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A New Approach to Divergence Cleaning in Magnetohydrodynamic Simulations

Andreas Dedner� and Matthias Wesenberg

Institut für Angewandte Mathematik, Universität Freiburg, Freiburg, Germany

For the simulation of electrically conducting fluid flow the equations of magnetohydrodynamics (MHD) have to be solved.
These combine the Euler equations of gas dynamics and the Maxwell equations. They are a system of nonlinear conservation
laws for the fluid density�, momentum��, magnetic field� � ���� ��� � �

! , and total energy density@. � � ���� ��� � �
!

denotes the fluid velocity. Ignoring higher order effects like viscosity and resistivity we obtain the system
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The additional constraint

� 
� � � (1e)

ensures a divergence–free magnetic field. This system has to be closed by an equation of state for the fluid pressure�. For the
work presented here we assume a perfect fluid so that� � �� � ���- with a constant adiabatic exponent� � �. The internal
energy- is given by- � "
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�. The scheme presented in our talk can be also used for more complex pressure
laws.
For the conservative quantities� � ��� ����� @�! we have to prescribe suitable initial and boundary conditions. In particular
the constraint (1e) requires that the initial data for the magnetic field has zero divergence. Equation (1c) can be rewritten in the
equivalent form#�� ��� �� � �� � �. Since the divergence of a curl vanishes identically the divergence of the magnetic
field will stay zero for all time if it is zero initially. Hence numerical methods are usually based only on the hyperbolic evolution
equations (1a) — (1d).
In simulations divergence errors can be introduced by approximation errors if the divergence constraint (1e) is not explicitly
taken into account. These errors can then increase with time and will result in unphysical solutions: Magnetic field lines can
have wrong topologies leading to plasma transportorthogonal to the magnetic field. This effect is discussed among others by
Brackbill and Barnes [BB80]. Even if the overall solution is not strongly affected by local divergence errors, they generally
cause severe problems for the stability of the scheme.
In our numerical scheme we use a standard finite–volume approach with approximate Riemann solvers for the computation of
the flux functions across cell interfaces [DRW99, DKRW01]. This requires an approximate solution of of (1a) — (1d) in one
space dimension. In 1d the evolution equation for the normal magnetic field� � (1c) and the divergence constraint (1e) read

#��� � � and #��� � �� (2)

Therefore�� may vary neither in space nor time. On the other hand the normal magnetic field component are in general
discontinuous across a cell interface. Thus the value of�� which we use for the solution of the one–dimensional Riemann
problem is not constant as required by (2). This leads to unphysical numerical fluxes and the loss of stability in the two– and
three–dimensional schemes.
In [DKK�02] we extend a correction method developed for the Maxwell equations in [MOS�00]. This method is based on a
modified equation for the magnetic field and introduces a new unknown functionD. The new equation for the magnetic field
which replaces (1c) and the equation for the auxiliary functionD are given by
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where� is a linear differential operator. The modified system is called thegeneralized Lagrange multiplier(GLM) formulation
of the MHD equations. In [MOS�00] different choices for� were suggested which result in anelliptic, a parabolicor a
hyperboliccorrection. We show in numerical tests that the best choice is to combine the damping effect of the parabolic
approach and the advection within the hyperbolic approach. This can be achieved by choosing� �D� �� �

���
#�D � �

���
D with

two constants!$ � �� !
 � �. By combining equations (4) and (3) we arrive at the telegraph equation for the divergence of the

magnetic field#����� 
�� �
���
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Figure 1: A two–dimensional Riemann problem computed on���� ��� ���� �� using a second order finite–volume scheme. We
show�� and��. The two top rows show (from left to right) the mixed approach, the hyperbolic approach, no correction and
the source term technique. The two bottom rows show the solutions along the ray at� � ����, using the mixed GLM method,
no correction and the source term approach. Note that in this case� � should be a constant value.

For all choices of� the GLM–MHD system (1a), (1b), (3), (1d), and (4) is hyperbolic and the equations for the physical
quantities�� ����, and@ remain in conservation form. We also demonstrate in [DKK�02] that for the one–dimensional setting
divergence errors in the initial data are damped in the parabolic approach and transported out of the domain in the hyperbolic
approach. We will also study the mixed approach in the one–dimensional case.
The elliptic approach is equivalent to the well known projection scheme and therefore requires solving a Laplace equation. The
parabolic approach requires taking into account a second–order term in divergence form in the induction equation and can be
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added in the finite–volume framework. The hyperbolic and the mixed approach lead to a simple modification of the numerical
flux. The additional cost can be reduced to solving a linear two by two system forD and the normal component of the magnetic
field.
In addition to the results published in [DKK�02] our talk includes a comparison of the parabolic and elliptic approach with
the hyperbolic and mixed correction. As reference technique we use the source term approach developed by Powell and
others [BB80, Pow94]. For most test cases we found that the mixed hyperbolic / parabolic approach is superior compared to
the other methods tested as shown in Fig. 1. We found that our approach leads to very stable numerical schemes for solving the
MHD equations in two and three space dimensions.
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Discontinuous solutions of Hamilton-Jacobi equations: existence, uniqueness and regularity

Bo Su

University of Wisconsin-Madison

In this talk, we address basic questions of the discontinuous solutions of Hamilton-Jacobi equations: existence, uniqueness,
and regularity. The existence of�� solutions is proven for general Hamiltonians. Then we clarify the connections between
the existing notions including the classical semicontinuous solutions by Ishii. We prove the uniqueness in the measure sense
of discontinuous solutions including the classical semicontinuous solutions,�� solutions for the important special class of
Hamiltonians–convex Hamiltonians. They are the same in the measure sense. The regularity after finite time property, a new
genuinely nonlinear phenomenon, of Hamilton-Jacobi equations for locally strictly convex Hamiltonians& � &��� such as
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&��� � �� � 

�
�� �� is established. That is, with discontinuous initial data, the discontinuous solutions of� � �&�
�� � �
becomes Lipschitz continuous in finite time. The difference between regularity of solutions of the typical strictly convex
Hamilton-Jacobi equations�� � 

�
� � � and the typical locally strictly convex Hamilton-Jacobi equations� � � �� �



�
�� �� � � is similar to that between the solutions of the typical uniform parabolic equation� � � �� � � and the typical
degenerate parabolic equation�� ���� � �.
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4.5 Monday, Session 3 (morning): Viscous conservation laws I

On the Boundary Control of Systems of Conservation Laws

Giuseppe Maria Coclite� and Alberto Bressan

S.I.S.S.A., Via Beirut 4, Trieste 34014 Italy

In this paper we study the problem of the boundary controllability for a� � � systems of conservation laws on a bounded
intervall

�� � ����� � �� � � �� � � �'� :�� ���

We study the property of the attainable set��� � (i.e.the set of the mapsE � ����'� :�� such that� � ���� �� is an entropic
solution (1) such that���� 
� � E). We assume that (1) is strictly hyperbolic, satisfying the Lax admissibility conditions and

� has eigenvalue bounded away from zero (i. e. the boundaries are not characteristic). We prove two results.
I)Given a constant state�� constant and an initial data�� � �� ��'� :�� with small total variation and close to�� in ��norm ,
we prove the existence of a solution� � ���� �� of (1) such that
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for some constants>�
 � �� This provides the asymptotic controllability around a constant state.
II) We show with a counterexample that in general the constant states are not exactly attainable in finite time. We consider a
�� � system such that
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where4� and4� are the right eigenvectors of
�� The geometry of the system implies that the interactions between two shocks
of the same family generates a shock in the other one and the one between a shock and a rarefaction generates rarefaction. Ten
the set of the maps with finitely many jumps, that generate shocks (and no rarefactions), and whose components (in Riemann
coordinates) are piecewise increasing,is invariant. These remarks permit to show that if the set of the shocks of a solution in
dense at the time� � � the it is dense for each time� � ��

