip+-stable – consult e.g. [16],

‖u(·, t)‖Lip+ ≤ (‖u(·, 0)‖−1
Lip++αt)−1 , ‖uε(·, t)‖Lip+ ≤ (‖uε(·, 0)‖−1

Lip++αt)−1 . (4.26)

Finally, since ‖u(·, 0)‖Lip+ ≤ O(1) and ‖uε(·, 0)‖Lip+ ≤ O(ε−1), we conclude by (4.24)–
(4.26), that the term Bε(t) in (4.20) does not exceed

Bε(t) ≤ 2D + Const · |Ω(t)| · (αt + O(ε))−1 . (4.27)

We now distinguish between three different regimes:

(1) Small t > 0 – the initial layer.
For small values of t we get by (4.20) and (4.27) that

‖uε(·, t) − u(·, t)‖Lp ∼ (t + ε)
1

p∗−1 · ε 1
p∗ ∀p ∈ [1,∞).

Hence, for a fixed value of ε > 0, the initial layer is of width O(ε). More precisely, the

width of the initial layer in which there is no strong Lp-convergence is O(ε
1

p∗−1 ).

(2) Fixed t > 0 – cancellation of oscillations.
B. Engquist and W. E proved the strong convergence, uε(·, t) → u(·, t) in L1

loc(IR), ∀t >
0, [5, Theorem 4.1]. Here, we are able to quantify the convergence rate in Lp, 1 ≤ p ≤ ∞,
whenever the flux f is convex: the convergence rate implied by (4.20) and (4.27) is
bounded by

‖uε(·, t) − u(·, t)‖Lp ≤ Const · ε 1
p∗ p∗ = max{p, 2} ∀p ∈ [1,∞) . (4.28)

Remarks.

†Lip+ abbreviates the semi-norm, ‖w‖Lip+ := supx 6=y

(
w(x)−w(y)

x−y

)
+
.
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1. The convergence result in [5, §4] assumes the nonlinearity of f to be weaker than
convexity. An extension of the W s,r-regularity (which in turn implies strong Lp-
convergence estimates) to a larger family of nonlinear fluxes in the spirit of [5] is
outlined in §5.2 below.

2. A further improvement of (4.28) is available whereever the homogenized solution
is smooth. To this end we employ a localized version of a one-sided interpolation
inequality due to [18], stating that

‖v‖L∞
loc

≤ Const · ‖v‖
1
2

W−1,∞
loc

‖v‖
1
2

Lip+
loc

. (4.29)

We remark that (4.29) is the analogue of Gagliardo-Nirenberg inequality (3.18) with
p = r = ∞, s = 1. However, here only one-sided bound (on the first derivative)
is assumed. Such local error estimates in the presence of one-sided bounds were
first used in [16, §4].
Equipped with (4.29), we conclude that in any interval of C1-smoothness of u(·, t),
the one-sided Lip+-bound of the difference ‖uε(·, t) − u(·, t)‖Lip+(Ω) is bounded
independently of ε. This, together with (2.14) imply that

|uε(x, t) − u(x, t)| ≤ Const · |u(·, t)|C1
loc(x)

· ε 1
2 ,

which improves estimate (4.28).

The one-sided inequality (4.29) may be used similarly to localize the strong error
estimates discussed below. We omit the details.

(3) Large t > 0 – asymptotic behavior.

