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1 Introduction

The Ninth International Conference on Hyperbolic Problems: Theory, Numerics and Applications, is being held at Caltech
from March 25 to 29, 2002, (Hyp2002). This is one of the highest quality and most successful conference series in applied
mathematics. This series originated in 1986 at Saint-Etienne, with an earlier focus towards the theoretical aspects of hyperbolic
conservation laws. As computers became more powerful in the late eighties, and as the development of modern innovative
numerical algorithms has made a considerable impact during the nineties, the scope of the Hyp series was expanded to its
present format.
In recent years, many effective numerical methods that have been originally developed in the context of of Computational
Fluid Dynamics, have found new applications outside their traditional areas. These applications include material sciences, mul-
tiphase/multicomponent flows, combustion/detonation, incompressible fluid flows with free boundaries, PDE-based imaging
processing, etc.
There have been many new developments in hyperbolic and nonlinear evolution PDEs in recent years. We are very pleased to
see that the Hyp2002 has brought together leading researchers from different disciplines to address the theoretical, modeling,
and computational issues in solving hyperbolic PDEs and more generally, nonlinear evolution equations arising from different
areas of applications. To better integrate across thee various aspects of theory, numerics and applications, we highlighted three
main themes for Hyp2002:

1. Fundamental Theory and Numerical Analysis.

2. Multiscale analysis, modeling and simulation.

3. Applications: Geophysics, Materials Science, Free Boundary Problems.

More than one hundred fifty abstracts are assembled in this book, reflecting the high-level quality expected at Hyp2002, with
lectures covering a diverse range of theory, numerics and applications.
We believe that the conference will provide a forum to exchange and to stimulate new ideas from different disciplines, and to
formulate new challenging problems that will have important physical and industrial impacts. A special effort has been made to
attract young participants as well as women and minority participants. Over 30 young participants are provided with financial
support to attend the Hyp2002 conference.
Finally, we would like to take this opportunity to thank Andrew Westhead for his dedicated work in assembling this book of
abstracts, and to acknowledge the partial support from the National Science Foundation, Office of Naval Research, Institute of
Pure and Applied Mathematics at UCLA, DFG Priority Research Program on Analysis and Numerics for Conservation Laws in
Germany, Center of Integrative Multiscale Modeling and Simulation at Caltech, Division of Engineering and Applied Science
at Caltech and Caltech ASCI Center.

Tom Hou Eitan Tadmor
CalTech UCLA

Note that where multiple authors are listed, the presenter is marked by an asterisk�.
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2 Abstracts of plenary speakers

Viscosity Solutions of Nonlinear Hyperbolic Systems

Alberto Bressan

S.I.S.S.A. - Via Beirut 4, Trieste 34014, Italy

Consider a strictly hyperbolic�� � system of conservation laws in one space dimension:

�� � ����� � � � ���

Here� � ���� � � � � ��� is the vector ofconserved quantities, while the components of� � �� �� � � � � ��� are thefluxes. For
small�� initial data, the global existence of weak solutions was proved in the fundamental paper of Glimm [5], under the
additional assumption

(H) Each characteristic field is eitherlinearly degenerate or genuinely nonlinear.

The uniqueness and stability of entropy weak solutions has later been established by the author together with several collabo-
rators. See [3] for a comprehensive account of these results.
Since the pioneering work of Glimm, the construction of�� solutions was always achieved by piecing together solutions
of several Riemann problems. A priori�� and stability estimates were based on the careful analyis of interaction between
elementary waves (shocks or centered rarefactions). Bounds on the total variation are obtained by means of awave interaction
potential, controlling the production of new oscillations. In this connection, the hypothesis (H) is a simplifying assumption
that guarantees that that every Riemann problem can be solved in terms of� elementary waves. At the price of considerable
technicalities, this assumption has been relaxed in subsequent works by Liu [6] concerning existence of solutions and by Ancona
and Marson [1], concerning stability.
Very recently, uniform�� and stability estimates have been obtained by S. Bianchini and the author in [2] also for vanishing
viscosity approximations:

�� ������� � 	� ��� � ���

where���� � 
���� is the�� � Jacobian matrix. The key ingredients in our proof are:

� The local decomposition of the gradient�� as a sum of gradients of viscous travelling waves, based on a center manifold
construction.

� The a-priori bounds on source terms (producing new oscillations), based on the introduction of 4 Lyapunov functionals, which
we call: transversal wave interaction, length, area andenergy functionals.

This result marks the first time where uniform�� and stability estimates are obtained without any reference to Riemann
problems. The well posedness of the Cauchy problem can now be proved for the whole class of strictly hyperbolic systems,
without any reference to the assumptions (H).

Theorem. Consider the Cauchy problem for the hyperbolic system with viscosity

�� ������� � 	� ��� ���� �� � ����� � �	���

Assume that the matrices ���� are strictly hyperbolic, smoothly depending on � in a neighborhood of a compact set � � � � .
Then there exist constants ��� �� and Æ � � such that the following holds. If

Tot.Var.���� � Æ � 
��
����

����� � � � ��

then for each 	� � � the Cauchy problem (3)�� has a unique solution ��� , defined for all � � �. Adopting a semigroup notation,
this will be written as � �	 ��

�

��� 
� �
� ���

� ��. In addition, one has:
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BV bounds :
Tot.Var.

�
���

� ��
� �  Tot.Var.���� � ���

�� stability : �����

� ��� ���

� �	
��
��
� �

����� �	
��
��

� ��������

� ��� ���

� ��
��
��
� ��

�
�� �� ���	����

	��
��� � ���

Convergence: As 	� 	 ��, the solutions ��
�

converge to the trajectories of a semigroup � such that������� ���	
��
��
� � ���� �	��� � �� �� � � ���

These vanishing viscosity limits can be regarded as the unique vanishing viscosity solutionsof the hyperbolic Cauchy problem

�� ������� � �� ���� �� � ����� � ���

Ǐn the conservative case ���� � 
����, every vanishing viscosity solution is a weak solution of

�� � ����� � �� ���� �� � ����� � ����

satisfying the Liu admissibility conditions.

Assuming, in addition, that each field is genuinely nonlinear or linearly degenerate, the vanishing viscosity solutions coincide
with the unique limits of Glimm and front tracking approximations.

We remark that the�� setting is essential, in order to achieve the uniqueness and stability of vanishing viscosity limits. For
a strictly hyperbolic	 � 	 system with linearly degenerate fields, a Cauchy problem having two distinct�� solutions (both
obtained as limits of vanishing viscosity approximations) can be found in [4].

The talk will present the main ideas involved in the�� estimates for the viscous approximations (2), and discuss the vari-
ous interaction functionals. The possibility of obtaining similar�� bounds and stability estimates for other approximations
(relaxations, numerical schemes) will also be briefly commented.

References

[1] F. Ancona and A. Marson, Well posedness for general� � � systems of conservation laws,Amer. Math. Soc. Memoir, to
appear.

[2] S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems,Annals of Mathematics, sub-
mitted.

[3] A. Bressan,Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press,
2000.

[4] A. Bressan and W. Shen, Uniqueness for discontinuous O.D.E. and conservation laws,Nonlinear Analysis, T. M. A. 34
(1998), 637-652.

[5] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,Comm. Pure Appl. Math. 18 (1965),
697-715.

[6] T. P. Liu, Admissible solutions of hyperbolic conservation laws,Amer. Math. Soc. Memoir 240(1981).
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Mathematical questions along the flow of a river

Benoit Perthame

Ecole Normale Supérieure, DMA, UMR8553 45, rue d’Ulm F 75230 Paris Cédex 05 and INRIA-Rocquencourt, BP 105, 78153
Le Chesnay Cédex

Motivated by computational aspects of Saint-Venant s shallow water system (usual for many applications like rivers flow,
tidal waves, but also narrow tubes) conducted at INRIA/M3N, we consider some mathematical and algorithmic questions for
hyperbolic systems with a topogra-phy driven source term. We also revisit some classical questions in the numerical analysis
of finite volume methods such as: what are sharp CFL conditions for E-schemes (after Tadmor’s seminal paper), why TVD
bounds on the approximate solutions ARE NOT necessary for� ��� convergence rates.

Global Propagation of Regular Nonlinear Hyperbolic Waves

Tatsien Li

Fudan University, Shanghai 200433, China

By means of introducing the concept of weak linear degeneracy and the method of normalized coordinates, a complete result
is presented on the global existence and the blow-up mechanism of � solution to the Cauchy problem for general first order
quasilinear hyperbolic systems in 1-D case with small and decaying initial data as follows:
1. The Cauchy problem admits a unique global � solution for all� � � if and only if the system is weakly linear degenerate
(WLD).
2. If the system is not WLD and the corresponding index� is an integer� �, then for a large class of initial data, the first order
derivatives of the� solution to the Cauchy problem must blow up in a finite time with a sharp estimate on the life-span and
the formation of singularity is due to the envelope of Characteristics of the same kind.
This result impies all previous results obtained by F. John, T. P. Liu and L. H¨ormander and can be applied to the following
physical situations: the system of nonlinear elasticity, the system of 1-D gaz dynamics without convexity, the system of the
motion of elastic strings and the system of finite amplitude plane waves for hyperelastic materials such as Hadamard-Green
material, neo-Hookean material, St. Venant-Kirchhoff material and Odgen material etc.

References

1 Li Ta-tsien, Zhou Yi, Kong De-xing,Global classical solutions for general quasilinear hyperbolic systems with decay
initial data, Nonlinear Analysis, 28(1997), 1299-1332.

2 Li Ta-tsien, Kong De-xing,Breakdown of classical solutions to quasilinear hyperbolic systems, Nonlinear Analysis,
40(2000), 407-437.

3 Li Ta-tsien,Une remarque sur les coordonnées normalisées et ses applications aux systèmes hyperboliques quasi linéaires,
C. R. Acad. Sci. Paris, 331, S´erie I (2000), 447-452.

4 Kong De-xing, Li Ta-tsien,A note on blow-up phenomenon of classical solutions to quasilinear hyperbolic systems, to
appear in Nonlinear Analysis.
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Macroscopic limits of kinetic models revisited

Pierre Degond

UMR 5640 (CNRS-UPS-INSA), Université Paul Sabatier, 18, route de Narbonne, 31062 TOULOUSE cedex, France

Introduction

A fluid, a plasma or a solid-state device consists of a large number of particles which interact among themselves and with their
environment. The large scale (or macroscopic) behaviour of the system is, to a large extent, determined by the nature or the
elementary particle interactions at the microscopic level. The study of the interplay between the microscopic and macroscopic
worlds has been the subject of an intense research for more than a century (starting from the works of Boltzmann and Maxwell).
Recently, this field of research has received an increased interest driven by the quest for new models accompanying the devel-
opment of new technologies. In this talk, after an introduction to the field, we shall present some new developments in this area
and illustrate them by examples pertaining with space and plasma devices technologies.