Stability Analysis for periodic solution waves in viscous conservation laws

Myunghyun Oh

Ohio State University

Nonclassical viscous conservation laws arising in multiphase fluid and solid mechanics exhibit a rich variety of traveling
wave phenomena, including homoclinic (pulse–type) and periodic solutions along with the standard heteroclinic (shock, or
front–type) solutions. Here, we investigate stability of periodic traveling waves within the abstract Evans function framework
established by R.A. Gardner. Certain interesting oscillatory behavior detected by Frid–Liu andČanić–Peters seems possibly
related to the periodic waves. The obvious conjecture, by analogy with pattern formation in reaction–diffusion equations,
would be that these represent stable periodic solutions, or fronts connecting such a stable solution to further (possibly unstable)
periodic solutions. On the other hand, an alternative explanation was offered by Azevedo, Marchesin, Plohr, and Zumbrun
involving metastable collections of slowly interacting shocks. Numerically observed patterns are well matched by patterns of
either type.
Our main result divide into three separate parts, generalizing each of the three major directions that have been pursued in
the viscous shock front case. The first result is to derive a usefulstability index analogous to that developed by Gardner and
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Zumbrun in the traveling front/pulse context, giving necessary conditions for stability with respect to initial perturbations that
are periodic on the same period� as the traveling wave; moreover, we show that the periodic stability index has an interpretation
analogous to that of the traveling front/pulse index in terms of well-posedness of an associated inviscid Riemann problem, now
to be interpreted in a wider class of measure-valued solutions. A closely related calculation yields also a complementarylong-
wave stability criterion necessary for stability with respect to periodic perturbations of arbitrarily large period;� , ; 	�.
The stability index and long-wave stability criterion are explicitly evaluable in the same planar, Hamiltonian cases as is the
index of Gardner–Zumbrun, and together yield rigorous results of instability similar to those obtained previously for pulse-type
solutions; this is established through a noveldichotomy asserting that the two criteria are in certain cases logically exclusive. In
particular, we obtain results bearing on the nature/formation of highly oscillatory Turing-like patterns observed numerically by
Frid–Liu andČańic–Peters in models of multiphase flow. Specifically, for the van der Waals model considered by Frid–Liu, we
show instability of all periodic waves such that period increases with amplitude in the one-parameter family of nearby periodic
orbits, and in particular of large- and small-amplitude waves; likewise, for a quadratic flux model like that considered by
Čańic–Peters, we show instability of large-amplitude waves of the type lying near observed patterns, and of all small-amplitude
waves.
The second result, generalizing the work of Zumbrun and Howard in the traveling pulse/front setting, is to establish sharp
pointwise bounds on the Green’s function of the linearized evolution equations, provided that there holds an appropriateEvans
function condition on the linearized operator about the wave, in this case equivalent to a spectral stability criterion introduced
by Schneider in the context of periodic reaction–diffusion waves. An immediate consequence is thatstrong spectral stability
(in the sense of Schneider)implies linearized �� 	 �
 asymptotic stability, for all � � �. On the other hand, we show
that the strict version of Schneider’s condition generically fails in the conservation law setting, leading to complicated new
“metastable” behavior reminiscent of that seen for degenerate, neutrally stable families in the traveling front/pulse case. Our
results apply also to the reaction–diffusion setting, sharpening (at the linearized level) results obtained by Schneider using
weighted norm/Bloch decomposition methods.
As in the traveling front case, the basic approach is to mimic in the Laplace transform setting the elementary Fourier-transform
analysis of the constant coefficient case. However, the technical issues involved are rather different in the two cases. Somewhat
surprisingly, we find the analogy to the constant-coefficient case to be rather stronger in the periodic coefficient case, permitting
a more standard approach involving the explicit construction of “continuous” spectral measure as in the self-adjoint case. This
is equivalent to the method of Zumbrun and Howard in this special case.
The third result is to derive a numerical test of periodic wave stability. We give numerical evidence that intermediate-amplitude
waves are unstable as well. These results give support for an alternative mechanism of pattern formation conjectured by
Azevedo, Marchesin, Plohr, and Zumbrun, not involving periodic waves. We show instability of all periodic waves in some
example systems studied by Frid–Liu andČanić–Peters. Together, the first and third has the implication that the oscillatory
patterns they observed are formed by a mechanism substantially different from that of the reaction diffusion/pattern formation
setting. The precise mechanism is still in question.
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4.6 Monday, Session 3 (afternoon): Adaptive methods I

Adaptive Mesh Redistribution Methods for Nonlinear Hamilton-Jacobian Equations

Tao Tang�

Dept of Mathematics, Hong Kong Baptist Univ., Hong Kong

Hua-Zhong Tang

School of Mathematical Sciences, Peking Univ, China

Adaptive mesh redistribution (AMR) methods have important applications for a variety of physical and engineering areas. In
the past two decades, there have seen many important progress in moving mesh methods for partial differential equations,
including the variational approach Brackbill et al. [1]; finite element methods of Millers [2]; moving mesh PDEs of Cao et al.
[3], and Ceniceros and Hou [4]; and moving mesh methods based on harmonic mapping of Dvinsky [5] and Li et al. [6, 7].
The main objective of this talk is to develop multi-dimensional AMR methods for the nonlinear Hamilton-Jacobi (H-J) equa-
tions:

6� �&��� �� 6�� � 
 
 
 � 6�	� � �� (1)

where� � .'� � � �. The H-J equations are of practical importance with applications ranging from mathematical finance and
differential games to front propagation and image enhancement. For this reason, there have seen many theoretical and numerical
studies for the H-J equations in the past two decades. Solutions of H-J equations are continuous and, in the generic case, form
discontinuous derivatives in a finite time even with smooth initial conditions. This also introduces great difficulties in obtaining
numerical solutions of the H-J equations. In solving the H-J equations (1) with an AMR method, the first difficulty is to find out
an appropriate monitor (or control) function. Interpolation is another issue requiring careful attention. The interpolation step
and the PDE time-evolution should be well connected so that the higher-order (formal) rate of convergence can be preserved.
One of the important applications of our AMR algorithm is the simulation for the geometrical motion [8]. Once the AMR
algorithm for the H-J equations is developed, a series of simulations for the geometrical motions may be carried out. To
demonstrate the desired effects of the AMR methods, we present in Fig. 1 a numerical simulation for the motion of a simple
closed curve, namely boundary of domain “H”, by solving a level set equation collapsing with speed proportional to the local
curvature. This problem serves as a challenging test problem to numerically verify Grayson’s theorem which claimed that all
simple closed curves eventually collapse to a round point [9].
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Figure 1:Adaptive mesh and numerical solution for the Grayson’s problem:� � � (top), � � ����� (middle) and� � ���� (bottom).
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Adaptive Mesh Redistribution Method for Convection-Dominated Problems

Zhengru Zhang

Department of Mathematics, Hong Kong Baptist University

An adaptive mesh method was recently developed by Tang and Tang for solving multi-dimensional hyperbolic conservation
laws. In this work, their method will be extended to construct an efficient moving mesh algorithm for nonlinear convection-
dominated problems. Our approach includes two independent parts: PDE evolution and mesh re-distribution. In the first part,
we transform the underlying equation to the computational domain with fixed regular mesh, then apply second order MUSCL
type finite volume methods to approximate the flux and standard central differencing for the diffusion term. The second part
is based on a variational principle and the mesh updating is based on an iteration procedure. Particular attention is paid to
handling the diffusion terms.
Several numerical examples are provided to demonstrate the efficiency of the proposed algorithm. The numerical experiments
for one- and two-dimensional problems suggest that our algorithm is efficient and robust for solving convection-diffusion
equations with very small viscosity. For the same resolution, the adaptive mesh redistribution method requires much less grid
points than the conventional fixed mesh approach.

H-Adaptive Multiscale Schemes for the Compressible Navier-Stokes Equations

Siegfried Müller�

Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Germany

Philipp Lamby

Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Germany

Frank Bramkamp

Lehr– und Forschungsgebiet für Mechanik, RWTH Aachen, Germany

We present the main conceptual ingredients and the current state of development of the new solver QUADFLOW for large scale
simulations of compressible fluid flow and fluid–structure interaction. In order to keep the size of the discrete problems at every
stage as small as possible for any given target accuracy, we employ a multiresolution adaptation strategy that will be described
in the first part. In the second part we outline a new mesh generation concept that is to support the adaptive concepts as well
as possible. A key idea is to understand meshes as parametric mappings determined by possibly few control points as opposed
to store each mesh cell separately. Finally, we present a finite volume discretization which again is to support the adaptation
concepts. We conclude with numerical examples of realistic applications demonstrating different features of the solver. The
conceptual details are outlined in [1].
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H-box methods for the approximation of conservation laws on irregular grids and in complex geometries

Christiane Helzel�

Courant Institute, New York, USA

Marsha J. Berger

Courant Institute, New York, USA

We consider the approximation of multidimensional systems of conservation laws on Cartesian grids with embedded irregular
boundaries. In order to obtain a stable approximation with explicit finite volume methods using time steps that are appropriate
for the regular grid cells, a special treatment of the irregular boundary cells, that may be orders of magnitude smaller than the
regular grid cells, is necessary.
Our approach is based on the so-called�-box method developed by Berger and LeVeque in [2], [3]. In this scheme a stable
approximation of small boundary cells is achieved by constructing fluxes in a way that the flux differences calculated for a
boundary cell are of the size of the small irregular cell. They suggested a rotated grid method which has this cancellation
property of numerical fluxes. We present a new method in which the cancellation property is obtained by a simpler approach
that does not need a rotated grid. In our method all�-boxes are constructed in coordinate directions. This is possible by splitting
up the boundary flux into components in all coordinate directions.
Although our main interest lies in the construction of multidimensional schemes that can handle embedded boundaries, the study
of �-box methods in one space dimension provides insight. By looking at the approximation of 1D systems of conservation
laws on an irregular grid, we consider the construction of methods that are stable for time steps adequate to a constant reference
grid cell length�. The numerical grid can contain mesh cells that are orders of magnitude smaller than�. We present a high
resolution�-box method that is based on LeVeque’s wave propagation scheme. For the advection equation we can show that
this scheme leads to second order accurate approximations of smooth solutions on arbitrary irregular grids. Numerical results
confirm the same order of accuracy for the approximation of the Euler equations. The crucial step, in order to construct such
accurate high-resolution schemes, lies in the definition of the�-boxes that are used in order to approximate the fluxes at small
grid cell interfaces. Those values have to be defined by averaging over piecewise linear values of the conserved quantities. An
extension of the method for the two-dimensional case will also be described. This irregular grid method is described in [1].
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4.7 Monday, Session 4 (morning): Rays and fronts