We fix ε > 0 and consider large values of t > 0. For simplicity, let us concentrate
on the case where the initial data admits the same constant value outside (the left and
right of –) Ω, say u0|Ωc ≡ A. In this case, the constant D in (4.27) vanishes, and the
time decay of ‖uε(·, t)‖BV implies that the solution tends to its constant initial average,
uε(·, t ↑ ∞) → A. The error estimates (4.20) and (4.27) then imply that

‖uε(·, t) − u(·, t)‖Lp ∼ |Ω(t)|1+ 1
p
− 2

p∗ t
1

p∗−1 ∀p ∈ [1,∞]. (4.30)

Since |Ω(t)| = |Ω(0)| + O(t
1
2 ), e.g. [11], we conclude that

‖uε(·, t) − u(·, t)‖Lp ≤ O(t
1
2
( 1

p
−1)) ∀p ∈ [1,∞]. (4.31)

In particular, (4.31) with p = ∞ yields a uniform error estimate of order O(t−
1
2 ). In

fact, this reflects the uniform large time decay of ‖u(·, t) − A‖L∞ and ‖uε(·, t) − A‖L∞

– each of which decays like O(t−
1
2 ).
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4.2 The Inhomogeneous Case

Let uε and u be the entropy solutions of the following initial value problems,

uε
t + f(uε)x =

1

ελ
h(x,

x

ε
, t), uε(x, 0) = u0(x,

x

ε
) ; (4.32)

ut + f(u)x = h̄(x, t) :=

∫ 1

0

h(x, y, t)dy, u(x, 0) = ū0(x) :=

∫ 1

0

u0(x, y)dy , (4.33)

with u0(x, y), h(x, y, t) as in (1.4) and f ′′ ≥ α > 0. Recall our assumption that either
λ or h̄ vanish, and in any case, λ < 1. The case λ = 1 is different, consult [4]: in
this context, E and Serre provided a rigorous justification of the asymptotic expansion
(under extra compatibility requirements), uε(x, t) ∼ U(x, x/ε, t).

We begin by studying the Lip+-behavior in the presence of an oscillatory force. To
this end we state the following Lip+-stability estimate for inhomogeneous conservation
laws, which is a special case of Proposition 7.1 in §7.

Proposition 4.1 Let v be the entropy solution of

vt + f(v)x = g(x, t), f ′′(v) ≥ α , (4.34)

subject to the initial condition v(x, 0) = v0(x). Then

‖v(·, t)‖Lip+ ≤ c · ‖v0‖Lip+ + c + (‖v0‖Lip+ − c)e−2αct

‖v0‖Lip+ + c − (‖v0‖Lip+ − c)e−2αct
≤ c · 1 + e−2αct

1 − e−2αct
, (4.35)

where

c = c(t) := max
0≤τ≤t

√
‖g(·, τ)‖Lip+

α
. (4.36)

Remarks.

1. In the particular case of homogeneous data, g ≡ c = 0, Proposition 4.1 recovers
the usual homogeneous Lip+-decay (4.26).

2. Key features of Proposition 4.1 to be used later are
{i} that the dependence of the Lip+-bound on the inhomogeneous term, ‖g‖Lip+,
is proportional to the square root of the latter, c ∼ √‖g‖Lip+, rather than the
expected ‖g‖Lip+.
{ii} that the second upper bound for ‖v(·, t)‖Lip+ on the right of (4.35) is indepen-
dent of the initial data (and hence, even if the initial data was Lip+-unbounded,
the solution v(·, t) will be Lip+-bounded for all t > 0.)
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Corollary 4.1 (Lip+-estimate). Let uε be the entropy solution of (4.32). Then for any
fixed t > 0 it holds that

‖uε(·, t)‖Lip+ ≤ O(ε−
1+λ
2 ) . (4.37)

Proof. Since ‖uε(·, 0)‖Lip+ ≤ O(ε−1) and, for any fixed t > 0, ‖ε−λh(·, ·/ε, t)‖Lip+ ≤
O(ε−(1+λ)), (4.37) follows from (4.35).

Remark. We recall that in the absence of a forcing term, the convexity of f implies
according to (4.26), that ‖uε(·, t)‖Lip+ ≤ O(1). If, on the other hand, f does not render
any regularizing effect (such as linear f ’s), then the presence of such an oscillatory
forcing term implies ‖uε(·, t)‖Lip+ ∼ O(ε−(1+λ). With this in mind, Corollary 4.1 states
that the O(ε−(1+λ))-modulated oscillations due to the forcing term are relaxed, thanks

to the convexity of the equation, resulting in Lip+ bound of order O(ε−
1+λ

2 ).