Summary of the talk

We shall start with a basic introduction to kinetic models, which will constitute our microscopic level of physical description. In
a kinetic model, the state of the ensemble of particles is described by a phase-space particle density���� 	� ��, which describes
the number of particles at a given location�, with a given velocity	 at time�. The equation for� models how particles evolve,
subject to force fields and interactions among themselves or with their surrounding (obstacles, boundaries, other species of
molecules, radiation, etc). This leads to the so-called Boltzmann equation. Here, we shall mainly deal with particle interactions
with their surroundings.
The kinetic distribution function� is related with more conventional continuum (or macroscopic) variables, like the number
density���� �� or the temperature� ��� �� through an integration of� with respect to the velocity variable (velocity moments).
One central question is to try to deduce evolution equations for these variables from that of the distribution function. This
question has been solved, at least formally, for conventional models (like Euler, Navier-Stokes equations or Drift-Diffusion
equations). However, many mathematical questions remain unanswered and are the subject of an intense research activity.
Nevertheless, in this talk, we shall take another direction, and discuss how to extend these techniques in order to derive new
models. Indeed, new technologies using advanced fluid mechanics, solid-state or plasmas technologies require the design of
new physical models, the standard ones lacking of physical accuracy. The main reason for this discrepancy is a question of scale.
The continuum models are derived on the assumption that the scale of the system is much larger than the scale of microscopic
interactions. Many high technology devices have a smaller size, which is intermediate between what can be considered as a
macroscopic scale, and the microscopic scale of elementary particle interactions. This is the problem of mesoscale modeling.
We shall present an approach to derive mesoscale models. In most physical cases, the collision operator (the mathematical
object which describes the particle interactions) exhibits a multiscale behaviour: it forces the evolution of certain quantities to
be faster than other ones. A typical example is the interaction between electrons and ions in a plasma. Because of the mass ratio
(ions are typically��� to ��� times heavier than electrons), electron momentum is modified much faster than electron energy.
At large scales, one can consider that both momentum and energy will have relaxed towards those of the ions. However, on
shorter time or length scales, it is very likely that mean electron momentum will be close to that of the ions, but not the mean
energy.
When full relaxation towards thermodynamical equilibrium has occured (under the influence of collisions), the system is
amenable to a description by a reduced set of variables, namely the macroscopic ones (like density, or temperature). This
leads to the conventional continuum models. However, when incomplete relaxation has occured, which often happens at the
mesoscale, then modeling of the system requires to keep track of some of the microscopic variables, but not necessarily all
of them. For instance, in the above example, it is enough to keep track of the energy distribution function of the electrons,
but not of their angular velocity distribution since this will be isotropic as a result of collisions against the ions. In this way,
intermediate descriptions between the microscopic kinetic model and the macroscopic continuum models are obtained.
The aim of this talk will be to develop a mathematical apparatus which describes how such intermediate models can be obtained.
More specifically, we shall focus on the derivation of theSHE and Energy-Transport models (SHE is an acronym coming
from the physics literature for ’Spherical Harmonics Expansion, but no such expansion is needed in current derivations of
this model). Both are systems of diffusion equations which can describe various physical situations. Various examples and
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numerical applications will be borrowed from plasma device technology. As far as possible, the status of the mathematical
theory of these models will be precised.
This talk will present an overview of work done in collaboration with various authors: N. Ben Abdallah, J. P. Boeuf, F. Deluzet,
L. Garrigues, S. Gnieys, A. Jngel, V. Latocha, D. Levermore, B. Lucquin-Desreux, S. Mancini, A. Mellet, F. Poupaud, C.
Schmeiser, R. Talaalout, M. H. Vignal.

Heterogeneous Multiscale Methods

Bjorn Engquist

Princeton University, USA

In many applications the difference in temporal and spatial scales in the differential equations pose serious challenge to nu-
merical simulations. We shall describe a framework for computations on the macroscale but where the forces and fluxes
are computed on the microscale. This means that macroscale computations can be done without the knowledge of effective
equations but also without the high computational complexity of a full microscale simulation. Examples will be given from
homogenization theory for hyperbolic problems with oscillatory solutions.

Recent Progress in the Mathematical Analysis of Vortex Sheets

Sijue Wu

University of Maryland, USA

I will give an overview of the 2-D incompressible Euler equations with vortex sheet initial data and present some recent results
concerning the Birkhoff-Rott equation. One of the issues I will discuss is the behavior of vortex sheet solution in general after
the singularity formation.

Array imaging, time reversal andcommunications in random media

George C. Papanicolaou

Department of Mathematics, Stanford University, USA

I will present an exposition of the mathematical problems that arise in using arrays of transducers for imaging and commu-
nications in random media. The key to understanding their performance capabilities is the phenomenon of statistically stable
super-resolution in time reversal, which I will explain carefully. Signals that are recorded, time reversed and re-emitted by the
array into the medium tend to focus on their source location with much tighter resolution when there is multipathing because
of random inhomogeneities. I will explain how this super-resolution enters into array imaging and communications when there
is multipathing.
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High Order Finite Difference Methods for Multiscale Complex Compressible Flows

Björn Sjögreen

Royal Institute of Technology, Sweden

The classical way of analyzing finite difference schemes for hyperbolic problems is to investigate as many as possible of the
following points

� Linear stability for constant coefficients

� Linear stability for variable coefficients

� Non-linear stability

� Stability at discontinuities

We will build a new numerical method, which satisfies all types of stability, by dealing with each of the points above step by
step.
In addition to stability, there are other requirements for the numerical method. Such requirements can be

� Ability to accurately follow waves for long times.

� Ability to resolve turbulence, and other small scale phenomena.

� Efficient use of computational time.

� Efficient parallelization.

TVD schemes are too dissipative for turbulence simulations, and ENO schemes demand very high computational resource. We
will here describe methods which can meet the above requirements, but which do not belong to the class of standard shock
capturing schemes.
To assure a correct treatment of boundaries, we use finite difference operators having the so called summation by parts property
(SBP). To improve nonlinear stability (or stability for linear variable coefficients) of the numerical computations we employ
skew-symmetric splitting of the convective flux derivatives. As analternative/complement to splitting, we use linear artificial
dissipation of high order. Finally, for good resolution of shock waves we take the non-trivial artificial viscosity from a second
order TVD scheme, and insert it into the method only near discontinuities. In order to switch on this viscosity only where it is
needed, we use a special detection algorithm, based either on gradients or on wavelets.
This leads to the point of view, that inventing a new numerical method for hyperbolic conservation laws is no longer a problem
of coming up with a clever formula relating the new time level to the old one, but rather a problem of designing a system by
connecting known components together with switching mechanisms.
There is a large degree of freedom in how to connect the components. For example, the linear dissipation operator can be
evaluated as a part of the residual, or added as a post processing step. If a Runge-Kutta method is used in time, the dissipation
can be applied to each stage, or only at certain stages. There is also the choice of whether the linear dissipation is switched off
when the TVD-dissipation is switched on, or if it is applied in full strength at all grid points.
The numerical method will be demonstrated on several examples to show its possibilities. In all problems below we use as the
basic scheme, a sixth order centered difference operator, modified at boundaries to have the SBP property. Time integration
is done with the classical fourth order Runge-Kutta method. Additonal examples and a more detailed discussion of the results
will be given during the lecture.
Vortex convection
This problem serves as an illustration for non-linear stability, and long-time integration. The effects of entropy splitting and
artificial dissipation will be demonstrated.
The solution consists of as single vortex which is translated with uniform velocity periodically around in a square. The vortex
translation is an exact solution of the compressible Euler equations of gas dynamics. The solution is smooth for all times.
Furthermore, since the boundary conditions are periodic, we do not need to involve boundary modifications of the operators.
The problem will demonstrate in a very “clean” way, how numerical methods deal with non-linear effects.
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In aeroacoustics, the interest is to follow weak waves for long times. The requirements of good accuracy after long integration
times is very difficult to satisfy. Applications from rotorcraft machinery, typically require that a vortex is followed a distance
which corresponds to 300 – 1000 periods. In the computation of turbulence by direct numerical simulations, statistics of time
accurate computations are taken for a very long time as well.
The computations show that on a given grid, non-linear instabilities destroy the solution after 5 periods when the pure centered
scheme is used. This is illustrated in Fig. 1. With entropy splitting the break down comes after 60 periods instead, and the norm
of the entropy is decreasing all the way to break down. After introducing an eight order linear dissipation operator the solution
can be computed with accuracy up to around 200 periods. However, tuning of the dissipation strength is a very sensitive issue,
and will be discussed in some detail.
Compressible Viscous Shock/Shear/Boundary-layer Interactions
For this problem, we increase the complexity of the numerical treatment, by adding a low order dissipation term at the shock
waves that appear. The problem demonstrates benefits of high order accuracy.
The ideal gas compressible full Navier-Stokes equations with no slip BCs at the adiabatic walls are used. The fluid is at rest in
a 2-D box� � �� � � �. A membrane with a shock Mach number of��	� located at� � ��� separates two different states of
the gas.� � ��, the Prandtl number is���	, and the Reynolds number is 1000.
The solution is shown in Fig. 2. The small scale features in the solution has turned out to be very sensitive to the numerical
method used, unless the grid is very fine. In order to fully resolve the vortex structure, the 6th order method needed a grid of
8 million grid points in two space dimensions. Although strong shocks are present, TVD and ENO methods were not usable,
either due to insufficient accuracy or due to too long computational time.
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Figure 1: Density contours. Non-linear instability in vortex convection.
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Figure 2: Density contours. Small scale structure in shock tube problem.
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Boltzmann equation and conservation laws

Tai-Ping Liu

Stanford University, USA

Conservation laws, the Euler and Navier-Stokes equations for gas dynamics, are derived through Hilbert and Chapman-Enskog
expansions. With Shih-Hsien Yu and others, we devise a macro-micro decompositon to rewrite the Boltzmann equation into
fluid and non-fluid parts. The conservation laws become part of Boltzmann equation. The decomposition is useful for the
study of nonlinear waves. It has been used to verify the positivity of the Boltzmann shock profiles. The H-theorem has also its
fluid part representation. This natural representation is useful for the energy method. Our energy method yields a elementary
virification of the time-asymptotic stability of Maxwellian states. In this talk, we will start with basic properties of Boltzmann
equation and relates these to the theory for hyperbolic and viscous conservation laws.

High Order Numerical Methods for Convection Dominated PDEs

Chi-Wang Shu

Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, U. S. A.