Fast sweeping method for Eikonal equations

Hongkai Zhao

University of California, Irvine, USA

A simple iterative method, called fast sweeping method, method, for computing the solution of the Eikonal equation
�����
 �
!��� on a Cartesian grid is proposed. The method combines upwind difference and Gauss Seidel iterations with different
sweeping order to automatically follow the characteristics of Eikonal equations in certain directions simultaneously. The
convergence and error estimates of the fast sweeping method will be analyzed in detail. In particular, it is shown that the
number of sweepings for the fast sweeping method depends on!��� and the space dimension and is independent of the grid
size to achieve certain accuracy. High order schemes, extensions to a class of Hamilton-Jacobi equations and applications will
also be discussed.

An Eulerian Framework for Geometrical Optics Using the Level Set Method

Li-Tien Cheng

University of California, San Diego, USA

The level set method has been successfully applied to numerous problems in mathematics and in science dealing with interface
motions. This is due mainly to its flexibility and its ability to automatically handle topological changes and resolution. Recently,
the level set method has been extended to further handle objects of higher codimension such as curves in three dimensions. We
present here the application of this technique to constructing wavefronts in geometrical optics. The wavefronts when viewed
in phase space generate Lagrangian submanifolds of high codimension. The Liouville PDE on these objects then gives the
desired wavefronts. Operating with a level set representation in phase space provides the underlying Eulerian framework where
multivalued wavefronts are handled with ease. We present results for both isotropic and anisotropic wave propagations.



HYP 2002 51

4.8 Monday, Session 4 (afternoon): Fronts and the level-set method

Error Analysis of Difference Methods for Moving Boundary Problems of Hyperbolic Systems

Wen-An Yong

University of Heidelberg, Germany

This work is concerned with finite difference methods for moving boundary problems of one-dimensional nonlinear hyperbolic
systems. Such problems stem mainly from front tracking methods in computing discontinuity solutions of hyperbolic conserva-
tion laws. For our analysis we present a stability theory of difference schemes for initial boundary value problems of algebraic
hyperbolic systems. The error estimate follows from a combination of the new stability theory and the asymptotic expansion
technique due to Strang.

A local level-set concept for front tracking on arbitrary grids

F. Völker�, R. Vilsmeier and D. H¨anel

Institute of Combustion and Gasdynamics, Germany

This paper proposes a general multi-dimensional front tracking concept for arbitrary physical problems. The concept is inte-
grated as a module in a basic Finite-Volume solution method (MOUSE: http://www.vug.uni-duisburg.de/MOUSE/) for systems
of conservation laws on arbitrary grids.
The common basis of the tracking concept is a local level-set method combined with a flux-separation approach at the front.
The definition range is dynamic according to the moving front position and restricted to the first two neighbor nodes levels
on both sides of the front. The front geometry is described by the value8 � � of a scalar function8��� �� �F�� and moved
according to an Eulerian transport equation:
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#�
� G! 
 �8 � � (1)

The transport of the front in addition with a two step normalization procedure forms the front tracking algorithm for one time
step. For reasons of accuracy the level-set function is normalized to approximately satisfy the slope condition

 �8 
� �, corresponding to a distance function to the front. The normalization procedure involves iterations by pointwise
least square approaches and proceeds in two steps: In the first step, the direction of the gradient�8 � is computed. For a node
" with a restricted number of neighbors�0 � H
&��"� the error approach reads:

$
&� �
�

���(�
����

�
�8� 
 G(��� � �8�� �8��


G(��� 
���
��

	 minimum (2)

with G(��� �
G$�� � G$� and a distance weighting exponent< � �.

In the second step
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the functional value of8��� is set to satisfy the slope condition. The result of the second step is a new functional value for
8. Due to dependencies with neighboring nodes, the method is used iteratively. Unfortunately, it is not possible to satisfy the
slope condition without slightly altering the actual front position in a linear representation on the edges of the mesh. Additional
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corrections are thus performed to preserve the exact front position after normalization. Doing so, the exact slope condition is
again voided, which is however more tolerable than a falsified front position itself.
The motion of the front is carried out by an explicit time discretization of equation 1. Assuming a constant slope, the propagation
step reads:

8��� � 8� � G! 
 �8�!� (4)

This equation is solved under the assumption of frozen velocityG! during a time step. Due to the inaccuracies of the constant
slope condition, an additional translation error is introduced. Therefore, above equation is extended by a Taylor expansion for
the gradient in normal direction:

8��� � 8� � G! 
 �8�!��
�

�
!��G! 
 #�8

#��
(5)

where�� is a locally transformed, normal coordinate direction to the front. According to this modification, the slope condition

 �8 
� � of the level set function is less important, thus lowering the need for large iteration numbers within the normalization
procedure and assuring a good accuracy of the propagation.
Above methods will be demonstrated by a variety of gas-dynamical stationary and transient shock wave computations in 2D
and 3D.

Flow past a 2D pair of cylinders, inviscid,�'� � 	,
tracked bow shock.

Flow past a 3D sphere, inviscid,�'� � �, tracked bow
shock.

Example for a transient detonation wave with
tracked front shock wave.
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Eulerian Ray Tracing and Applications to Grid Generation

Patrizia Bagnerini

Laboratoire de Mathématiques CNRS n.6621, Université de Nice, France

We consider the Hamilton-Jacobi equation on a domain� � . �, and the bicharacteristics, i.e. the integral curves of the
associated Hamiltonian system:

%���� � &
��� ��� %���� � �&���� ��� (1)

In order to generate meshes, but also for the other applications (rays in geometrical optics, etc ..), it would be useful to compute
the rays in an Eulerian way. So, following an idea of J.-D. Benamou [3], we label each ray by a parameter7 and thus we
compute a function7 � 7��� ��, 7 � � �	 ., whose level sets are the rays.7 is then solution to the problem:�

� � *+
*
 
 �7 � � in �

7��� given � ��� � � on#��
(2)

In principle, this approach allows to obtain directly all the bicharacteristic curves as the level sets of a function7, instead of
solving a system of ODE for every source point belongs to#�. One of motivations is the generation of adaptive meshes, and
then we apply the method to the Eikonal Riemannian equation (see [1, 2]), with a suitable Riemannian metric which allows to
refine the mesh in regions typically where the the function we want to approximate is stiff.
Recently, fast algorithms for computing the viscosity solution of different classes of Hamilton-Jacobi equations have been
developed, see in particular [4, 5, 6]. Our goal in this work is to compute, if possible, at the same time, the viscosity solution of
the anisotropic Hamilton-Jacobi equation and the bicharacteristics, corresponding to the level sets of the function7. As noted in
[4, 5, 6], it is very delicate to use the bicharacteristics (the optimal trajectories of the corresponding min-time control problem)
to construct an efficient method for computing the viscosity solution�: the characteristic and the gradient direction of� are
different and a causality property does not exist: it is no longer possible to decouple the system by computing the mesh points
in the ascending order.
The same type of problem arises in the computing of the equation (2) and so we use a weaker approximate causality property [4]
and a Fast Marching type of algorithm for computing the function7 on�. In the following figures, we show, for an anisotropic
problem, the levels curves of the viscosity solution� and of the solution7 of (2), which allow to construct the basic structure
of an adaptive mesh.
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A Level Set Method for Computing Discontinuous Solutions of a Class of Hamilton-Jacobi Equations

Yen-Hsi Richard Tsai� and Stanley Osher

Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095

Yoshikazu Giga

Department of Mathematics, University of Hokkaido, Japan

We introduce finite difference methods to compute the L-solution and the proper viscosity solution recently proposed by Y.
Giga for semi-discontinuous solutions to a class of Hamilton-Jacobi equations. By embedding the graph of the solution as the
zero level curve of a continuous function in one dimension higher, we can treat the corresponding level set equation using the
viscosity theory introduced by Crandall and Lions. However, we need to pay special attention both analytically and numerically
to prevent the zero level curve from overturning so that it can be interpreted as the graph of a function. We couple our
numerical methods with a singular diffusive term which is essential to computing solutions to a general class of HJ equations
that includes scalar conservation laws. With this singular viscosity, our numerical methods do not require the divergence
structure of equations and do apply to more general equations developing shocks other than conservation laws.
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4.9 Monday, Session 5 (morning): Numerical methods for MHD I