Since ‖u(·, t)‖Lip+ is independent of ε we conclude, in view of (4.24), (4.25) and
Corollary 4.1, the BV -upper bound

Bε(t) = ‖uε − u‖BV ≤ O(ε−
1+λ
2 ) . (4.38)

Though estimate (4.38) does not provide a Bε(t)-bound which remains bounded as
ε ↓ 0, it suffices in order to obtain strong Lp-convergence. Indeed, combining it with
the Lp-error estimates (4.20) we conclude the following.

Proposition 4.2 Let uε and u be the entropy solutions of (4.32) and (4.33), respec-
tively. Then the following Lp-error estimates hold for every fixed t > 0:

‖uε(·, t) − u(·, t)‖Lp ≤ Const · ε 3−λ
2p∗ − 1+λ

2 p∗ = max{p, 2}, (4.39)

We conclude with the following remarks.

{i} In case λ = 0 we obtain an error bound of order O(ε
3

2p∗ −
1
2 ). Comparing this

to the analogous estimate in the homogeneous case, (4.28), we see that the oscillatory
source term, h(x, x

ε
, t), decelerates the rate of convergence; moreover, the error bound

in (4.39) (with λ = 0) is limited to strong Lp-convergence as long as p < 3.
{ii} In case the forcing oscillations are amplified (λ > 0) we obtain an L2-estimate

of order O(ε
1−3λ

4 ). In this case (4.39) is limited to strong L2-convergence as long as
0 < λ < 1

3
. In general, (4.39) is limited to strong Lp-convergence as long as p∗ < 3−λ

1+λ
.

{iii} A final note on the initial layer: using (4.35)–(4.36), we may study the behavior
of ‖uε(·, t)‖Lip+ and, therefore, also of Bε(t) as t ↓ 0 and find that Bε(t ∼ εη) ∼
ε−max(η,(1+λ)/2). With that and (4.20) it is possible to determine the width of the initial
layer near t = 0, in which there is no strong Lp-convergence. A simple though tedious

computation which we omit shows that the width of the initial layer is O(ε
1−λ
p∗−1 ) (where

p∗ < 3−λ
1+λ

). Note that when λ = 0, it is of the same order as in the homogeneous case,

namely, O(ε
1

p∗−1 ).
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5 Applications to Convection-Diffusion Equations

Here we demonstrate our results in the context of convection-diffusion equations of the
form,

uε
t + f(uε)x = Q(uε, pε)x , Qp ≥ 0 ; uε(x, 0) = u0(x,

x

ε
). (5.40)

Thus, here we rewrite (1.1) with K(u, p) = Q(u, p)−f(u) where we distinguish between
the convective flux, f(u), and the diffusive part, Q(u, p). We concentrate on the ho-
mogeneous case and obtain strong convergence rate estimates of the entropy solution
which corresponds to the oscillatory initial data,uε(·, t), to the entropy solution which
corresponds to the averaged data, u(·, t). A similar program can be carried out for
convection-diffusion equations in the presence of oscillatory forcing terms.

Note that in case of uniform parabolicity, Qp ≥ Const > 0, the solution becomes C∞-
smooth at t > 0 and therefore equation (5.40) is W s,∞-regular for all s > 0. This optimal
regularity implies, in view of Theorem 3.1, the full recovery of strong convergence of
first-order,

‖uε(·, t) − u(·, t)‖L∞
loc

≤ Const · ε .

Consequently, our main concern below is with degenerate diffusivity, where we separate
our discussion to two types of equations: those dominated by a nonlinear convective flux
(in §5.1 and §5.2), and those whose regularizing effect is due to a degenerate diffusive
term (in §5.3 and §5.4).