In this talk we will present an overview of some recent progress in high order finite difference and finite volume weighted es-
sentially non-oscillatory (WENO) and finite element discontinuous Galerkin (DG) methods for solving hyperbolic conservation
laws and in general convection dominated PDEs, such as convection diffusion equations with small diffusion, and KdV type
equations with small dispersion.
Among these three methods, the finite difference WENO method is the simplest to implement and the fastest in running time for
multi-dimensional problems. Finite difference WENO schemes are available for orders of accuracy up to 11 (or even higher),
but in most applications the fifth order version is a good choice. The method is a “blackbox” with no parameters to tune, and
is extremely stable for strong shocks. It is also easy to implement the method on parallel machines with excellent parallel
efficiency. The method is suitable especially for problems involving both shocks and complex smooth region structure in the
solution. It has however very strong requirements on the smoothness of the meshes, hence is suitable only for problems on
either rectangular geometry or domains covered by smooth curvilinear coordinates.
After a brief overview of the method, we will talk about the following recent progress: (1) Resolution study of using the method
with different orders of accuracy on problems with discontinuities as well as complex smooth region structures. The double
Mach flow problem and the Rayleigh-Taylor instability problem are used as examples. The conclusion is that, the ninth order
WENO scheme uses only half the number of points in each direction to obtain a comparable resolution (by “eye-ball norm”)
comparing with a fifth order WENO scheme, indicating that it does pay to use higher order methods for such problems. This is
a joint work with Jing Shi and Yongtao Zhang; (2) Multi-domain finite difference WENO simulations. This is for the purpose
of relaxing the requirement that the mesh be smooth everywhere. The computational domain is covered by several slightly
overlapping rectangular domains and WENO interpolation with comparable order of accuracy to transfer information between
subdomains. Numerical study indicate that the method is “essentially conservative”, meaning that the conservation error goes
to zero with a mesh refinement, even for solutions with very strong shocks. The inter-domain interpolation is also very stable
when shocks pass through the subdomain boundaries, and uniform high order accuracy is maintained. This is a joint work with
Kurt Sebastian. (3) Simulations of the jet problem in astrophysics. This is a joint work with Carl Gardner, Youngsoo Ha and
Anne Gelb.
The finite volume WENO method is based on the same designing principles as the finite difference version in terms of the
mechanism to achieve non-oscillatory solutions, but it is based on an integral version of the PDE. The finite volume WENO
method is applicable to essentially arbitrary geometry and does not require any smoothness of meshes. Hence it is very suitable
for the situation of complex geometry and adaptive computation. However, it is much more costly for multi-dimensional
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problems. After a brief overview of the method, we will talk about the recent joint work with Jing Shi and Changqing Hu on
treating negative linear weights, which arise for high order finite volume WENO schemes.
The discontinuous Galerkin method is very similar to the finite volume WENO method. It is based on the same integral
version of the PDE. The only difference is that, instead of relying on a reconstruction from cell averages to obtain a high
order accuracy approximation as in finite volume WENO method, the DG method evolves all the degrees of freedoms for a
high order polynomial in each cell, hence no reconstruction is needed. This certainly saves the reconstruction time but on the
other hand increases the storage requirement as well as evolution time for all these degrees of freedoms. DG method relies on
total variation bounded (TVB) limiters to control numerical oscillations for solutions with shocks. DG methods are especially
suitable for parallel implementations and adaptivity, including both� adaptivity and� adaptivity (varying orders of accuracy in
different cells, for which finite difference methods are difficult to do).
After a brief overview of the method, we will talk about the following recent progress: (1) Stable and accurate DG formulation
for problems containing higher derivatives but are still convection dominated, such as convection diffusion equations with small
diffusion coefficients or KdV type equations with small dispersions. This is a joint work with Jue Yan. (2) A post-processing
technique which can effectively double the order of accuracy for the method on locally uniform meshes, with small extra
computational cost. This is joint work with Bernardo Cockburn, Mitch Luskin and Endre Suli, with Jennifer Ryan, and with
Jue Yan.

High-Resolution Methods for Wave Propagation in Heterogeneous Media

Randall J. LeVeque

University of Washington, USA

Wave propagation problems in heterogeneous media are modeled by hyperbolic systems of equations with spatially-varying
coefficients or flux functions. These problems arise in numerous applications involving the propagation of acoustic, elastic, or
electromagnetic waves, for example. I will discuss the use of high-resolution finite volume methods for such problems, and the
development of approximate Riemann solvers for nonlinear examples. I will also present some results on wave propagation in
nonlinear periodicly layered media, where dispersive effects arising from the heterogeneity lead to the appearance of solitary
waves and perhaps solitons.
Finite volume methods based on Riemann solvers are a natural choice for such problems. Each grid cell is assumed to consist
of a single material and the Riemann problem at the interface between two grid cells is solved by determining the waves prop-
agating into each cell, based on the consituitive relations describing the two materials. This Riemann solution can be directly
interpreted in terms of reflection and transmission of propagating waves. These methods, when combined with appropriate
wave limiters, can yield high-resolution results on problems with sharp interfaces. Multidimensional generalizations can also
deal with problems where interfaces are not aligned with the grid.
For nonlinear problems (e.g., nonlinear elasticity in a heterogeneous medium), the exact Riemann solution may not be easy to
compute. I will discuss a general approach to developing approximate Riemann solutions for generalized Riemann problems
having a discontinuity in the flux function as well as in the data. This general approach to solving conservation laws with
spatially varying flux functions is based on decomposing the flux difference into eigenvectors of an approximate Jacobian
matrix. This approach can also be related to a generalization of relaxation schemes.
These methods have been applied to nonlinear elasticity equations in a rapidly-varying periodic layered medium and yield
some surprising results. For some choices of nonlinear material properties, a pulse breaks up into solitary waves that appear to
interact as solitons.
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Nonlinear Boundary Layers of the Boltzmann Equation

Seiji Ukai�

Department of Applied Mathematics, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan

Tong Tang and Shih-Hsien Yu

Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong

We discuss the half-space problem of the Boltzmann equation,��	
���� � ���� � �� � � ������ � � �� �
� ��� � ������ �� � �� ���� ��� � �� �

� 	 ����� ��	��� � � �� �
(1)

where the unknown� � � ��� �� is the mass density distribution of gas particles at position� � ����� with velocity � �
���� ��� ��� � �� , while �� is the�-component of� and�, thecollision operator, is a quadratic integral operator in� whose
integral kernel is determined by the interaction potential of the gas particle. So far, our result is proved only for the hard ball
gas, but the same result seems to hold for general cutoff hard potentials.
The second equation in (1) is the Dirichlet boundary condition at the boundary� � �. The Dirichlet data� ���� is assigned only
for incoming particles from the boundary, i.e. for� � � �. Physically this is natural because we can control only the incoming
distribution but not the outgoing(�� � �) distribution. Mathematically, this is a well posed boundary condition. It is known that
assigning the outgoing distribution makes the problem (1) ill-posed.
The third equation of (1) specifies the far field. This is the Dirichlet boundary condition at� � �, and is assigned for all
� � �� . Then, two remarks are to follow. One is that the far field�� cannot be arbitrary but must be a zero of�, that is, a
Maxwellian,

����� �
��

�� ������
���

�
�� � ���

���

�
� (2)

and�� � �� �� � ������ ����� ����� � �� , and�� � � are the only quantities which we can control. By a shift of
��� ��, we can assume without loss of generality that���� � ���� � �, and then, the sound speed and Mach number of the
equilibrium state described by (2) are given by

!� �



�

	
��� �� �

����

!�
�

respectively. The other remark is that since the outgoing distribution at� � � (i.e. for � � � �) is assigned, the problem (1)
may become ill-posed and hence only conditionally solvable. Indeed, we will show that the solvability condition changes with
�� as follows.

(a) If �� � ��, the problem (1) admits a unique smooth solution for any� � sufficiently close to��.

(b) If �� � ��, such a solution exists only for�� close to�� and satisfying certain admissible conditions. The set of
admissible�� forms a smooth manifold whose co-dimension is 1 for the case� ��� � ��, 4 for � ��� � � and 5 for
�� � �, respectively.

The problem (1) arises in the theory of the kinetic boundary layer, the analysis of the condensation-evaporation and so on.
The corresponding linearized problem has been studied by many authors, e.g. [2],[3],[4],[5], mainly in the context of the
classical Milne and Kramers problems and hence with auxiliary conditions on boundary fluxes. In [6], an existence theorem was
established for the nonlinear case with the specular boundary condition but the method of proof does not apply to other boundary
conditions, especially the Dirichlet condition. Recently, nonlinear existence and stability theorems have been established for
the discrete velocity model of the Boltzmann equation [7], [9]. Our result is the first existence theorem on the full nonlinear
problem. Furthermore, it provides a new aspect of the linearized problem and also a partial proof of the numerical results
established in [1], [8], on (1) with�� fixed to be the standard Maxwellian. The talk will include the details on these points as
well as the idea of proof and the stability of our stationary solution.
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3 Abstracts of invited speakers

On unique continuation for the nonlinear Schrödinger equations

Gustavo Ponce

UC Santa Barbara, USA

Joint work with Carlos E. Kenig and Luis Vega

This talk is concerned with uniqueness properties of solutions of nonlinear Schr¨odinger equation of the form

"#������ � ��� �� � �� ��� �� � �� � �� (1)

More precisely, we shall consider the following question :
Q : Let��� �� be solutions of the equation (1) with��� �� � �� � ��� ��, belonging to an appropriate class$ and such that for
some domain
 � �

� � 
 �� �
�

����� �� � ����� ��� and ����� �� � ����� ��� �� � 
� (2)

Is �� � ��?
Before stating our results, we shall comment on previous related results.
For the case of the%-generalized KdV

#��� #���� �	#�� � �� ��� �� � � � �� % � ��� (3)

it was shown in [4] that if
� � ���� �� � &����� � ����� �� � &������ (4)

are real solutions of the equation (3) such that for some' � �
���� �� � ���� �� � �� �� � '� ��� � '�� (5)

then� � �.
Concerning the equation (1), in [10] B-Y. Zhang answered question Q in the case

� � �� � � ����� � � �� �� � �� 
 � ���� '� � or
 � �'����� (6)

for some' � �. The proof in [10] is based on the inverse scattering theory (IST). It is not clear to us if in the case (6) the IST
can be applied to obtain the desired result for any pair of solutions.
Other unique continuation results have been obtained under analyticity assumptions on the data, and under appropriate assump-
tions on the form of the non-linearity

� � � ��� ����������� (7)

see [3] and references therein, (since the equation for the difference of two solutions does not necessarily preserve the form of
the non-linearity, it is not clear that such results extend to pairs of (analytic) solutions), or under analitycity assumptions on the
non-linearity� , without analyticity of the data, but under the stronger assumption that���� ��
� �� is compact for all� � ��� ��,
(see [1]).
Our main result is the following.

Theorem 1

Let ��� �� � ���� �� � &���� ��, � � ('������� �� be two solutions of the equation

"#������ � ��� �� � �� (8)

where� �  	�
���� � � � with
� ��� �� � !��
� � �
��� ��� �� � �� (9)
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and

�� ��� �� � !��
��� � �
����� ��� �� � �� (10)

If there exists� a convex cone strictly contained in a half-space such that

����� �� � ����� ��� ����� �� � ����� ��� �� �� � � ��� �� � �� � (11)

Then�� � ��.