Multi-Dimensional Upwinding Method for the MHD-equations

Michael Fey� and Manuel Torrilhon

Seminar for Applied Mathematics, ETH Zürich, Switzerland

Introduction

Many flows, particularly astrophysical flows, are electrically conducting, and the electromagnetic forces can be of the same
order as the hydrodynamic forces. The governing equations ofmagnetohydrodynamics (MHD) basically merges the Euler
equations of gas dynamics with the Maxwell equations of electromagnetics. A feature of the MHD-equation, in contrast to
the Euler system, is the additional constrain&�' ��� � � on the magnetic field. This constrain does not introduce an elliptic
character into the equation but is intrinsically represented as# � �&�' ���� � �. Thus the system of equations automatically
meets the constrain&�' ��� � !I���. If this constant is zero it remains zero for all times.
Based on the ideas of multidimensional upwinding, we will present an explicit multi-dimensional upwind scheme for the MHD-
equations, which conserves&�' ��� according to a numerical divergence-operator and whos timestep is fully local. Properties
of the equations are discussed to show the influence of different choices of wave models.

Multi-Dimensional Upwinding

We will briefly summarize the idea of multi-dimensional upwinding. The idea is an extension of theMethodof Transport
(MoT) for non-linear systems of conservation laws. The method consists of two independent parts: The decomposition of the
non-linear system of conservation laws into a set of linear systems an the proper solution of these linear systems.
A general system of conservation laws can be written as

�� �� 
 � ��� � � (1)

with the vector� of the conserved quantities and the flux matrix�. Decomposition means, that we look for% vectors	 � �
	� ��� and velocities
� � 
� ��� that the two conditions
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holds. The actual linearisation consists in the decoupling of the functions	 � and
� from�. The system (1) can approximately
solved by the set of linear equations
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The solution after time�� is

� ��� ����� �

	�
���

	� ������ �

We call (3) the advection form of (1). As a numerical scheme for the non-linear system we basically need a scheme for the
scalar linear system.
Note, that with simple extensions or rewriting of the equations most of the existing schemes can be written in this framework.
For example, writing the equations in terms of the residual4@� � �� 
� ���, we get a conservation law of the form

4@�� �� 

�
)�

)�

 4@�

�
� ��
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Applying the framework to this representation will include the flux difference and residual splitting methods.

The MHD-Equations

The MHD-equations can be written as conservation laws (1) with

� �
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��!

���! �
�
�� ����
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������ (4)

where� denotes the density,� the velocity vector,� the magnetic field andH the total energy. The pressure� is related to the
conserved quantities by the equation of state
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Even though a decompositions of the MHD-equations into avection form (3) can be found, it is not possible to construct a
divergence-free scheme with this ansatz. The advection form (3), like any other planar wave decomosition is unable to control
the divergence in the linear equations except for the simple one-dimensional case where the constrain reduces to� � � !I���.
Thus, the constrain can only be fulfilled as a combination of different waves. We will discuss the implications and disadvantages
of this approach.
To take care of the special form of the equation we add a new advection type wave to the decomposotion that is able to control
the divergence. We use3 vectors
� � 
� ��� and velocities�� � �� ��� such that
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Again we decouple
� from� and�� from � and can approximately solve the equations for the magnetic field in (4) by the
set of equations
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and the solution after time�� is

� ��� ����� �

��
���


� ������ �

This linear equations share the same constrain as the nonlinear system. We will discuss the properties of the linear system and
show the basic ideas to derive a multi-dimensional divergence-free upwind method.

Decomposition of the MHD-equations

The last part of the method is to find a proper decomposition of the MHD equations into the two types of advection equations.
Since the linear equations (6) introduce no divergence into the solution nor will the sum of several of them. Thus, we can freely
combine these waves to model the physics of the problem.
On the basis of properly scaled eigenvectors we will show possible decompositions. Special emphasis is set on the multidimen-
sional character and a smooth transition in critical points.
Some numerical results for the most simple decomposition will be shown.
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Efficient Higher–Order Finite Volume Schemes for (Real Gas) Magnetohydrodynamics

Matthias Wesenberg� and Andreas Dedner

Institut für Angewandte Mathematik, Universität Freiburg, Freiburg, Germany

Introduction

The equations of magnetohydrodynamics (MHD) are a model for a compressible, inviscous, and electrically conducting gas in
the presence of a magnetic field. They are derived from the Euler equations of gas dynamics and the Maxwell equations and
can be written in divergence form:

#���� 
 ���� � � (conservation of mass)� (1a)

#����� �� 
 ����! � "� � � (conservation of momentum)� (1b)

#���� 
 ���! ���! � � � (induction equations)� (1c)

#���@� �� 
 ��@�� "�� � � (conservation of energy)� (1d)

� 
� � � (divergence constraint)� (1e)

For the density�, the velocity� � ���� ��� � �
! , and the magnetic field� � ���� ��� � �

! the total energy@ is the sum of
the internal, kinetic, and magnetic energies:
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If � denotes the unit tensor, the pressure tensor" is defined as
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The gas pressure��?� -� is given by a suitableequation of state (EOS), where? �� ��� is the specific volume. The simplest
example is the EOS of a perfect gas

��?� -� � �� � ��
-

?
� (4)

which for� � ��
 is a model for air if the pressure and the temperature are moderate. For low temperatures and high pressures
the EOS also has to respect the influence of intermolecular forces. One possible model in this situation is the van der Waals–
EOS
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!� �? � :�

� '

?�
(5)

for suitably chosen constants', :, ., !� , and-�.
The system (1) is hyperbolic and has to be closed by suitable inital and boundary conditions. To ensure the divergence constraint
(1e) in multidimensional simulations we use the technique presented in [DKK�02].
In [DW01] we introduced two classes of approximate one–dimensional Riemann solvers for the real gas MHD equations (1),
which we use as interface fluxes in our multidimensional codes. Motivated by the work in [BGH00] for the Euler equations of
gas dynamics (that is, (1a), (1b), (1d), and (3) with� �� �), the first approach takes advantage of the fact that the structure of
the MHD eigensystem in primitive variables is completelyindependent of the EOS chosen. Only the gas pressure� and the
speed of sound!� are EOS–dependent functions. Thus in principle we can use the same Riemann solvers as for the perfect gas
law (4). However, since conversions between primitive and conservative variables can be quite expensive, it pays off to use
primitive variables within the schemes wherever possible. The RGDW–solver which was presented in [DW01] and which is
derived from the perfect gas solver originally introduced in [DW95] completely follows these ideas.
The second class of solvers is based on the energy relaxation approach for Euler [CP98], which can also be extended to MHD.
For obtaining a numerical flux for the real gas system (1) we choose a suitable value for�, reuse an arbitrary numerical flux for
the perfect gas (4) and perform an relaxation step for the total energy. By means of this approach the extension of a perfect gas
code to the real gas case becomes very simple.



58 HYP 2002

In this communication we present recent extensions of our previous work [DW01] and [DKRW01]. Due to the enormous
memory requirements of a fixed table for an EOS in practical computations, we suggest the use ofadaptively refined tables, see
Section 4.9. Within a comparison of various MHD solvers for perfect gases, our new MHD–HLLEM scheme turned out to be
the most efficient one, see Section 4.9. We also discuss potential advantages of performing the linear reconstruction in primitive
variables rather than in conservative variables. While in one space dimension it is straightforward to implement a scheme which
shows second order convergence in numerical tests, this is a delicate task in two space dimensions. We identified two main
obstacles on unstructured (triangular) grids in 2D: inappropriate limiters and a tremendous influence of the grid structure. Both
issues are addressed in Section 4.9. We suggest a new limiter which guarantees an oscillation–free reconstruction and which
leads to more efficient higher order schemes.

Tabularized Equations of State
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Figure 1: Left: Results of the first order RGDW scheme for a van der Waals shock tube problem; grid spacing� versus
experimental order of convergence (eoc) for full EOS (solid line) and tables with resolution� � � (dotted/dashed lines).
Right: Levels of refinement in an adaptive table for� as function of? and- for the same problem.