5.1 Convection-diffusion equations with convex flux

We begin with examples of convective-diffusive equations which are dominated by a
convex flux, f ′′ ≥ α > 0. The convexity of the convective flux enables us to prove, in
§7 below, the Lip+-stability of those equations. As in §4, this Lip+-stability implies
BV -regularity which in turn yields error estimate (4.28),

‖uε(·, t) − u(·, t)‖Lp ≤ Const · ε 1
p∗ p∗ = max{p, 2} ∀p ∈ [1,∞) . (5.41)

Let us quote two examples. First, convex conservation laws augmented with possibly
degenerate viscosity,

ut + f(u)x = Q(u)xx, f ′′ ≥ α > 0 , Q′ ≥ 0 ≥ Q′′′. (5.42)

For instance, the convective porous media equation which consists of a convex flux
augmented with subquadratic diffusion, Q(u) = cum, 1 ≤ m ≤ 2 (u ≥ 0), falls into this
category.
As a second example we mention conservation laws with degenerate pseudo-viscosity,
[14],

ut + f(u)x = Q(ux)x, f ′′ ≥ α > 0 , Q′ ≥ 0 . (5.43)

The Lip+-stability of (5.42) and (5.43) is a consequence of Proposition 7.1, with
K(u, p) = Q′(u)p − f(u) in the first case and K(u, p) = Q(p) − f(u) in the second
case; in both cases Kuu ≤ −α < 0 for all p ≥ 0 so that the requirement (7.72) for
Lip+-stability holds.
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5.2 Convection-diffusion equations with general nonlinear flux

We consider the viscous conservation law (5.42),

ut + f(u)x = Q(u)xx, Q′ ≥ 0. (5.44)

This time, convexity is relaxed by assuming the following:
Assumption (nonlinear hyperbolic flux). The flux f is nonlinear in the sense it has some
high-order nonvanishing derivative; i.e., there exists k ≥ 2 such that

f (k)(v) 6= 0 ∀v. (5.45)

According to [12, Theorem 4], the convection-diffusion equation (5.40) is W s,1-regular
with s = 1

2k−1
, and Corollary 3.1 yields the error estimate

‖uε(·, t) − u(·, t)‖Lp ≤ Const.




ε
s

s+1 ∀p ∈ [1, s + 1) ,

ε
1−p(1−s)

sp ∀p ∈ [s + 1, 1
1−s

) .

(5.46)

Remark. The regularity result stated above is not sharp: as noted in [12] one expects
W s,1-regularity of order s = 1

k−1
. In this case one obtains an L1-error estimate of order

O(ε
1
k ). Also, for convex fluxes (k = 2, s = 1), one recovers the Lp-error estimate of

order O(ε
1

p∗ ) stated in (5.41).

5.3 The Porous Media Equation

Here, we consider the porous media equation,

ut = (um)xx , u ≥ 0 , m > 1 , (5.47)

as a prototype model example for parabolic, ’convection-free’ equations with degenerate
diffusion.

D.G. Aronson, [1], proved that for every t > 0, u(·, t) is uniformly Hölder continuous
with Hölder exponent s = min{1, (m − 1)−1} (a generalization for convective porous
media type equations can be found in [19]).

In case m ≥ 2, it implies that (5.47) is W s,∞-regular, s = (m − 1)−1 < 1. With this
Hölder W s,∞-regularity, the Lp-error estimates (3.15)–(3.17) take the form:

‖uε(·, t) − u(·, t)‖Lp(Ω) ≤ C · Bε(t)
1

s+1 · ε s
s+1 ∀p ∈ [1,∞], (5.48)

where Bε(t) = ‖uε(·, t)− u(·, t)‖W s,∞ and the constant C depends on p and |Ω| 1
p . Since

the last upper-bound is independent of p, we summarize the case of m ≥ 2 with a
uniform error estimate