Remarks

a) In the one dimensional case our assumption on the complement of�� � �, i.e. �� � ���
� � 
 reduces to a semi-line�'���

(or ���� '�). Also we observe that the class of nonlinearities� considered is very general. In particular, it does not contain
any analyticity hypothesis on� .
b) In contrast to our approach in [4], here we do not rely on estimates of the type found in [5], [6]. In fact, the proof given below
for Theorem 1 can be slightly modified to obtain a different proof of the results in [4] without using the results in [5], [6].
c) As in [4], we need an appropriate local Carleman estimate. In [4], for the case of the generalized KdV equation, we used
a unique continuation result due to Saut-Scheurer [7]. For the equations considered here, we will apply the local unique
continuation results of V. Isakov [2].
d) We do not know if the result of Theorem 1 is still valid for the case where� �� is just a semispace. This question seems to be
related to problems considered in [11].
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Asymptotic behaviour of semiconductor models

Hailiang Li, Peter Markovich� and Shu Wang

Institute of Mathematics, University of Vienna, A-1090 Wien, Austria

We review recent results on the asymptotic behavior of semiconductor models including hydrodynamical systems and drift-
diffusion models. The derivation of the mathematical models from the semi-classical Boltzmann equation in terms of the
moment method is highlighted, and the mathematical analysis of the large- time-asymptotic behavior of both classical solutions
(for small data in)- dimensions) and entropy weak solutions (small shock strength, in one dimension) is given on spatially
bounded domains or whole space for hydrodynamical equations. The quasi-neutral limit of the drift-diffusion system is then
carried for initial data with uniformly bounded entropy and without. Finally, open problems in the field are discussed.

Nonreflecting Boundary Conditions for Wave Propagation in Unbounded Media

Marcus J. Grote

University of Basel, Switzerland

The simulation of waves in unbounded media arises in many applications from acoustics, electromagnetics, or elasticity. Typi-
cally, the local phenomenon of interest contains complicated geometric features, inhomogeneity, and possibly nonlinear effects.
Modern numerical methods can handle complicated geometry, inhomogeneous media, and nonlinearities. However, they re-
quire an artificial boundary�, which truncates the unbounded exterior domain and restricts the region of interest to a finite
computational domain�. It then becomes necessary to impose a boundary condition at�, which ensures that the solution in�
coincides with the restriction to� of the solution in the unbounded region. Usually various approximate boundary conditions
are used, such as the Bayliss-Turkel [1] or Engquist-Majda [2] boundary conditions, which produce some spurious reflection.
To eliminate spurious reflection from the artificial boundary, we have devisedexact nonreflecting boundary conditions for the
wave equation [3,4], Maxwell’s equations [5], and the elastic wave equation [6,7]. These boundary conditions arelocal in time
and involve only first derivatives of thesolution. Therefore, they are easy to use with standard finite difference or finite element
methods. Numerical examples demonstrate the improvement in accuracy over standard methods.
The accurate simulation of waves at high frequencies or the detailed representation of small scale geometric features requires
the use of adaptive mesh strategies. Then, explicit time integrators become prohibitively expensive because of the stringent CFL
condition; hence, implicit methods, such as Crank-Nicolson, are typically used, yet they require the solution of a large linear
system of equations at every time step. Because of the nonreflecting boundary condition, this linear system is no longer sym-
metric, unlike the situation in bounded domains. However, it is possible to reformulate the discretized equations by decoupling
the additional unknowns needed on the artificial boundary from the interior unknowns [8]. As a consequence the symmetry
and positive definiteness of the linear system are restored while the additional computational effort due to the nonreflecting
boundary condition becomes negligible.
For multiple scattering problems the use of a single artificial boundary surrounding all scatterers involved becomes prohibitively
expensive in memory requirement. Instead, it is necessary to enclose each scatterer within a single separate computational
domain. Clearly waves that leave a certain domain,��, will impinge upon a different domain,��, at later times; hence they
are no longer purely outgoing waves. To transfer the time-retarded information from� � to �� an analytical representation of
the solution in the unbounded medium becomes necessary. This analytical representation is inherent to the exact nonreflecting
boundary conditions described above and thus naturally leads toexact transmission boundary conditions for multiple scattering
problems.
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Taxis Equations from the Diffusion Limit of Transport Equations

Hans G. Othmer

School of Mathematics, University of Minnnesota, Minneapolis, MN 55455

There are two major approaches used to describe the motion of biological organisms: (i) a space-jump process in which
individuals move by random jumps in space, and (ii) a velocity-jump process in which discontinuous changes in the speed or
direction of an individual are generated by a stochastic process. The former leads to a renewal equation in which the kernel
governs the waiting time between jumps and the redistribution after a jump, and these determine the type of partial differential
equation that describes the asymptotic behavior of the evolution. In this talk we discuss velocity-jump processes, and in
particular, the diffusion approximation to the transport equation

#

#�
���� 	� �� � 	 
 ����� 	� �� � �*���� 	� �� � *

�
�

� �	� 	������ 	�� ��)	� (1)

describing such a process. Here���� 	� �� denotes the density of particles at spatial position� � � � � �, moving with velocity
	 � � � �� at time� � �. Here* is the (constant) turning rate and��* is a measure of the mean run length between velocity
jumps. In general* may be space dependent and depend on internal and external variables as well. The turning kernel� �	� 	 ��
gives the probability of a velocity jump from	 � to 	 if a jump occurs, and implicit in the above formulation is the assumption
that the choice of a new velocity is independent of the run length. The turning kernel may also be space dependent. When
applied to the bacteriumE. coli, the kernel� includes a bias, and the turning frequency must depend on the extracellular signal,
as transduced through the signal transduction and motor control system. When applied to the amoeboid cellDictyostelium
discoideum, which uses both run length control and taxis, both the turning kernel and the turning rate must depend indirectly
on the extracellular distribution of the signaling substance.
The backward equation that corresponds to (1) has been derived from the underlying stochastic velocity-jump process by
Stroock to describe the motion of bacteria, and in a more general framework by Papanicolaou. In this talk we discuss the
general assumptions on the turning kernel� which ensure that the turning operator defined by (1) is positive in an appropriate
sense, and the positivity in turn guarantees that a diffusion limit of the jump process exists. We introduce the parabolic scaling
and formally derive the parabolic limit equation. Since the parabolic limit is the outer solution in singular perturbations terms,
these higher approximations depend only on the initial values for the parabolic limit problem. We derive several equivalent
conditions on the turn angle distribution under which the diffusion matrix is a scalar multiple of the identity, and show that the
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diffusion constant depends on the second eigenvalue of the turning operator. We shall also discuss signal-dependent turning
rates and redistribution kernels, and give an example of an order one, anisotropic perturbation of the redistribution kernel that
nonetheless leads to a scalar diffusion matrix. We introduce several different classes of��+� perturbations of the turning kernel
and turning rate and show how the chemotactic velocity and sensitivity are obtained from more fundamental and measurable
properties of the motion. This leads to a variety of different types of signal dependence of turning rates and kernels for which
the jump process is asymptotically described by the Patlak–Keller–Segel–Alt chemotaxis equation. We also discuss an open
problem connected with the incorporation of internal dynamics that describe the signal transduction process, and in particular
give examples in which diffusion limits do not exist.
Finally, we shall discuss some new computational techniques that couple the direct use of Monte Carlo methods with a large-
time-step algorithm to produce an efficient scheme that can be used when the macroscopic equations are not known.

Spectral Stability of Small Shock Waves

Heinrich Freist¨uhler�

Max-Planck-Institut für Mathematik in den Naturwissenschaften, D-04103 Leipzig, Germany

P. Szmolyan

Institut für Angewandte und Numerische Mathematik, Technische Universit ät Wien, A-1040, Austria

In this talk, spectral stability of small amplitude shock waves associated with simple modes in systems of viscous conservation
laws is shown to be a direct consequence of the spectral stability of shock waves in scalar viscous conservation laws. This
relationship is established through a precise description of the behaviour of Evans functions in the zero amplitude limit. The
eigenvalue problem is studied via flows it induces on suitable Grassmann manifolds. An appropriate scaling allows to exploit
the slow-fast nature of the problem. The stability theorem covers nonlinearities of arbitrary finite order, extending previous
results on the second order (“genuinely nonlinear”) case.
The applicability of the method is not restricted to the abovementioned specific situation.

Regularity in kinetic formulations via averaging lemmas

Pierre-Emmanuel Jabin

Départment de Mathématiques et Applications, Ecole Normale Supérieure

This talk represents joint works with Benoit Perthame, DMA, ENS and Luis Vega, University of Bilbao, Spain.

A new class of averaging lemmas is developed, they are directly motivated by the question of regularity for different nonlinear
equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for
systems like� � 	 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also
allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws.
The new ingredient here is to use velocity regularity for the solution to the transport equation under consideration. The proof is
based on a decomposition of the density and the�-method of real interpolation but it can be done completely in the real space
without any use of Fourier transform.
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Two-Dimensional Riemann Problems: Analysis of Solution Structures

SunčicaČanić

Department of Mathematics, University of Houston, Houston, Texas 77204-3476

In this talk a brief overview of problems and methods used to study the structure of solutions for a class of two-dimensional
Riemann problems will be presented. The speaker will focus on the analysis of models arising in gas dynamics (the steady
and the unsteady transonic small disturbance equations, the nonlinear wave equation) especially on the treatement ofnonlinear
wavesand their interaction with a nontrivial subsonic region.
Since the interaction between the supersonic and subsonic flow occurs either through a transonic shock, through a rarefaction
or via a sonic curve, different techniques need to be used to analyze the solution in each case. An overview of the techniques
and a comparison between the methods will be given.
In the end, it will be shown how these methods can be used in the treatement of nonlinear waves’ structures in compressible
Euler equations (isentropic or adiabatic) where linearly degenerate modes are present. The reduced (self-similar) system is of
mixed (elliptic-hyperbolic) type (density satisfies a degenerate elliptic equation, whereas vorticity satisfies a transport equation).
In the low-velocity regime the mixed system decouples (the nonlinear wave equations) and the structure of both the nonlinear
and the linearly degenerate waves can be analyzed. A similarity between the structure of the decoupled system and the fully
coupled equations (arising from the compressible Euler equations) will be emphasized thereby hinting how the techniques
presented in the first half of the lecture will be useful in the analysis of the structure of self-similar solutions of the full set of
compressible Euler equations.
Collaborators: Barbara Lee Keyfitz, University of Houston, Eun Heui Kim, CalState Long Beach, Gary Lieberman, Iowa
State University, Dragan Mirkovic, University of Houston.

Adjoint equations in the presence of shocks

Mike B. Giles

Oxford University, U.K.