In many applications the evaluation of the EOS is possible for arbitrary values of? and-, but expensive due to the iterative
procedures required for computing��?� -�. In this situation for the sake of computational efficiency one has to refrain from a
direct evaluation of the EOS and store selected EOS values in a table instead. However, the table resolution cannot be chosen
independent of the grid resolution, see Fig. 1 left. In order to save memory, we use an adaptive table. This pays off since
typically EOS values are only required in the vicinity of the table’s “diagonal”, see Fig. 1 right. For the solar physical MHD
problem with a partially ionized plasma considered in [Vol02] we found that the use of an EOS table reduces the computational
costs by��(. Moreover, to achieve a deviation from the exact EOS of less than���(, we would need a cartesian table with��
million entries; with our adaptive strategy we save��( of memory.

Efficiency of One–dimensional Schemes

The classical HLLE–solver only resolves the two fastest waves of the underlying one–dimensional system of PDEs accurately,
while the waves in between are strongly damped. In [EMRS91] the Euler–HLLE–scheme was modified (HLLEM–scheme)
by adding some anti–diffusion terms which improve the resolution of these waves significantly. Our new MHD–HLLEM
solver is an extension of these ideas to MHD; all but the fast magnetoacoustic waves are affected by anti–diffusion terms. If
the magnetic field� vanishes, the MHD–HLLEM solver coincides with the Euler–HLLEM solver. For a perfect gas MHD–
HLLEM turned out to be the most efficient solver considered in our comparison for both smooth and non–smooth problems.
This holds if the MHD–HLLEM flux is used either within a first order one–dimensional finite volume scheme or within a
second order scheme based on linear reconstruction with minmod limiter and Runge–Kutta time integration. Some results of
MHD–HLLEM in comparison with the DW–scheme which is based on [DW95] can be found in Fig. 2. In the real gas case the
RGDW–solver introduced in [DW01] may be more efficient for some problems since this solver also works well in primitive
variables, whereas for the sake of robustness we implemented our real gas MHD–HLLEM solver (RG–HLLEM) completely
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Figure 2: Results of the first and second order DW and MHD–HLLEM scheme in 1d for a smooth advection problem in the
perfect gas case. Left: grid spacing� versus experimental order of convergence (eoc). Right: computational efficiency, that is,
cputime versus error.
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Figure 3: Results of the second order RGDW scheme for a van der Waals shock tube problem; spatial position� versus� �.
Across the contact discontinuity�� is constant (solid lines). The reconstruction in conservative variables introduces spurious
oscillations (left), which do not occur if we reconstruct in primitive variables.

in conservative variables. Thus up to now for RG–HLLEM many (potentially) expensive conversions between primitive and
conservative variables are required.
Numerical tests show that a reconstruction of the constant volume data in conservative variables can cause spurious oscillations.
In the example considered in Fig. 3 this is due to the fact that across a contact discontinuity the primitive variables velocity
and pressure have to be constant, which does not hold for the conservative quantities momentum and total energy. Thus a
reconstruction in primitive variables cures this problem, see Fig. 3 right. Note that the finite volume scheme is conservative for
both choices of variables.
In two and three spatial dimensions dynamical local grid adaption is commonly regarded as a powerful tool for saving both
main memory and computational time. However, in view of the problems discussed in the next section, it is not clear if in
general such second order schemes will indeed be more efficient in terms of error versus runtime ratio than schemes on a fixed
grid. We try to answer this question by one– and two–dimensional tests.

Efficiency of Two–dimensional Schemes

The basic idea of extending a first order finite volume scheme to second order consists of two steps. For each element and
each scalar quantity one constructs a linear function, which is then used for the evaluation of the one–dimensional fluxes at
the interfaces. For the time integration one uses a standard second order accurate Runge–Kutta method. For the reconstruction
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Figure 4: Notation used for the DEO–reconstructions (left); grid after two bisections (middle) and after the quartering of each
triangle (right).

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.01 0.1

eo
c

h

dw (1st order, odd)
dw (1st order, even)
dw (DEOmod, odd)

dw (DEOmod, even)

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06

er
ro

r

cputime

dw (1st order)
dw (DEOmin)
dw (DEOmax)
dw (DEOmod)

Figure 5: Results of the first and second order DW scheme in 2d for a smooth advection problem in the perfect gas case.
Left: The experimental order of convergence is significantly different if the number of bisections is odd or even. Right: The
computational efficiency of the schemes with DEO–reconstruction strongly depends on the limiter applied.

in space we follow the approach in [DEO92], since it requires only information from the triangle itself and its three direct
neighbours. (A small domain of dependence is important for an efficient parallelization.) We found that both limiters proposed
in [DEO92] suffer from serious shortcomings. The choice of the linear function with the gentlest gradient in the DEOmin–
approach can be more restrictive than necessary, whereas the missing limitation can introduce oscillations. On the other hand,
the DEOmax–limitation still admits oscillations since the values of thereconstructions in the neighbours are not taken into
account. At the same time, any limited linear reconstruction should recover an initially linear function exactly. Since in general
triangular grids the side midpointsF� and the intersection points of the barycenter connections with the corresponding side! �

do not coincide (see Fig. 4 left), this does not hold for the DEOmax–approach.
Our new DEOmod–approach cures all of the previously described problems. We can prove that linear functions are exactly
recovered and that DEOmod guarantees oscillation–free reconstructions in the sense


,� � ���!��
� 
���!��� ,�
 � 
,� � ,�
 for � � " � 	

if ,�� � � � � ,� denote the volume values in/�� � � � � /�.
For the smooth advection problem considered in Figs. 5 and 6, the DEOmod–approach is clearly the most efficient one, see Fig.
5 right. If we quarter all triangles within each refinement step as in Fig. 4 right, the experimental order of convergence (eoc)
using DEOmod is clearly larger than�, and as in 1d the second order MHD–HLLEM scheme is the most efficient solver, see
Fig. 6. However, if we bisect the triangles with each refinement as in Fig. 4 middle, the results strongly differ depending on
whether the number of grid refinements is odd or even, see Fig. 5 left. Since this is only one of the various dependencies on the
grid we encountered, the efficiency of locally adaptive second order schemes becomes an urgent question.
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4.10 Monday, Session 5 (afternoon): Numerical methods for MHD II

A Wave Propagation Method with Constrained Transport for the Shallow Water Magnetohydrodynamic Equations

James Rossmanith

Department of Applied Mathematics, University of Washington, USA

The ideal magnetohydrodynamic (MHD) equations are important in modeling phenomena in a wide range of applications in-
cluding space weather, solar physics, laboratory plasmas, and general relativistic fluid flows. Apart from the specific challenges
that each one of these applications provides, there are two main difficulties that arise when integrating the MHD equations:

1. The magnetic field should be kept divergence-free from time step to time step in accordance with Maxwell’s equations.

2. The numerical update should produce a non-oscillatory solution near discontinuities.

Developing numerical methods that overcome these difficulties is hindered by the fact that the MHD system has a complicated
eigenstructure which can become non-strictly hyperbolic in certain regions of the flow. For this reason, it is important to have
a model system that retains the divergence-free and non-oscillatory challenges from the MHD equations, but has a simpler
eigenstructure and avoids complications in regions of non-strict hyperbolicity.
Gilman [3] introduced a simplified version of the MHD equations called theshallow water magnetohydrodynamic (SMHD)
equations. This system is analogous to the shallow water equations in the context of hydrodynamics. In order to obtain this
system, the fluid is assumed to be a thin layer of constant density that is in magnetohydrostatic balance in the vertical direction.
After applying these approximations, the resulting MHD equations are depth averaged to give the lower dimensional SMHD
equations:

#�

�� �
��
��

� �� 

�� ��
��� �� ����� �

�5�
��

����� ��� �

� � � (1)

� 
 ���� � � � (2)

where� � �#�� #��, � is the outer product,� is the identity matrix, and5 is the gravitational constant. The unknowns in the
above equation are the height�, the magnetic field� � ���� ���, and the velocity field� � ���� ���. The eigenvalues of the
flux Jacobian in theJ th direction are given by

*��� � �, #
!
��, � 5� (3)

*��� � �, #�, � (4)