‖uε(·, t) − u(·, t)‖L∞(Ω) ≤ Const · ε 1
m m ≥ 2. (5.49)
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The case m ≤ 2 is different (note that m = 2 is already hinted as a critical exponent
in example (5.42) where Q(u) = cum satisfies the condition Q′′′ ≤ 0 only if m ≤ 2). In
this case, Aronson’s result tells us that the porous media equation with subquadratic
diffusion is W 1,∞-regular. We claim that in fact more is true, namely, that the solution
operator of (5.47) with m ≤ 2 is even W 2,1-regular:

Proposition 5.1 Let u ≥ 0 be the entropy solution of

ut = (um)xx , m ≤ 2 , u(·, 0) = u0 ∈ L∞(Ω) , (5.50)

where, as usual, u0

∣∣∣
Ωc

≡ Const. Then, for every t > 0, ‖uxx(·, t)‖L1 < ∞.

Proof. We recall that the pressure, v := m
m−1

um−1, satisfies the one sided estimate
[20, Proposition 5]

vxx ≥ − 1

(m + 1)t
. (5.51)

Next, we invoke the identity,

vxx = mum−2uxx + m(m − 2)um−3u2
x . (5.52)

Since m ≤ 2, the second term on the right of (5.52) is nonpositive. Hence, we conclude
in view of (5.51) and (5.52) that

um−2uxx ≥ − 1

m(m + 1)t
. (5.53)

Using the maximum principle and, once more, that m ≤ 2, we conclude by (5.53) that

uxx ≥ − u2−m

m(m + 1)t
≥ − ‖u0‖2−m

L∞

m(m + 1)t
. (5.54)

The fact that equation (5.50) is conservative – which we express as
∫

IR
(uxx)+dx =∫

IR
(uxx)−dx, implies

‖uxx(·, t)‖L1 = 2

∫
IR

|(uxx)−|dx . (5.55)

Due to the finite speed of propagation, u(·, t) is constant outside some bounded interval
Ω(t) and therefore uxx(·, t) is compactly supported on Ω(t). Hence, (5.54) and (5.55)
imply

‖uxx(·, t)‖L1 = 2

∫
Ω(t)

|(uxx)−|dx ≤ 2|Ω(t)| ‖u0‖2−m
L∞

m(m + 1)t
(5.56)

and we are done.

Equipped with the W 2,1-regularity derived in Proposition 5.1, the Lp-error estimates
(3.15)–(3.17) take the form

‖uε(·, t)−u(·, t)‖Lp(Ω) ≤ C ·Bε(t)
1− 1

p∗
2 ·ε

1+ 1
p∗
2 , p∗ := max{p, 3} ∀p ∈ [1,∞], (5.57)
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where Bε(t) = ‖uε(·, t) − u(·, t)‖W 2,1, and the constant C depends on p and |Ω| 1
p
− 1

p∗ .
Hence, for any fixed t > 0, it holds that

‖uε(·, t) − u(·, t)‖Lp(Ω) ≤ Const · ε p∗+1
2p∗ , p∗ = max{p, 3} ∀p ∈ [1,∞] . (5.58)

Finally, we combine the two error estimates, (5.49) for m ≥ 2 and (5.58) for m ≤ 2,
as follows:

Theorem 5.1 Let uε and u be an oscillatory and the corresponding homogenized solu-
tions of the porous media equation (5.47). Then for any fixed t > 0 it holds that

‖uε(·, t) − u(·, t)‖L∞(Ω) ≤ Const · εmin{ 1
m

, 1
2
}. (5.59)

5.4 Convection-diffusion equations with nonlinear diffusion

We revisit the viscous conservation law,

ut + f(u)x = Q(u)xx, Q′ ≥ 0. (5.60)

This time the C1 flux f could be arbitrary and the nonlinearity of the equation is related
to the possibly degenerate diffusion – nonlinearity quantified by:
Assumption (Nonlinear diffusion). The diffusion term, Q(u), is nonlinear in the sense
that

∃α ∈ (0, 1) , δ0 > 0 : meas{u : 0 ≤ Q′(u) ≤ δ} ≤ Const · δα, ∀δ ≤ δ0 . (5.61)

If (5.61) holds then equation (5.60) is at least W s,1-regular with s = 2α
α+4

, by arguing
along the lines of [12, §4-5]. Hence, we end up with Lp error estimate

‖uε(·, t) − u(·, t)‖Lp ≤ Const ·




ε
s

s+1 ∀p ∈ [1, s + 1) ,

ε
1−p(1−s)

sp ∀p ∈ [s + 1, 1
1−s

) .