Motivated by applications in design optimisation and error analysis, this paper is concerned with the formulation and discreti-
sation of adjoint equations when there are shocks in the underlying solution to the original nonlinear hyperbolic p.d.e.
The theory is presented for the model problem of a scalar unsteady one-dimensional p.d.e. with a convex flux function. It is
shown that the analytic formulation of the adjoint equation requires the imposition of an interior boundary condition along
any shock. Looking ahead to three-dimensional flow applications, it would be extremely difficult in practice to apply such
interior boundary conditions in a numerical approximation. The question then is whether it is possible to construct a convergent
numerical approximation to the adjoint equation without explicitly enforcing this interior boundary condition.
An adjoint discretisation is defined by requiring the adjoint equations to give the same value for the linearised functional as a
linearisation of the original nonlinear discretisation. It is proved that applying this technique to a class of explicit discretisations
of the original p.d.e. yields a consistent approximation of the adjoint p.d.e. if the original solution is smooth. If the discretisation
is also stable then the computed adjoint solution will converge to the analytic solution.
To investigate whether convergence is obtained when there is a shock, numerical results are obtained for the Burgers equation
with the initial and boundary conditions which yield the solution shown in Figure 1.
Figure 2 shows the analytic adjoint solution and three numerical approximations at time�� ���. All four correspond to the
linearisation of an output functional which is the integral of a function of the nonlinear solution at the final time� � ���.
Although the discontinuities are still a bit smeared, the numerical solutions are reasonably grid-converged, and it is evident
that the first order Riemann solver and the central difference approximation with a very low level of numerical smoothing
both yield results which differ significantly from the analytic solution in the region������ ���. Only the central difference
approximation with a high level of smoothing gives a computed adjoint which is in good agreement with the analytic solution.
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Figure 1: Characteristics with shock forming along�����
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The paper explains why it is generally the case that a convergent approximation requires that the number of grid points across
the shock must increase as the mesh spacing and timestep are reduced. However, the numerical evidence suggests the numerical
error decays exponentially with the number of points across the shock, so very accurate results can be obtained with just a few
points in the shock.

Implicit-Explicit Runge-Kutta schemes for hyperbolic systems with relaxation

Lorenzo Pareschi

Department of Mathematics, University of Ferrara, ITALY

Several physical phenomena of great importance for applications are described by hyperbolic systems with relaxation terms,
for example we mention discrete kinetic theory of rarefied gases, hydrodynamical models for semiconductors, viscoelasticity,
linear and nonlinear waves, multiphase and phase transitions, radiations hydrodynamics, etc.
In one space dimension these systems have the form

#�, � #�� �,� �
�

-
.�,�� � � �� (1)

where, � ,��� �� � � , � � � 	 �
 , the Jacobian matrix� ��,� has real eigenvalues and admits a basis of eigenvectors

�, � � , and- � � is is calledrelaxation parameter.
The development of efficient numerical schemes for such systems is challenging, since in many applications the relaxation
time varies from values of order one to very small values if compared to the time scale determined by the characteristic speeds
of the system. In this second case the hyperbolic system with relaxation is said to be stiff and typically its solutions are well
approximated by solutions of a suitable reduced set of conservation laws called equilibrium system [4].
Usually it is extremely difficult, if not impossible, to split the problem in separate regimes and to use different solvers in the stiff
and non stiff regions. Thus one has to use the original relaxation system in the whole computational domain. The construction
of scheme that works for all ranges of the relaxation time, using coarse grids that do not resolve the small relaxation time,
has been studied mainly in the context of upwind methods using a method of lines approach combined with suitable operator
splitting techniques [3, 7] and more recently in the context of central schemes [8, 9].
A very general and commonly used approach to the solution of this problem is based on splitting methods. A simple splitting
consists in solving separately a non-stiff system of conservation laws without source

#�, � #�� �,� � �� (2)

applying an explicit scheme and, using an implicit scheme, a stiff system of ODEs for the source terms

#�, �
�

-
.�,�� (3)

This splitting is restricted to first order accuracy in time, nevertheless its simple structure presents several advantages. In fact
some properties of the solution are maintained (positivity, TVD property, other physically relevantproperties), consistency with
the equilibrium system in the limit of small relaxation times can be easily checked (asymptotic preservation) and in many cases
the implicit scheme for the stiff system of ODEs can be explicitly solved thanks to some conservation properties of the system.
Higher order splitting can be constructed using suitable combinations of the two previous steps [6, 11]. Unfortunately all these
higher order extensions present a severe loss of accuracy when the source term is stiff [7]. Second order Runge-Kutta splitting
which maintain the accuracy in the stiff limit have been constructed recently [3, 7].
In this talk we will present a unified approach of Runge-Kutta splitting schemes which provides a framework for the derivation
of more general, accurate and efficient schemes. In particular, we show that these schemes are strictly related with the recently
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developed implicit-explicit (IMEX) Runge-Kutta schemes [1, 2]. An IMEX Runge-Kutta scheme consists of applying an
implicit discretization to the source terms and an explicit one for the flux in the form

, ��� � ,� � �

����
���

�'��#�� �, ���� � �

��
���

'��
�

-
.�, ����� (4)

,��� � ,� � �

��
���

�/�#�� �, ���� � �

��
���

/�
�

-
.�, ����� (5)

The matrices�� � ��'���, �'�� � � for 0 � " and� � �'��� are1 � 1 matrices such that the resulting scheme is explicit in� ,
and implicit in..
Since the simplicity and efficiency of solving the algebraic equations corresponding to the implicit part of the discretization at
each step is of paramount importance it is natural to consider diagonally implicit Runge-Kutta (DIRK) schemes for the souce
terms ('�� � �, for 0 � ").
We show that most of the splitting schemes can be written in the formalism of IMEX Runge-Kutta schemes, where the implicit
solver is a DIRK scheme. Similarly it is easy to write an IMEX Runge-Kutta scheme in splitting form. In particular, we derive
general conditions that guarantee the asymptotic preserving property, i.e. the consistency of the scheme with the equilibrium
system, and show that the implicit step can be solved, in many cases, every time we use a DIRK scheme. Accuracy, stability
and TVD properties of these schemes are studied both analytically and numerically. Finally several applications of second and
third order schemes obtained using ENO and WENO space discretizations [5] will be presented.
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Critical Thresholds and Conditional Stability for Euler Equations and Related Models

Hailiang Liu

Department of Mathematics, University of California, Los Angeles, CA 90095-1555

When dealing with the questions of time regularity for Euler-related equations, one encounters several limitations with the
classical stability analysis. Among others issues, we mention that
(i) the stability analysis does not tell us how large perturbations are allowed before losing stability, say with the incompressible
Navier-Stokes equations;
(ii) the steady solution may be only conditionally stable due to the weak dissipation in the system, say in certain Euler-Poisson
models.
In order to address these difficulties we propose a new notion of critical threshold (CT), which serves to describe the conditional
stability for a class of Euler type equations.
We first discuss this remarkable CT phenomena associated with the Euler-Poisson equations, where the answer to questions
of global smoothness vs. finite time breakdown depends on whether the initial configuration crosses an intrinsic,2��� critical
threshold.
We investigate various one-dimensional problems with or without forcing mechanisms as well as multi-dimensional isotropic
models with geometrical symmetry. The critical thresholds for these essentially 1-D problems are shown to depend on the
relative size of the initial velocity slope and the initial density.
We then extend our discussion of the CT phenomena for multi-dimensional systems of the form# �� � � 
 �� � � , which
show up in different contexts dictated by the different modeling of� ’s. Here we utilize a novel description for the spectral
dynamics of the (possibly complex) eigenvalues,* � *���� which are shown to be governed by the Ricatti-like equation
*� � � 
 �* � *� � �3���4�. Restricting attention to restricted Euler-Poisson equations driven by localized forcing we
identify the set of their����� global invariants, which in turn yield (i) sufficient conditions for finite time breakdown, and (ii)
characterization of a large class of 2-dimensional initial configurations leading to global smooth solutions.
Moreover, the critical thresholds for 2D REPs are shown to depend on the relative size of three quantities at initial time: density,
divergence and the spectral gap*� � *�.
This lecture reflects recent joint investigations with Professor Eitan Tadmor.

Patch Dynamics for Multiscale Hyperbolic PDEs

James M. Hyman�

Los Alamos National Laboratory

Ioannis G. Kevrekidis

Princeton University

C. W. Gear

NEC Research Institute

There are important systems that need to be modeled on relatively long time or space scales, but the dynamics can only be
advanced on short time or space scales. These systems with multiple, separated scales include coupling molecular dynamics
with the macroscale behavior of a material or using a Boltzmann particle model to predict large scale patterns in a fluid flow.
We construct an efficient approach to bridge these scales by using locally averaged properties of the small time and short
spatial scales to advance and predict the dynamics of the long time and space scale dynamics. First we advance an underlying
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microscale model for a short time in small regions, called a patches, defined at the nodes on a grid covering a macroscopic
spatial region. The microscale boundary conditions at the edges of the patches are used for the patches to communicate with
each other across the macroscopic spatial gaps between the patches. We do not assume that there is an explicit evolution
equation for the long time or spatial scales, but we do assume that the solution of the macroscale dynamics is smoothly varying
in the gaps between the microscale patches being modeled. We construct a bi-directional map between the micro and macro
scales, the map to reconstructing the microscale field from the macroscale only preserves the statistical properties of the field.
Because this map between the fine and coarse scales is not fully invertible, the approach is only appropriate where the coarse
field representation is sufficient to address the questions. When the underlying model is based on conservation laws, then the
patch method must be modified to be fully conservative when material in the gaps between the patches is not been modeled.