The*��� fields are known as themagneto-gravity waves and are genuinely nonlinear, while the* ��� fields are known as the
Alfv)en waves and are linearly degenerate. It should be noted here that this system fails to be strictly hyperbolic in theJ th

direction if�, � �. In this case,*� � *� and the two Alfv)en waves collapse into a single wave, sometimes referred to as the
Rossby wave. This non-strict hyperbolicity is caused by the merger of two linearly degenerate waves; and therefore, unlike the
non-strict hyperbolicity in the MHD equations, it causes no numerical difficulties. Instead, the numerical problems that arise
when solving the SMHD system are precisely those stated above: a divergence-free constraint must be maintained during each
time step and the update should be non-oscillatory. For these reasons, the focus of this paper is to develop a numerical method
for solving the SMHD equations.
The SMHD equations not only require many of the same numerical techniques as the MHD equations, but are important as a
mathematical model in their own right. They have been used by Gilman [3] to model the solar tachocline. The solar tachocline
is a layer with thickness of about 2%-5% of the solar radius and it separates the convective zone from the radiative zone. It is
believed that magnetic fields originating in this thin layer are responsible for solar flares and sunspots; and furthermore, it is
believed that mathematical models such as the SMHD equations can be used to gain insight in the dynamics of the tachocline.
To gain this insight, accurate and efficient numerical solution techniques must devised.
The scheme presented in this paper is based on the wave propagation method of LeVeque [4]. This method is a high-resolution
upwind scheme that uses normal and transverse Riemann solvers to obtain a multi-dimensional update. If the divergence-free
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constraint is ignored, this method could be used without modification to solve the SMHD equations. In this case, all variables
are held at grid cell centers and an approximately non-oscillatory update is guaranteed by thetotal variation diminishing (TVD)
nature of the method. This, however, allows for the generation of a non-zero divergence of the magnetic field, which in turn,
produces unphysical solutions that can cause the numerical code to crash. A standard approach for correcting this problem is
to first use the base scheme to predict a value for the magnetic field��-�. This value can then be written as

��- � �����6 (5)

via the Hodge decomposition. By solving the elliptic equation

��6 � � 
 ���-� � (6)

the predicted value of the magnetic field can be corrected and made divergence-free:

����� � ��- ��6 � (7)

This approach is known as theprojection method. Because an elliptic solve is required for each time step, this approach is
expensive when compared to the base scheme [8].
An alternative class of methods can be developed by first returning to the SMHD equations in continuous form. The evolution
of the magnetic field can be written as

#� ���� ��� � � � � (8)

where� � ����� � ���� is the electric field. Taking the divergence of both sides of this equation shows that

#� �� 
 ����� � � � (9)

and therefore, if the magnetic field is initially divergence-free, it will remain so for all time. The base scheme does not satisfy
this property because the discrete differential operators do not satisfy the property� 
 ����� � �. A class of schemes known
collectively as theconstrained transport methods have been developed in which the discrete operators are defined such that
they mimic their continuous counterparts [8]. In these methods, only the height and the velocities are defined at cell centers.
The magnetic field is staggered so that the 1-component sits at left and right cell edges, while the 2-component sits at top and
bottom cell edges. A magnetic potential given by�� � � �� is defined at cell corners. To update the solution, a modified
Riemann problem based on the SMHD equations is solved to compute new values of the height and velocity field. To update
the magnetic potential, a Hamilton-Jacobi equation of the form

#���� � � (10)

is solved. New magnetic field values are obtained by differencing this potential. The difficulty of this approach lies in obtaining
an appropriate value for the electric field�. Currently, four distinct approaches exist in the literature [1, 2, 5, 6]. In this paper,
these four approaches are compared and a new method based on solving the Hamilton-Jacobi equation via wave propagation
methods is developed.
In summary, a new high-resolution wave propagation method for the SMHD equations is presented that utilizes the constrained
transport technique to keep the magnetic field divergence-free. Cell centered variables are updated by solving Riemann prob-
lems based on the SMHD equations, while staggered magnetic field values are updated by first computing a magnetic potential.
In particular, a wave propagation method is developed for solving the Hamilton-Jacobi equation that is satisfied by the magnetic
potential. The staggered grid representation of the magnetic field guarantees that the divergence-free constraint is satisfied to
machine precision. Furthermore, solutions will remain non-oscillatory near discontinuities since all updates are based on the
TVD wave propagation method.
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Magnetoplasmadynamic rocket propulsion: Conservation equations and Finite Volume solutions

Jörg Heiermann� and Monika Auweter–Kurtz

Institut für Raumfahrtsysteme, Universität Stuttgart, Germany

Magnetoplasmadynamic (MPD) rocket propulsion [1, 2] is one option for flying to Mars or to Jupiter’s moons in a short time.
MPD thrusters typically deliver a thrust up to the 100 N level and a high specific impulse.
MPD thrusters use an arc discharge between an anode and a cathode to heat a gas up to more than 10,000 Kelvin. In these
axisymmetric devices, the resulting plasma carries an electric current which induces an azimuthal magnetic field. The plasma
is thermally expanded and also accelerated by electromagnetic forces, and thus a very high exhaust velocity for efficiently
propelling spacecraft is achieved.

Theoretical and numerical investigations have been performed at the Institut f¨ur Raumfahrtsysteme (IRS) in order to gain a
more profound understanding of the complex physical processes involved [3, 5, 4, 6, 7].
In the IRS laboratory MPD thrusters are investigated experimentally and the numerical and experimental results are compared
in order to optimize the thrusters with respect to specific impulse, efficiency, reliability and cost.

An advanced numerical finite volume (FV) code has been written to solve the flow equations very accurately. The argon plasma
flow considered is described by conservation equations for species densities, momentum and energy for the heavy particles
(atoms and ions), by the conservation equation for electron energy and by the Maxwell equations of classical electrodynamics
reformulated as one conservation equation for the magnetic field. Reaction non–equilibrium, thermal non–equilibrium (two–
fluid model) and turbulent flow (one–equation model) are assumed.
13 time–dependent conservation equations and some 150 additional constitutive algebraic equations (for example, for the trans-
port properties) must be solved.
The conservation equations are hyperbolic–parabolic and include strong source terms.

For all of the above conservation equations, an advanced second–order accurate finite volume code on adaptive, unstructured
meshes with dual cells has been developed. The code includes features like non–linear weighted essentially non–oscillatory
(WENO) reconstruction, upwinding with respect to the magnetoacoustic wave and chaotic local time stepping for convergence
acceleration. Because only the mass flow is known from the experiment, on the inflow boundary, a numerical mass flow con-
troller solves the Riemann problems between a prescribed inflow state and the inner state at the inflow face. With a constant
temperature and a parabolic velocity profile, the pressure of the inflow state is varied until the solution of the Riemann prob-
lems delivers the required mass flux. Adaptive mesh refinement is performed using an extension of an asymptotically exact
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error estimator for the inviscid Euler equations. The indicator leads to reasonable refinement of boundary layers with extreme
gradients at the electrodes, of areas with strong source terms in the nozzle throat, and of shocks.

The conservation equations and the constitutive physical relations as well as the FV discretization are to be presented in detail
in this article.

This work is being supported by the German Research Foundation DFG (Deutsche Forschungsgemeinschaft) through the project
“Conservation Equations and Numerical Solutions for Technically Relevant Magneto–Plasmas” (Au 85/9-1,2,3), which belongs
to the German Priority Research Program (Schwerpunktprogramm) “Analysis and Numerics for Conservation Laws”.
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Physical symmetries and hyperbolic divergence correction scheme for Maxwell and MHD equations

Y. J. Lee�, F. Kemm and C.-D. Munz

Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Germany

One of the important properties of the solutions of Maxwell equations is the conservation of the electric and magnetic charges.
But, these charge conservation laws are not strictly obeyed by numerical solutions of Maxwell equations, due to the presence
of various types of numerical errors. The violation of the conservation laws is a consequence of thebroken gauge symmetry
in the computational space, which can be recovered by an introduction of the physically consistent counter terms. In this talk,
we present a new numerical scheme for the correction of the divergence errors for Maxwell- and MHD equations, which is
consistent with the symmetries of Maxwell theory, namely the Lorentz-, gauge- and duality symmetries. The central idea of
our divergence correction scheme is the implementation of the physically consistent counter term Ans¨atze to Maxwell and
MHD equations, for the restoration of the gauge symmetry. One of the main advantages of our method is that the divergence
conditions for the charge conservations are implemented into the Maxwell and MHD equations in thehyperbolic form, rather
than the genuine elliptic form, and it can be easily implemented into the existing codes for Maxwell and MHD solvers via
operator splitting Ansatz.
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4.11 Monday, Session 6 (morning): Applications I

Asymptotic Analysis of Phase-Field Models of Solidification

S. I. Hariharan�, Curtis Clemons and G. W. Young

Division of Applied Mathematics, The University of Akron, Akron, OH 44312

In this talk we study phase-field models related to solidification problems. We consider both pure material systems as well as
binary alloy systems. The purpose of this work is to provide an analytic approach to investigate phase-field models. Model
parameters are chosen so that the pointwise solutions of the phase-field models agree with the corresponding sharp-interface
problems. The analysis presented here is based upon asymptotics in terms of two small parameters: one involving latent heat
and another involving the thickness of the interfacial region.