(5.62)

Remark. As before, we do not claim this regularity to be sharp: by borrowing a
bootstrap argument from [12], one obtains W s,1-regularity of order s = min{1, 8α

3α+4
}. An

even sharper regularity result of order W 2α,1 is expected in this case, [17]. For example,
for the porous media equation (where Q(u) ∼ um, with m > 2 and consequently α =

1
m−1

< 1), a regularity of order W s,1 with s = 2
m−1

yields L1-error estimate of order

O(ε
2

m+1 ). Note that when m → 2+, this L1-error estimate coincides with the one in
(5.57).
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6 Examples

In the first two examples, we consider the inhomogeneous Burgers’ equation,

uε
t + f(uε)x =

1

2ελ
sin(2π

x

ε
) , f(u) =

u2

2
, (6.63)

with oscillatory initial data,

uε(x, 0) = x + cos(2π
x

ε
) x ∈ [0, 1] , uε(x + 1, 0) = uε(x, 0) , (6.64)

(the value of ε in all examples is ε = 0.0408). The corresponding homogenized problem
is

ut + f(u)x = 0 (6.65)

u(x, 0) = x x ∈ [0, 1] , u(x + 1, 0) = u(x, 0) . (6.66)

First, we consider the case where the forcing data are not amplified, i.e., λ = 0.
In Figure 1 we plot the oscillatory solution, uε(·, t), and the homogenized one, u(·, t)
(in solid and dashed lines, respectively) for four values of t. The cancellation of the
oscillations is reflected in the figures and we note that at t = 0.04 ≈ ε, the two solutions
are close in the strong L∞-norm.

In Figure 2 we depict the two solutions when the oscillatory solution is subject to
amplified forcing data, λ = 1

2
. The effect of that amplification is notable at t = 0.1.

Finally, we consider the porous media equation,

ut = (|u|m−1u)xx m = 2 . (6.67)

Here, uε is the solution of (6.67) subject to the oscillatory initial data,

uε(x, 0) =
{x

ε

}
· cos(2πx) , (6.68)

where {y} is the fractional part of y. Since
∫ 1

0
{y}dy = 1

2
, uε approaches u, the solution

of (6.67) with the averaged initial data,

u(x, 0) =
1

2
cos(2πx) . (6.69)

Both solutions are depicted in Figure 3.

The numerical results were obtained by the non-oscillatory high order central differ-
ence scheme in [13].
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7 Appendix A: Lip+-Stability

In this section we prove the Lip+-stability of some (possibly degenerate) parabolic equa-
tions which were discussed in §5.

Proposition 7.1 Consider the convective-diffusive equation (1.1),

ut = K(u, p)x + h(x, t), Kp ≥ 0, (x, t) ∈ IR × IR+, (7.70)

with a Lip+-bounded source term,

hx(x, t) ≤ c(t) < ∞ ∀(x, t) ∈ IR × IR+, (7.71)

and assume that K(u, p ≥ 0) is concave in u,

−Kuu(u, p) ≥ α > 0 ∀(u, p) ∈ IR × IR+. (7.72)

Then the equation is Lip+-stable and, for all T > 0, ‖u(·, T )‖Lip+ is bounded independently
of the initial data as follows:

‖u(·, T )‖Lip+ ≤ c · ‖u(·, 0)‖Lip+ + c + (‖u(·, 0)‖Lip+ − c)e−2αcT

‖u(·, 0)‖Lip+ + c − (‖u(·, 0)‖Lip+ − c)e−2αcT
≤ c · 1 + e−2αcT

1 − e−2αcT
, (7.73)

where c = cT := max
0≤t≤T

√
c(t)+

α
.