Wave Interactions and Numerical Approximation for Two–Dimensional Scalar Conservation Laws

Matania Ben–Artzi

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel

This talk is concerned with the approximation of solutions to multidimensional scalar conservation laws by high resolution
numerical schemes. Our approach here is based on the comparison of the numerical approximation with analyticsolutions. Such
solutions are obtained in two cases, to be discussed in detail: The Burgers equation and the Guckenheimer equation. In both
cases, the “Riemann–type” problems to be studied are genuinely two–dimensional, leading to non–trivial wave interactions,
which nonetheless can be obtained analytically. As already pointed out by Lindquist , “ These solutions to two–dimensional
Riemann problems also supply a set of problems for testing of finite difference schemes. The richness of structure of these
solutions lends itself to this purpose”. We note right away that a nonlinear one–dimensional conservation law can be “rotated”
in the ��� �� plane, thus forming a “two–dimensional” problem. This, however, cannot lead to the kind of wave interactions
discussed here, and will not be considered (even though the consideration of such problems is important in testing the basic
features of a numerical scheme).
There are three ingredients in the present talk: (a) Analytic solutions involving wave interactions due to the two–dimensional
geometry. (b) A high–resolution scheme for one–dimensional conservation laws. (c) A “spatial splitting” technique which
enables us to convert the one–dimensional scheme into a two–dimensional one. The point here is to try and study the “mutual
interaction” of these ingredients. In particular, while (a)–(b) seem to be well studied, the interaction between (b) and (c) is
not yet fully understood . This interaction is influenced by (at least) two factors, namely, the adaptivity of the particular one–
dimensional scheme to “spatial splitting” and the geometric complexity of the problem. The latter includes also the interplay
between a Cartesian grid and strong curvilinear waves .
We consider the initial value problem (IVP) for the equation,

�� � ����� � 5���� � �� (1)

���� �� �� � 6��� ��� ��� �� � ��� (2)

where���� �� �� is a real (scalar) function and����, 5��� are real smooth flux functions.
A “Riemann type” problem for (1) is the IVP where6��� �� is finitely valued and homogeneous of order zero,

6��� �� � ���7�� 7 � �� ��� ���� ��!"�#
�

�
�� (3)

and���7� is piecewise constant in��� � � with finitely many jumps.
Recall that, for any initial function6 � ������, there exists a unique (weak) solution���� �� �� to (1)–(2). The entropy
condition (which includes already the fact that� is indeed a weak solution) can be described as follows.
Let,��� be a real convex function and� ��� and8��� functions such that

� ���� � , ����� ����� 8���� � , ����5����� (4)
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Then, in the sense of distributions,
,���� � � ���� �8���� � �� (5)

The initial value (2) is attained in the sense that

���� �� ��	 6��� �� in ���������� as�	 ��� (6)

When the initial data is given by (3), the uniqueness implies that the solution is “self–similar”, namely,

���� �� �� � ������ ���� ��� � � �� (7)

The solutions to the Riemann–type problem (1)–(3) display a rich variety of wave patterns, some of which are far from being
“evident”. Our intention in this talk is to show that this variety can serve as a basis for the investigation of “fine points and
subtleties” pertinent to high resolution schemes. We first discuss the detailed structure of the solutions. For the Burgers equation
we have���� � 5��� � �

��
�. Even in this rather elementary case, we demonstrate various possibilities of wave interactions.

Next we describe the solution for the “Guckenheimer equation”, where���� � �
��
� and5��� � �

��
�.

This equation was first studied by Guckenheimer (1975) . Here we take the initial data

���7� �

��	
�� � � 7 � ��

� �
�� ��

� � 7 � ��
� ���� ��

� �  � � �
(8)

The structure of the soluition can be described in the (� � ���� 9 � ���) plane as follows. Outside of a large disk we obtain
three shocks:
(a) A shock emanating from� � � and moving at speed�� in the positive� direction (note that�� is concave on���� ��). In the
��� 9� plane it is given by9 � �

� .
(b) A standing shock along� � � �9 � ��.
(c) A shock emanating from the line�� � � �. In the��� 9� plane it is given by� � 9 � �

 .
The interaction of these three shocks in a disk around��� �� form a very complex wave pattern, which can be described as
follows (see attached Figure ).
At a certain point��� :�, � � : � �

� , the shock (b) bifurcates into a centered rarefaction wave (CRW) whose leading charac-
teristic is a sonic shock, across which the solution	 jumps from�� to a (still unknown) value�	. Then	 increases across the
rarefaction from�	 to �. The rarefaction wave modifies shock (c) . We show numerical results based on Godunov’s (first-order)
scheme and on the GRP (Generalized Riemann Problem) second-order scheme. The latter scheme is actually an ”algorithm”,
allowing various analytic extensions of the Godunov scheme (such as MUSCL, which results from a suitable approximation of
the solution to the generalized Riemann problem).
Next, we show some results of simulations of duct (nozzle) flows, performed by the GRP scheme. All the above results are
included in the upcoming monograph,
M. Ben-Artzi and J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics (Cambridge Univ. Press,
2002).

Stability of Weak Oblique Shock Front

Shuxing Chen

Center of Mathematical Sciences of Zhejiang University and Institute of Mathematics, Fudan University

When a stationary supersonic flow passes a wedge with its angle less than a critical value, there will be a shock front attached
at the head of the wedge. According to the Rankine-Hugoniot condition and the entropy condition two shocks are possibly
appeared. However, only one of them is physically admissible. By the analysis of the formation and the global construction of
shock, as well as the asymptotic behavior of the same supersonic flow passing a modified wall, we find that only the weak one
is stable. Therefore, such a stability can be regarded as a criterion to single out a physically reasonable solution together with
the entropy condition.
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The Riemann function and oscillations in hyperbolic systems

Athanasios E. Tzavaras

Department of Mathematics, University of Wisconsin

The fundamental solution for the equation describing entropies for systems of two conservation laws is determined in terms
of the Riemann function. It gives rise to a ”universal” entropy pair that can be cut in the directions of Riemann invariants to
produce singular entropy pairs. The goal of the talk is to describe how to use the singular pairs to obtain simplified proofs
of well known results of compensated compactness. Moreover, the rapport between the singular pairs and the fundamental
solution may be used to obtain a new formula for the coupling of oscillations between two general characteristic fields. (joint
work with B. Perthame)

Kinetic Approximations for the Incompressible Navier–Stokes Equations

F. Bouchut

DMA, École Normale Supérieure et CNRS, France

R. Natalini�

Istituto per le Applicazioni del Calcolo “Mauro Picone” of CNR, Italy

We present some recent results concerning a class of new kinetic approximations for the weak solutions to the Cauchy problem
for the incompressible Navier Stokes equations in D space dimensions��	

#�, � div�, � ,� ��6 � 1�,�

� 
 , � ��

,��� �� � ,�����

(1)

Our approximation is based on diffusive kinetic models with a finite number of velocities, which take the following general
form. Fix the vector velocities*� �� �*��� � � � � *���, for " � �� � � � � ; , and find a discrete kinetic (vector) distribution
�� � ���� � �

�
� � � � � � �

�
� � � ���� , such that��	 #��� �

�
�*� 
 ���� �

�
��� ������ +���� ��� � " � �� � � � � ;

����� �� � ����� �,���
(2)

for some fixed positive constant� � �. Here we define the “macroscopic” variables

� ��

�
���

��� � +��� ��

�
���

� �� �

for 3 � �� � � � � 
. Moreover, we are using the discrete (vector) Maxwellian function�, which is a smooth function of
 � �
variables with�� � ���

� ��
�
� � � � � ��

�
� � � ���� , for " � �� � � � � ; , and which verifies the following consistency conditions;

�
���

��
� ����� � �� (3)
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�
���

� �
� ����� �

�
���

*���
�
� ����� � <�� (4)

�
���

*���
�
� ����� �

<�<�
�

� = ���Æ��� �here take= ��� � >���� (5)

�
���

*��*�	
�
�

#���
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?
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Our main goal is to prove the following result.

Theorem 1 (Bouchut & Natalini 2002) Assume that the BGK approximation has a bounded sequence of solutions �� �����
and the Maxwellian � is dissipative, which means that �� ���9�� is symmetric, where 9��� <� � <���� � �@���, )@�)� �
= ������, and that the eigenvalues of � � are nonnegative. Then, as -	 �, and possibly passing to a sub-sequence, we have

�� � �	 �� in �� �

�� A ,� in �� � �/@'%��

= ���� = ���

�-�
A $� � in ���

and �,�$� are a (weak) solution to the Cauchy problem (1) for the incompressible Navier–Stokes equations.

The key point of our construction is that these approximations are endowed with kinetic entropy functions, which yield useful
energy inequalities. By using a suitably modified version of the compensated compactness, we are able to show the convergence
of the approximated solutions. Also, from these approximations it is possible to generate numerical schemes, related to the
Lattice BGK Schemes, but with the supplementary and important features that they respect an&–Theorem and then they are
nonlinearly stable. The properties and the accuracy of some special kinetic schemes will be presented and discussed in the talk,
according to some further results obtained in collaboration withM.F. Carfora (IAC–CNR, Italy).

From Ghost-cell to Conservative Front Tracking

J. Glimm, Xiaolin Li�, Yingjie Liu and Z.-L. Xu

Department of Applied Mathematics and Statistics, SUNY at Stony Brook, Stony Brook, NY 11794

Front tracking method combines Lagrangian particle propagation of the interface and Eulerian finite difference solvers for fluid
in subdomains separated by an interface. By separating different finite difference solver in each subdomain and avoiding inter-
polation of physical quantities across a tracked interface, it maintains a sharp discontinuity of the physical quantities across the
interface. In many physical problems, such discontinuity plays an important role in obtaining correct dynamical measurement.
A good example is the simulation of the two and three dimensional Rayleigh-Taylor instability with randomly perturbed inter-
face. The prevention of numerical diffusion across the fluid interface has retained the correct buoyancy acceleration and gives
a much closer agreement with the experiment.
To solve the conservation laws in fluid physics

�� � ����� � ��

the front tracking method consists of three key components. They are: (1) the Riemann solution for the interface propagation,
(2) the finite difference solution in each subdomain bounded by the interface, and (3) the coupling of the Riemann solution and
the finite difference solution at the interface. The Riemann solution not only calculates the normal velocity of the interface but
also advances the states on both sides of the interface which satisfy the Rankine-Hugoniot condition. For many years since
1980, the interface-interior coupling in the front tracking method has used ghost-cells whose states are extrapolated from the
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Riemann solution at the interface. For example, suppose the position of the interface is between two cells0 and0��, to update
the state of the cell0 which is in the left of the interface, a second order Godunov-type scheme has

,���
� � ,�

� �
��

��

�
��
������� � ��

�����

�
�

Since the cells0 � � and0 � � are in the right side of the interface, the extrapolated states, �
��� and,���

��� must be used to
calculate
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while in the right side of the interface, the flux at the same location� �
������� must be calculated through
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Since� �
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�������, conservation cannot be achieved near the interface.
Our new scheme for cells near the tracked interface is based on the integral form of Euler’s equation over a cell with both fixed
and moving boundaries.
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where	� is the normal velocity of the moving boundary. We define������ �	� as the dynamic flux in contrast to�����, the
stationary flux. To update the states of the two cells0 and0 � � near the interface, we use
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here� ���
� � ������ � ����� and� ���

� � ������ � ����� are dynamic fluxes on the left and right sides of the interface,
respectively. Conservation is achieved because� ���

� � ����
� due to Rankine-Hugoniot condition. When the interface crosses

the cell center during a time step, cell merge is needed to ensure numerical stability.
The extension of the conservative front tracking into higher dimensional spaces requires the construction of time-space cells
and the merge of neighboring finite volume cells at the old and new time steps. In this presentation we will give a detailed
account on the implementation of the conservative algorithm in two dimensional space.
1 Presented by Xiaolin Li

Partial Differential Equations for Fluid Flow and Computer Graphics

Ronald Fedkiw

Stanford University, USA

Scientists, engineers and mathematicians have used numerical techniques for partial differential equations to simulate physical
phenomena for many years. More recently, these numerical techniques have worked their way into a variety of new areas
including computer graphics. Some key techniques will be discussed including the Level Set Method for tracking interfaces and
discontinuities, the Ghost Fluid Method for accurate modeling of boundary conditions at these interfaces and discontinuities,
and Vorticity Confinement as a method of removing excess numerical dissipation on coarse grids. Example simulations of
smoke, fire and water will be shown. Time permitting; we will also discuss numerical methods for cloth.
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BV solutions for the semidiscrete upwind scheme