Solvability and Asymptotic of solutions of Crack-Type Boundary-Contact Dynamic Problems of Elasticity

Otar Chkadua

A. Razmadze Mathematical Instituite, Academy of Sciences of Georgia

Boundary-contact dynamic problems of elasticity theory are investigated for anisotropic homogeneous media (with contact on
some part of the boundary) with cracks. Let
� and
� finite domains in the�-dimensional Euclidean space.�, � � �
with the boundaries#
�, < � �� �, #
� � 
�; 
� � 
� � �, #
� � � $ #
�; � � #
� � �, #
� � �� $ ��,
�� � �� � �, #�� � #�� � 
�, where�� is the crack surface and�� is the contact surface. Suppose that domains
�,
< � �� � are filled with different anisotropic homogeneous elastic materials. The basic dynamic equations of elasticity for
anisotropic homogeneous elastic media are written as
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Define
.
��&������� � �� as the set of all(-times continuously differentiable on������ in �-valued functions satisfying the
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We have studied the solvability and asymptotics of solutions of the following boundary-contact dynamic problems in the spaces
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Boundary-contact dynamic problem with mixed boundary conditions:�
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. Theorems on the existence and uniqueness of solutions of the considered boundary-contact dynamic problems

in the spaces
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 �
��� are obtained by using the Laplace transform, the potential theory and the general theory

of pseudodifferential equations on a manifold with boundary. Here
�	 � � � 
 in the case of the boundary-contact problem
with the Neumann boundary conditions, and
�	 � � � � � B � 
 in the case of the boundary-contact problem with mixed
boundary conditions where�,B depend on the elastic constants as well as on the geometry of the contact boundary (the crack
boundary). A complete asymptotic of solutions is established in the near the contact boundary (the crack end). The properties
of exponents of the first terms of asymptotic expansion of solutions are studied and effective formulas for their calculation are
found. In particular, the exponent of the first term of asymptotic expansion of solutions of boundary-contact problem with
Neumann boundary conditions has the form��� � "Æ. Necessary and sufficient conditions for the vanishing of oscillation are
found �Æ � ��. Hence the asymptotic expansion of solutions describes a real physical process.In this asymptotic expension
step is one. Further, the asymptotics of solutions of boundary-contact problems with mixed boundary conditions has different
properties as compared with the asymptotics of solutions of other problems, i.e.,

1) the real part� of the exponent of the first term of asymptotic expansion of solutions depend on elastic constants and also on
the geometry of the crack boundary, and may take any values from the interval��� ���� ; a) if the elastic constants satisfy the
limit conditions

'
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2) classes of isotropic (with elastic constantsL�, *�) and also transversally-isotropic (with elastic constants!
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!
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 in the conditions!����� � !

���
�� ) bodies are found for spatial�� � 	� boundary-contact problems with mixedboundary

conditions when oscillation vanishes in the asymptotic expansion of solutions. In such cases, effective formulas are obtained
for calculatingexponents of the first terms of the asymptotics:
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Note that the first terms have no logarithms. I’d like to note, that these classes are found only in spatial problems since it is
known that in such cases oscillation does not vanish in plane problems. In the transversally-isotropic case we assume that the
neighborhood of the contact boundary is parallel to the isotropic plane.

3) in the general case (in particular, in the transversally-isotropic case, where!
���
�� �� !

���
�� , < � �� �) we have found a class of

anisotropic bodies when the oscillation in theexpansion vanishes, while the real part� of the exponents of the first term of the
asymptotic expansion is calculated by a simpler formula
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where�� � �, B� � � �0 � �� � � � � �� are eigenvalues of theprincipal homogeneous symbols of the Poincare–Steklov operators.

4) if the domains are filled with the same material, then the exponents of the first and second terms have the form��
 � "Æ �,
	�
 � "Æ� respectively; these terms are free from logarithms and oscillation does not vanish. In this asymptotic expansion step
is one-half. The time parameter� in asymptotic expansion of solutions participates only in coefficients. In some particular cases
of spatial dynamic boundary-contact problems withcracks of half-plane type, the first coefficient of solutions of asymptoticsis
calculated, which depends on elastic constants, the time parameter� and global boundary and boundary-contact values. In these
cases, the so-called Griffits criterion can be formulated as aproblem of finding a moment of time after which the crack begins
to grow.
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4.12 Monday, Session 6 (afternoon): Applications II

Simulation of the motion and heating of an irregular plasma

V. T. Astrelin and A. V. Burdakov

Institute of Nuclear Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090, Russia

N. A. Huber�

Novosibirsk State University, Novosibirsk 630090, Russia

V. M. Kovenya

Institute of Computational Technologies, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090, Russia

In recent decades, plasma heating and confinement has become an important problem in plasma physics. Because of the variety
of regimes, the wide range of parameters of the medium, and the complexity and nonlinearity of the examined processes,
problem of plasma heating and propagation is a multiparameter one, which requires using various approaches to solve it. In the
present work, a numerical simulation of the plasma dynamics is used in experiments on heating and motion of a dense gas cloud.
The expansion of a plasma cloud in an external magnetic field is studied using some simplifications in a magnetohydrodynamic
approximation. The basic equations include continuity, motion, energy and magnetic-field equations. For numerical solution
of the problem, a finite-difference scheme of the type of a universal algorithm with splitting into physical processes and spatial
directions is developed, which allowed to obtain separate solutions of the equations of magnetic induction and gas dynamics.
Calculations of the propagation of a plasma cloud heated by a source in an external magnetic field were performed. The
mechanism of the effect of the magnetic field and heat source on plasma cloud expansion is determined.

Wave Processes Of Collapsing Bubbles Containing Generic Or Retrograde Gases

Sigrid Andreae� and Josef Ballmann

Lehr- und Forschungsgebiet für Mechanik der RWTH Aachen, Germany

The process of production of cavities or bubbles in a liquid is called cavitation. It is caused by a pressure drop in the liquid
below vapor pressure. This may occur in the flow of a liquid through a narrow orifice or around an obstacle. In flow regions
with pressure above vapor pressure the bubbles will collapse. This collapse is accompanied by strong shock and rarefaction
waves. Their damaging effect on solids is observed in experiments [4]. However, the prediction of onset and extent of the
cavitation damaging is not satisfying. Up to now little is known about the physical processes taking place in the interior of the
collapsing bubble [3]. Small time and space scales make an experimental approach difficult. The numerical investigations are
expected to reveal information about the physics inside the bubble and the damaging of the solid. In addition, the possibility is
included that the cavitating fluid may be not generic but a BZT (Bethe-Zel’dovich-Thompson) fluid. This is of importance since
some liquid fuels belong to that group. Normally, a collapsing gas bubble in a liquid is modeled as a two phase flow problem.
In that case one has to treat the gas-liquid boundary, either tracing it with a method like level-set or volume of fluid or using
two meshes in order to distinguish between the two phases. At least the second case is numerically very expensive since the
mesh has to be updated in every step. To overcome that problem we model the gas as well as the liquid with the same equation
of state. We choose the van der Waals equation of state (thermal: eq. 1, caloric: eq. 2) since it yields qualitative good results
for the gas as well as for the liquid phase,
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� pressure � temperature
@ internal energy 	 specific volume
. specific gas constant !� heat capacity
'� : van der Waals constants� entropie

Besides it provides a proper representation for BZT Fluids. In the single phase regions the only parameter of the equation that
changes is the heat capacity which has to be implemented as a function of temperature and specific volume,
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However, the van der Waals equation can not be used in the region of phase transition since it shows an unphysical inclination
in the�-	-diagram. Between the two spinodal points at the end of the supersaturated vapor and overexpanded liquid curve the
first derivative of� by 	 is positiv which is thermally unstable. In this region pressure as a function of volume and temperature
has to be calculated by means of the maxwell construction. It is implemented using a numerical library for equations of state
written at the IGPM by A. Voß [6].
BZT Fluids are high molecular hydrocarbons or -fluorids. They are a subgroup of retrograde fluids which exhibit a character-
ictic overhang of the wet steam curve in the� -�-diagram. Near that hat-sphaped overhang they can condense on isentropic
compression. The overhang leads to a concave bending of the isentropes near the critical point in the�-	-plane. This is in
contrast to generic fluids whose isentropes are convex. A measure for that bending is the fundamental derivative,�, which
becomes negative in that region.
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The gasdynamic curiosity of the� � ��region is the possibility of expansion shocks. To fulfill the entropy condition across
a shock in case of a negative fundamental derivative the pressure jump has to be positive. The closure of the system of
conservation laws requires caloric and thermal equations of state which are able to describe these effects properly. The chosen
van der Waals equation of state provides a good representation of the effects in the region of negative�.
The fluid is modeled by the time-dependent Navier-Stokes equations for compressible fluid flows. Neglecting effects of vis-
cosity and heat conduction, the system is hyperbolic, otherwise parabolic. The system is solved using an implicit Finite
Volume scheme on structured grids based on Roe’s approximate Riemann solver [5] in a formulation by Grotowsky [1] for
two-dimensional flows, extended by Hanke [2] for flows with rotational symmetry.