Proof. We assume that Kp > 0; the degenerate case, Kp ≥ 0, is treated by the
standard procedure of replacing K by Kδ = K + δp, δ ↓ 0.

Differentiating (7.70) with respect to x we find that p = ux is governed by

pt = Ku · px + (Kuu · p + Kup · px) · p + Kp · pxx +
dKp

dx
· px + hx .

Since Kp > 0, it follows that nonnegative maximal values of p satisfy

dp

dt
≤ Kuu · p2 + hx .

Hence, by (7.71) and (7.72), we get that in positive local maximal points,

dp

dt
≤ −αp2 + c(t) .

Finally, estimate (7.73) follows from the last inequality in view of Lemma 7.1 below.

For the sake of completeness, we now prove an upper-bound estimate for a general
Riccati ODE of the type encountered above.
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Lemma 7.1 Assume that p = p(t) satisfies the Riccati-type inequality

dp

dt
≤ −a(t)p2 + b(t)p + c(t) , (7.74)

where a(t) is uniformly positive,

a(t) ≥ α > 0 ∀t ≥ 0, (7.75)

and b(t), c(t) are locally upper bounded functions. Then p(t)+, t > 0, is upper-bounded
independently of the initial value p(0)+, and the following estimate holds for all T > 0:

p(T )+ ≤ b + c · p(0)+ − b + c + (p(0)+ − b − c)e−2αcT

p(0)+ − b + c − (p(0)+ − b − c)e−2αcT
≤ b + c · 1 + e−2αcT

1 − e−2αcT
, (7.76)

where

b = bT :=
1

2α
max
0≤t≤T

b(t), c = cT := max
0≤t≤T

√
b2
T +

c(t)+

α
. (7.77)

Proof. We fix T > 0 and denote by βT and γT the upper bounds of b(t) and c(t)+,
respectively, in [0, T ]:

βT := max
0≤t≤T

b(t) , γT := max
0≤t≤T

c(t)+ . (7.78)

Using (7.75) and (7.78) in (7.74) we conclude that

dp

dt
≤ −αp2 + b(t)p + γT ∀t ∈ [0, T ] . (7.79)

By standard arguments (which we omit), the positive part of p(t) is majorized by P (t),
p(t)+ ≤ P (t), where

dP

dt
= −αP 2 + βT P + γT t ∈ [0, T ] , (7.80)

subject to the same initial value, P (0) = p(0)+. Equation (7.80) may be now rewritten
in the equivalent form

dP

dt
= −α(P − bT )2 + αc2

T t ∈ [0, T ] , (7.81)

where the constants, b = bT and c = cT , are specified in (7.77). The solution of this
equation gives

P (t) = b + c · P (0) − b + c + (P (0) − b − c)e−2αct

P (0) − b + c − (P (0) − b − c)e−2αct
t ∈ [0, T ] . (7.82)

We conclude that p(T )+, being dominated by P (T ), is bounded by

p(T )+ ≤ b + c · p(0)+ − b + c + (p(0)+ − b − c)e−2αcT

p(0)+ − b + c − (p(0)+ − b − c)e−2αcT
. (7.83)

Finally, we observe that the right hand side of (7.83) may be upper-bounded indepen-
dently of p(0)+ and, consequently,

p(T )+ ≤ b + c · 1 + e−2αcT

1 − e−2αcT
, (7.84)

which completes the proof.
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8 Appendix B

Here, we would like to concentrate on the special case where there is no explicit depen-
dence on x in (2.11),

uε
t = K(uε, uε

x)x + h(
x

ε
, t), uε(x, 0) = u0(

x

ε
) ,

and propose an alternative simpler proof of Theorem 2.1 (for the sake of simplicity
we concentrate on the case λ = 0; the case of amplified modulations, 0 < λ < 1,
may be easily treated in the same manner as before). In this case, the solution uε(·, t)
is ε-periodic for all t ≥ 0 (since uε(·, 0) is and the equation remains invariant under
translations x 7→ x + ε). The homogenized problem takes the form (compare to (2.12))

ut = K(u, ux)x + h̄(t), u(x, 0) = ū0 ,

where

h̄(t) =

∫ 1

0

h(y, t)dy and ū0 =

∫ 1

0

u0(y)dy .