Stefano Bianchini

Istituto per le Applicazioni del Calcolo ”M. Picone” - CNR, Viale del Policlinico 137, 00161 Roma (ITALY),
Institute of Mathematical Sciences, Chinese University of Hong-Kong, Shatin, N.T., Hong-Kong (CHINA)

We consider the semidiscrete upwind scheme

����� �� �
�
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�
���� ��

�� �
�
���� �� +�

��
� �� (1)

We prove that if the initial data of (1) have small total variation, then the solution� ���� has uniformly bounded BV norm,
independent of�, +. This implies that as+	 �, ����� converges to a weak solution of the corresponding hyperbolic system,

�� � ����� � ��
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Hyperbolic Models of Traffic Flow

Michel Rascle

Mathematiques, U. Nice, France

In this talk, I will first briefly describe a model introduced a few years ago with A. Aw ([1]: “Resurrection of ...”, SIAM J.
Appl. Math., 2000) in which we replaced the Payne-Whitham (PW) class of “second order” (= 2 equations) continuous models
of traffic flow based on the gas dynamics system by a new system. In the PW model, the way the drivers adjust their velocity
depends on the�-derivative of thepressure= ���, whereas in our model it depends on the Lagangian time-derivative of= ��,
and we have shown in [1]that this modification suppressesall the severe inconsistencies of the PW model, such as cars going
backward in some cases !!!

#��� #���	� � � (1)

#���/� � #��	�/� � � � / �� 	 � = ����

I will then describe - joint paper with Aw, Klar and Materne - how this heuristic model can be discretized either in Eulerian
coordinates with Lagrangian cells or, see also J. Greenberg, in Lagrangian mass coordinates by the Godunov scheme, call it
(God), with - surprisingly - uniform�� -estimates, due to the very special nature both of the system, which admits coinciding
shocks and rarefaction waves, and of the discretization. Moreover, this Godunov approximation turns out to be the natural
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explicit time-discretization of the microscopic “Follow-the-Leader” models.

%�� � 	�� (2)

%	� � 
	��� � 	�

����� � ������
�

where������ 	����� " � �� � � � � are location and speed of the vehicles at time�.
In fact, the model (1) introduced in [1] can berigorously viewed as the fluid limit of this microscopic model, with an appropriate
function= . The precise relations between the three levels are the following :

(i) Start with the fully discrete system, i.e. the Godunov approximation of the Lagrangian version (1’) of (1). In the natural
“hyperbolic” scaling, i.e. when we “make a zoom”�� �� ��� �� -��� �� , where� is the Lagrangian “mass”” coordinate, then the
solution constructed by the Godunov scheme converges to an entropy weak solution of (1’), with uniform BV-estimates.

(ii) Now, starting again with the fully discrete system (God), make the same scaling, but only in time, with a fixed��. Then
the solution converges to the solution of the “Follow-the-leader” model (3), which therefore inherits the same uniform�� and
�� estimates, and turns out to be the semi-discretization of (1’).

(iii) In turn, start now with system (3), and let�� tend to�. Then, at least for a sub-sequence (see other talks in this Conference
for uniqueness results, the solution of (3) converges to an (the) entropy solution of (1’), which is therefore the fluid limit of (2),
without passing through any kinetic description.

Finally, I will describe recent attempts to describe oscillations in experimental data.
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4 Abstracts of contributed speakers

4.1 Monday, Session 1 (morning): Navier-Stokes equations

Dynamics of Singularity Surfaces for Compressible Viscous Flows in 2D

David Hoff

Indiana University, USA

We prove the global existence of piecewise smooth solutions of the Navier-Stokes equations of compressible, barotropic flow
in two space dimensions. We show that discontinuities in the fluid density and in the divergence of the fluid velocity persist for
all time, and are concentrated on smooth curves which are convected with the flow, exactly as predicted by elementary consid-
erations based on the Rankine-Hugoniot conditions. We show that the strengths of these discontinuities decay exponentially in
time, more rapidly for larger acoustic speeds and smaller viscosities. We also derive lower bounds on the strengths of discon-
tinuities, thus showing that solutions do indeed remain discontinuous for all time. The rather remarkable and counterintuitive
conclusion is therefore that, not only does viscosity fail to completely smooth out singularities in the initial data, but also that,
since convective singularities are not present in solutions of the corresponding Euler equations for inviscid, barotropic flow,
these singularities actually result from the presence of viscosity. We also show that the curves in physical space across which
solutions are discontinuous remain reasonably smooth for all time, even though the velocity fields which convect them are not
continuously differentiable. This difficulty is circumvented by a somewhat delicate analysis of tangential regularity, based on
new estimates for Newtonian potentials.

Global Existence for the Full Multi-dimensional Compressible Navier-Stokes Equations with Large Symmetric Data

Helge Kristian Jenssen� and David Hoff

Indiana University, USA

We establish global existence of a weak solution to the Navier-Stokes equations for a compressible, heat-conducting fluid in
space dimension) � � or 	. The initial data for the density, velocity and temperature are assumed to be either spherically
symmetric () � 	) or cylidrically symmetric () � �). The symmetry assumption implies that the problem is essentially one-
dimensional away from the origin. To deal with the crucial multi-dimensional effects caused by the singularity at the origin,
we combine techniques developed for the exterior cylider problem, Frid & Shelukin [2], and for the spherically symmetric
barotropic case, Hoff [1]. Making use of a priori estimates and higher order energy estimates we obtain a global solution of the
equations in Lagrangian coordinates. An interesting aspect of the analysis is the new phenomena related to the dependence on
temperature. In particular the possible formation of a vacuum region and its regularity is more involved than in the barotropic
case.

References

[1] D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large,
discontinuous initial data, Indiana Univ. Math. J.41 (1992), 1225–1302.

[2] H. Frid, V. Shelukhin,Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder
symmetry, SIAM J. Math. Anal.31 (2000), 1144–1156.



HYP 2002 35

4.2 Monday, Session 1 (afternoon): Incompressible flows

Stability of Plane Couette flow

Gunilla Kreiss

KTH, Sweden

Consider the Navier-Stokes equations modeling a viscous, incompressible fluid between two infinite, parallel moving plates.
The stationary solution, consisting of parallel motion with a linear velocity profile, is linearly stable for all Reynolds numbers,
.. It has been shown that for sufficiently small perturbations the flow is nonlinearly stable, (Romanov, 1973). Thus there is a
threshold value for the size of the perturbations. Below this value all perturbations decay to zero. Above it some perturbations
do not decay and may eventually lead to turbulence.
The question of how the threshold depends on the Reynolds number is addressed in this talk. We consider a dependence of the
form .��. By direct numerical simulations and asymptotic analysisB � ���� andB � �, respectively, has been found. We
will derive an upper bound of the threshold by proving nonlinear stability. We use a resolvent bound and keep track of the.
dependence. Previously this approach yielded a threshold withB � ����. The resolvent bound was based on computations in
the Fourier domain.
In this talk we discuss improvements along two lines. Firstly, we have found that with a norm, where the components of the
velocity are weighted compared to each other, the resolvent bound grows slower with.. This yields a sharper threshold bound.
Secondly, we have strengthened the computations of the resolvent. By Fourier transform the resolvent equation is reduced to one
dimensional boundary value problems with three parameters for the normal velocity and for the normal vorticity, respectively.
We show estimates of the resolvent outside a bounded region in the parameter space. Thus a numerically determined resolvent
is needed only for a bounded region of the parameters space.

Numerical simulations of incompressible flows by Finite Pointset Method

Sudarshan Tiwari

Fraunhofer Institut Techno- und Wirtschaftmathematik, Germany

A Finite Pointset Method (FPM) is a particle method for solving fluid dynamic equations. It is a Lagrangian and mesh free
method. Therefore, this method is suitable for flows with complex geometry, rapid change of geometry in time, and flows with
free surface flows. This method is similar to the method of smoothed particle hydrodynamics (SPH) except the approxima-
tion of spatial derivatives and thetreatment of boundary conditions. In FPM, the spatial derivatives at an arbitrary point are
approximated from the clouds of neighboring points with the help of weighted least squares method.
The method describes as follows: A fluid domain is filled by finite number of particles. The boundary is also filled by boundary
particles and the boundary conditions are prescribed on boundary particles. On each particle, we assigned the fluid quantities
like density, velocity, pressure and so on. Particles move with their own fluid velocities and carry all fluid informations with
them. Boundary particles move with boundary velocity. The conservation laws is expressed in Lagrangian form. First, the
spatial derivatives of conservation laws are approximated for each particle. Then the partial differential equations reduce to
a system of ordinary differential equations. Finally, the system of ordinary differential equations are solved by a simple time
integration scheme.
In order to solve the incompressible flow, it is necessary to solve the pressure Poisson equation. The main focus of the talk is to
show the Poisson solver in grid free framework. The Poisson equation is solved by mesh less method. No direct approximation
of the Poisson equation is required. It is a explicit scheme and unconditionally stable. The approximation is also based on the
weighted least squares method, where the Poisson equation is used as constraint.
The incompressible Euler or Navier-Stokes equations are solved by a projection method. The numerical solutions are compared
with the analytical solutions. It is found that a quite good agreement between the exact and numerical solutions. The scheme
gives quite accurate results. Some simulations of free surface flows will also be presented.
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The small obstacle limit of 2D incompressible and inviscid exterior flow

DragoşIftimie

École Polytechnique, France

Milton da Costa Lopes Filho and Helena Judith Nussenzveig Lopes�

IMECC-UNICAMP, Brazil

Consider� a bounded, connected and simply connected domain of the plane with smooth boundary� and� � � -� with
boundary��. We consider a family�� � ����� �� of incompressible flows which, for each fixed� � - � -� satisfy the
two-dimensional Euler equations on the exterior of� �, with velocity tangent to� and satisfying the initial conditions (i) the
initial vorticity C���� � curl ����� �� is independent of- and has support disjoint from� � and (ii) the circulation around��

of the velocity�� is a real constant� which also does not depend on-. The purpose of the work presented in this talk is to
identify the asymptotic behavior of the sequence�� ��. We have proved that, for� � �, �� converges to a flow� satisfying the
incompressible two dimensional Euler equations in the full plane with initial vorticityC � and that, for� �� �, any weak limit
of the sequence���� satisfies a modification of the Euler equations which, in the vorticity formulation, consists of the usual
transport equation, with the addition of a point vortex background.
The question of the limit behavior of incompressible flow in the exterior of a small obstacle is a very natural one, although the
authors have not found reference to concerns regarding this particular asymptotic regime in the fluid mechanics literature. The
ideal flow assumption is physically inappropriate to model the behavior of the flow near the obstacle, due to boundary layer
effects, so that the whole issue of small obstacle asymtotics could be more meaningfully posed for the Navier-Stokes equations.
However, given that there are no rigorous results in either the inviscid or the viscous cases, it makes sense to begin the analysis
in the simpler case of ideal flow. This already contains a substantial fraction of the difficulties inherent to the general problem.
Most of the work on time-dependent, incompressible exterior flow has been in the nature of well-posedness through energy
methods. The present research, however, adopts the point of view ofvortex dynamics. This means understanding 2D flow in
terms of the description of the dynamics of vorticity, an approach which has recently been very fruitful. Our problem can be
thought of in terms of vortex dynamics as attempting to describe the effect of a small obstacle on vortex motion, which is the
initial motivation of this work, in a way we will make more precise. Furthermore, this work relies on the vortex dynamics point
of view in an essential way for its more technical development.
Our interest in the small obstacle limit stems from the work of C. Marchioro [3] on confinement of vorticity for ideal, exterior
flow. Confinement of vorticity is another quintessentially vortex dynamical line of research. We make a brief description of the
problem of confinement of vorticity. LetC � C��� �� be a (classical) solution of the full plane 2D Euler equations such that
C��� �� is compactly supported. The problem of confinement of vorticity is to obtain control over the growth of the diameter
of the support ofC�
� ��. Current research on this subject originates with a result obtained by C. Marchioro in [2]. Marchioro
proved that the solution of the incompressible 2D Euler equations in the full plane, with bounded, nonnegative initial vorticity
with support contained in the ball����.��, will have, at time�, its support contained in a ball of radius.��� � �:�� .���

���,
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for some constant: � �. The state-of-the-art confinement result in the full plane has almost fourth root exponent, and it
is due to Ph. Serfati. Among a number of results inspired on Marchioro’s Theorem, we highlight his study of confinement
in an exterior domain. For the exterior of a disk the corresponding result is cube root confinement and almost square root
confinement for a general exterior domain, see [3]. We will not get into the issue of why the confinement result is sensitive
to the presence and geometry of the domain, but we observe that confinement is connected to the way a obstacle influences
very distant particles, called far-field effects. The scaling behavior of the incompressible Euler equations makes the problem
of describing the influence of a very distant obstacle for a very long time naturally associated to observing the effect of a
vanishingly small nearby obstacle for some time, which is the object of this work. In this context, the influence of the precise
shape of the small domain in the vortex motion is of particular interest.
From the technical standpoint, this article makes use of the techniques of weak convergence methods for the asymptotic analysis.
Such methods have often been developed for proving existence of weak solutions, but they are well suited for studying singular
limits in general. The basic ingredients of the present proof are a collection ofa priori estimates obtained mainly through
exhaustive use of explicit formulas for the Green’s function for the exterior domain, and strong compactness of approximate
velocities obtained by using a parametrized div-curl Theorem introduced in [1]

References

[1] Lopes Filho, M.C., Nussenveig Lopes, H.J. and Tadmor, E.,Approximate solutions of the incompressible Euler equations
with no concentrations Ann. Inst. H. Poincare - Anal. non Lineaire,17 (2000) 371–412.

[2] Marchioro, C.,Bounds on the growth of the support of a vortex patch, Commun. Math. Phys.,164(1994) 507–524.

[3] Marchioro, C.,On the growth of the vorticity support for an incompressible non-viscous fluid in a two-dimensional exterior
domain, Math. Meth. Appl. Sci.,19 (1996) 53–62.

Convergence of Nonlinear Schr̈odinger-Poisson Systems to the Compressible Euler equations

Ansgar J¨ungel

Fachbereich Mathematik und Statistik, Universität Konstanz, Germany

Shu Wang�

Institut für Mathematik, Universität Wien, Boltzmanngasse 9, 1090 Wien, Austria and Department of Mathematics, Henan
University, Kaifeng, 475001, P. R. China

The combined semi-classical and quasineutral limit in the bipolar defocusing nonlinear Schr¨odinger-Poisson system in the
whole space is proven. The electron and current densities, defined by the solution of the Schr¨odinger-Poisson system, con-
verge to the solution of the compressible Euler equation with nonlinear pressure. The corresponding Wigner function of the
Schrödinger-Poisson system converges to a solution of a nonlinear Vlasov equation. The proof of these results is based on
estimates of a modulated energy functional and on the Wigner measure method.
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4.3 Monday, Session 2 (morning): Riemann Problems I

The �-system with Large Data

Robin Young

University of Massachusetts

We describe recent progress towards proving global existence of solutions to the�-system of isentropic gas dynamics. The
Cauchy data may be large in amplitude and in total variation. We first provide an exact solution of the Riemann problem with
arbitrary Riemann data. Using this, we present an exact analysis of the general Glimm interaction of two waves of arbitrary
strength. As a corollary we give precise conditions for the formation and annihilation of a vacuum. In particular it is shown that
a vacuum appears only if it is embedded in the data (which is then necessarily discontinuous). Finally we describe a modified
front tracking scheme for constructing large amplitude solutions. Our guiding principle is that in order to consider solutions
with large data, one has to treat waves and their interactions exactly, and eschew the use of asymptotic interactions in which
amplitudes (and total variation) are small. Nevertheless, the hyperbolic features of the system on which Glimm functionals are
based persist.

Admissibility of Shock Waves and Uniqueness of the Riemann Problem

Fukomi Asakura

Faculty of Engineering, Osaka Electro-Communication University, Neyagawa, Osaka 572-8530, JAPAN

We study the admissibility of shock waves and uniqueness of the Riemann problem for a general� � � hyperbolic system of
conservation laws in one space dimension:

,� � � �,�� � �� ��� �� � � ���

with initial data having large amplitude. We assume that that the characteristic fields arestrictly separated, that is: there exist
two disjoint (open) conical neighborhoods such that the first characteristic field is confined to one of these neighborhoods and
the second characteristic field to the other. We show that, together with some technical assumptions, the viscous profile exists
for states,�� ,� not necessarily close and there exists at most one solution to the Riemann problem for general Riemann data
,�� ,�� These results will generalize admissibility and uniqueness theorems of Smoller and Liu, by giving descriptions free
from particular choice of rectangular coordinates.
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4.4 Monday, Session 2 (afternoon): Convergence results

Adjoint Error Analysis

Niles Pierce�

California Institute of Technology, USA

Michael B. Giles

Oxford University, UK

In a variety of fields, numerical methods are vital for obtaining approximate solutions to partial differential equations that
describe the phenomena of interesting systems. In many cases, the principal quantitative objective of these simulations is the
estimation of an integral functional of the PDE solution (e.g. the drag on an aircraft at transonic cruise, the radar cross-section
of a glider, the electrostatic free energy of a biomolecule in water, or the flux of fossil fuels through a porous medium).
In the present work, a method is presented for obtaining functional estimates that have twice the order of accuracy of the
computed PDE solution on which they are based. This superconvergence property is achieved via error analysis that uses an
adjoint PDE to relate the local errors in approximating the original PDE solution to the corresponding global errors in the
functional of interest. The talk will emphasize current work on functionals of steady and unsteady solutions to hyperbolic
PDEs.

                                                                                

                                                                                

Figure 1: Representative adjoint behavior for uniform two-dimensional supersonic Euler flow

A Posteriori Error Estimate for Front-Tracking for Nonlinear Systems of Conservation Laws

Mark Laforest

Department of Applied Mathematics and Statistics, University at Stony Brook, Stony Brook, NY 11794-3600

We demonstrate an a posteriori error estimate in the�� norm for front-tracking approximations for hyperbolic systems of non-
linear conservation laws. Extending the��-stability result of Bressan, Liu, and Yang we use their��-equivalent functional
for pairs of front-tracking approximations and identify the leading order contribution to the numerical error. This leading term
is closely related to the residual and determines an a posteriori bound of the error for conservation laws. We demonstrate the
estimate for the front-tracking approximations of Risebro, which are extensions to systems of Dafermos’ polygonal approxi-
mations.
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A New Approach to Divergence Cleaning in Magnetohydrodynamic Simulations

Andreas Dedner� and Matthias Wesenberg

Institut für Angewandte Mathematik, Universität Freiburg, Freiburg, Germany

For the simulation of electrically conducting fluid flow the equations of magnetohydrodynamics (MHD) have to be solved.
These combine the Euler equations of gas dynamics and the Maxwell equations. They are a system of nonlinear conservation
laws for the fluid density�, momentum��, magnetic field� � ���� ��� � �

! , and total energy density@. � � ���� ��� � �
!

denotes the fluid velocity. Ignoring higher order effects like viscosity and resistivity we obtain the system
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The additional constraint

� 
� � � (1e)

ensures a divergence–free magnetic field. This system has to be closed by an equation of state for the fluid pressure�. For the
work presented here we assume a perfect fluid so that� � �� � ���- with a constant adiabatic exponent� � �. The internal
energy- is given by- � "

# � �
� �� � �

�# ��. The scheme presented in our talk can be also used for more complex pressure
laws.
For the conservative quantities� � ��� ����� @�! we have to prescribe suitable initial and boundary conditions. In particular
the constraint (1e) requires that the initial data for the magnetic field has zero divergence. Equation (1c) can be rewritten in the
equivalent form#�� ��� �� � �� � �. Since the divergence of a curl vanishes identically the divergence of the magnetic
field will stay zero for all time if it is zero initially. Hence numerical methods are usually based only on the hyperbolic evolution
equations (1a) — (1d).
In simulations divergence errors can be introduced by approximation errors if the divergence constraint (1e) is not explicitly
taken into account. These errors can then increase with time and will result in unphysical solutions: Magnetic field lines can
have wrong topologies leading to plasma transportorthogonal to the magnetic field. This effect is discussed among others by
Brackbill and Barnes [BB80]. Even if the overall solution is not strongly affected by local divergence errors, they generally
cause severe problems for the stability of the scheme.
In our numerical scheme we use a standard finite–volume approach with approximate Riemann solvers for the computation of
the flux functions across cell interfaces [DRW99, DKRW01]. This requires an approximate solution of of (1a) — (1d) in one
space dimension. In 1d the evolution equation for the normal magnetic field� � (1c) and the divergence constraint (1e) read

#��� � � and #��� � �� (2)

Therefore�� may vary neither in space nor time. On the other hand the normal magnetic field component are in general
discontinuous across a cell interface. Thus the value of�� which we use for the solution of the one–dimensional Riemann
problem is not constant as required by (2). This leads to unphysical numerical fluxes and the loss of stability in the two– and
three–dimensional schemes.
In [DKK�02] we extend a correction method developed for the Maxwell equations in [MOS�00]. This method is based on a
modified equation for the magnetic field and introduces a new unknown functionD. The new equation for the magnetic field
which replaces (1c) and the equation for the auxiliary functionD are given by

#���� 
 ���! ���!
�
��D � � � (3)
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