The solution of that problem does not depend on x and is given by

u(x, t) = u(t) = ū0 +

∫ t

0

h̄(τ)dτ .

This value of the homogenized solution at time t equals, as can be easily seen, to the
averaged value of the oscillatory solution at the same time, i.e.,

u(·, t) =
1

ε

∫ x+ε

x

uε(y, t)dy .

Therefore, the W−1,∞-error estimate, (2.13), is a direct consequence in this case of
the following simple proposition:

Proposition 8.1 Let g(y) be a bounded 1-periodic function; let ḡ denote its average,

ḡ :=
∫ 1

0
g(y)dy, and gε(x) := g(x

ε
). Then there exists a constant C > 0, independent of

ε, such that for all 1 ≤ p ≤ ∞:

‖gε(x) − ḡ‖W−1,p[0,1] ≤ C · ε . (8.85)

Before proving this proposition, we state and prove a useful lemma which is inter-
esting for its own:

Lemma 8.1 Let w(x) be a function in Lp(I) where I = (a, b) is a (possibly unbounded)
interval in IR and 1 ≤ p ≤ ∞. Let W (x) :=

∫ x

a
w(ξ)dξ be the primitive of w. Consider

the division of I into subintervals, Ij, induced by the zeroes of W , i.e.,

I = ·∪j∈J Ij Ij = [xj , xj+1)
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where, for all j ∈ J ,

W (xj) = 0 and W (x) 6= 0 ∀x ∈ (xj , xj+1) .

Then
‖w‖W−1,p(I) ≤ max

j∈J
|Ij| · ‖w‖Lp(I) . (8.86)

Proof. For any p < ∞ (– the conclusion for p ↑ ∞ is thus straightforward) we have

‖w‖p
W−1,p(I) =

∑
j∈J

∫
Ij

|W (x)|pdx =
∑
j∈J

∫
Ij

∣∣∣∣∣
∫ x

xj

w(y)dy

∣∣∣∣∣
p

dx ≤
∑
j∈J

∫
Ij

(∫ x

xj

|w(y)|dy

)p

dx.

If we let K denote the size of the maximal subinterval, K = maxj∈J |Ij|, we get by
Hölder inequality that for x ∈ Ij ,∫ x

xj

|w(y)|dy ≤
∫

Ij

|w(y)|dy ≤ K
1
p′ ‖w‖Lp(Ij),

1

p
+

1

p′
= 1.

Combining the two last inequalities, we obtain the desired result (8.86):

‖w‖p
W−1,p(I) ≤

∑
j∈J

∫
Ij

K
p
p′ ‖w‖p

Lp(Ij)
dx ≤

∑
j∈J

K
p
p′ +1‖w‖p

Lp(Ij)
= Kp‖w‖p

Lp(I) .

Proof of Proposition 8.1. Denote wε(x) := gε(x) − ḡ. It can be easily seen that for
all 1 ≤ p ≤ ∞,

‖wε‖Lp[0,1] ≤ 2‖g‖Lp[0,1] + |ḡ| ≤ C, C := 3‖g‖L∞[0,1].

The key point is that due to the 1-periodicity of g(x), the primitive Wε(x) :=
∫ x

0
wε

vanishes at the points jε for any integer j. Hence, (8.85) follows from the simplest
version of (8.86) with equidistant zeroes at a distance of |Ij| = ε.
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