As test case a hot gas bubble at low pressure surrounded by the same gas at high pressure and low temperature was computed
with a perfect gas equation. First the case of a bubble in a free fluid with no solid boundaries is investigated, see fig. 1. The
results of the single phase simulation are encouraging. The shock wave running into the bubble’s center as well as the following
contact discontinuity are well resolved. Due to the rotational symmetry the focusing shock wave reinforces and is reflected in
the center. Afterwards it crosses the contact discontinuity and evokes thereby Rayleigh Taylor fingering instabilities. The next
test case is to place the bubble near a solid wall. The results which show a liquid jet towards the wall will be presented. This
permits an evaluation of the walls influence on the collapse process. The results which show a liquid jet towards the wall will
be presented. Then the same cases will be investigated for the van der Waals equation of state for a generic as well as for a BZT
fluid.
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Figure 1: I.C. interior:� � �bar,� � ��	K; I.C. exterior:� � ��bar,� � ��	K
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The Flow of Thin Liquid Films with a Contact Line

Michael Shearer

CRSC and Mathematics Department, North Carolina State University

A fourth order nonlinear pde describes the flow of a thin liquid film up an inclined surface, under opposing forces of gravity and
shear stress. The Navier slip condition allows a small amount of slip between the liquid and the solid surface near the contact
line; it is designed to remove the stress singularity that occurs under the usual no-slip condition. Numerical solutions reveal
a subtle connection between the contact line dynamics and the nonlinear transport represented by the underlying nonconvex
scalar conservation law. In particular, traveling waves are identified as compressive or undercompressive, depending on whether
upstream characteristics enter or leave the contact
line. The results include asymptotics at the contact line, and the analysis of an associated planar vector field.
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Figure 1: (a) Schematic diagram of a soil sedimentation experiment in a settling column. Initially (� � �) the whole column is
filled with a soil-water suspension with uniform porosity�. (b) The nonlinear wave phenomena in settling column experiments
modelled by a scalar conservation law.

Nonconvex Flux Functions and Compound Shock Waves in Sediment Beds

Gert Bartholomeeusen�

University of Oxford, UK

Hans De Sterck

University of Colorado at Boulder, USA

Gilliane C. Sills

University of Oxford, UK

Sediment layers deposited under water undergo a deformation that for low soil concentrations can be described by a scalar
nonlinear hyperbolic conservation law. The associated flux function is nonconvex and compound shock waves, which are
shocks followed or preceded by a sonic rarefaction, arise. The paper describes an experimental study of compound shock waves
in sediment beds and the numerical modelling of the sedimentation process using an experimentally obtained flux function for
kaolinite soil. The non-convexity of the flux function is investigated as it is quite different from what usually is assumed for
soil suspensions. The work also fits in a broader investigation of the transition parameter between the physical processes of soil
sedimentation and consolidation, as the data obtained allows identification of this parameter.
Fig. 1(a) shows a schematic diagram of a soil sedimentation experiment in a settling column. Initially (� � �) the whole column
is filled with a soil-water suspension with uniform porosity�, defined as the volume of voids divided by the total volume.
During the subsequent temporal evolution (middle panel), nonlinear wave fronts propagate from the top and bottom of the
column into the suspension. A sediment-water interface propagates downward from the top surface, separating a top layer
consisting of pure water from a middle layer which has the initial porosity. The porosity changes in an almost discontinuous
or shock-like fashion over the sediment-water interface. When initial porosities are not too low, the middle layer is separated
from a bottom layer by an upward propagating porosity step, over which the porosity changes discontinuously as well. Detailed
measurements of porosity profiles show that this porosity step is followed by a continuous rarefaction wave, which forms,
together with the porosity step, a so-called compound shock wave. Compound shocks are wave structures composed of a shock
followed or preceded by a rarefaction that is sonic — i.e., the point where the rarefaction is attached to the shock propagates
with the local wave speed [6]. It is well-known that compound shocks arise in systems described by hyperbolic conservation
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laws with non-convex flux functions, i.e, for which wave speeds do not vary in a monotonous manner with relevantchanges
of the state variables. Many physical systems that can be described by hyperbolic conservation laws have flux functions with
quadratic nonlinearities that are convex. For example, the scalar Burgers equation and the system of Euler equations for gas
dynamics are convex such that compound shocks do not occur. More complex flux functions may be obtained when real
gases are modelled, which may allow for the occurrence of compound shocks. An early example of a non-convex scalar flux
function is given by the Buckley-Leveret equation which models two-phase flows that pertain to oil recovery problems [6]. This
equation exhibits a cubic flux function. The system of magnetohydrodynamics equations has two non-convex modes [2] and
exhibits compound shocks, which have been found in numerical simulations in one, two and three spatial dimensions [2, 3, 4].
Compound waves and non-convex flux functions for sedimentation processes have been discussed first by Kynch [5], and later
also by Wallis citewallis69. In Fig. 1(b) it is indicated how the nonlinear wave phenomena in settling column experiments can
be modelled by a scalar conservation law

#�

#�
�
#����

#�
� �� (1)

with a non-convex cubic flux function, which allows for the occurrence of compound shocks. The initial condition contains
two Riemann problems at� � � and� � � (� � �). A shock wave propagates downward, and a compound shock propagates
upwards (� � ').
The goal of the present paper is to produce an appropriate flux function for the kaolinite sedimentation process based on unique
experimental data obtained using X-rays. First, it is illustrated how the main features of the nonlinear wave phenomena that
occur in settling column sedimentation experiments can be described by a scalar hyperbolic conservation law model with a
simple cubic non-convex flux function. Second, extensive experiments are performed on a very-grained Kaolinite soil, which is
naturally exploited, but industrially processed for amongst others the paper industry. Sedimentation experiments are performed
in 102 mm diameter acrylic columns [1, 7]. Uniformly distributed suspensions are deposited at different initial porosities to
study the different forms of shock waves that arise. The surface settlement is monitored of experiments starting at high porosity
or low concentration to study the regular shock wave of the water-sediment interface. Fig. 2 shows a selection of experimental
results with initial porosities ranging from 0.93 to 0.98. Experiments starting at lower porosity are additionally monitored with
an X-ray absorption technique [1]. In these X-ray monitored experiments it is possible to track accurately the porosity step in the
sediment bed and study compound shock waves and rarefaction waves. Fig. 3 shows an example of an experimentally observed
compound shock wave, which consists of a porosity step followed by a sonic rarefaction wave. Note the clear similarity with the
middle profile of Fig. 1(b). The sedimentation behaviour of Kaolinite for high initial porosities will result in a initial constant
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Figure 3: X-ray porosity measurement,
Kao2dd, with Shock Tracking.

settling rate as observed in Fig. 2. The porosity just under the shock is still the initial value and a point of the flux curve can
thus be calculated. Experiments where the porosity step is tracked with time, Fig. 3, give information about the location of
the compound shock wave. Since the sediment layer is a continuum, the velocity of fixed material or Lagrangian coordinates
can be calculated from identifying the corresponding Eulerian coordinates of consecutive measurements. Thus X-ray profiles
provide the solid’s velocity and porosity for consecutive measurements, and the corresponding flux can be derived. In this way
the non-convexity of the Kaolinite flux function can be quantified. It is shown that the flux curve of Kaolinite is quite different
from what is usually assumed for soil suspensions in terms of the locus and amplitude of the convex extremum.
The unique experimental data leading to an appropriate flux function demonstrate that the experimental method used provides
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a flux function that is significantly improved over what has been available. The conference presentation will include video
demonstrations of shock wave processes in settling soil.
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4.13 Tuesday, Session 1 (morning): Vanishing viscosity

Vanishing viscosity approximation of multidimensional shock and boundary layers

Kevin Zumbrun

Indiana University, Bloomington, USA

We present joint work with Olivier Gues, Mark Williams, Guy M´etivier; see [MZ, GMWZ]. The basic question under consid-
eration is existence of (noncharacteristic) multidimensional viscous boundary and shock layers in the vanishing viscosity limit:
more precisely, validity of matched asymptotic expansions constructed, respectively, in [GG] and [GW]. This problem has
been addressed in the one-dimensional case in [GS,GR] (boundary layers) and [GX,Y,R.1] (shocks). In the multidimensional
boundary layer case, validity has been established for small amplitude layers and “prepared” (i.e. viscosity-dependent) data in
[GG]; important preliminary investigations have been carried out in [R.2] for the large amplitude case. Here, as in [GR,R.1–2],
we allow arbitrary amplitude layers for which the inner layer satisfies an appropriate Evans function condition that is necessary
for stability. In the case of prepared data, we give a complete analysis; for unprepared data, we indicate the new difficulties
involved, and present partial results obtained so far.
The standard strategy in the vanishing viscosity problem (see, e.g., discussion in [GG]) is to: (i) construct an approximate
solution to appropriately high order; and (ii) establish linearized stability of the approximation. Step (i) has been carried out in
[GG,GW] to arbitrarily high order, at least for the case of prepared data. Thus, our focus here is on stability. (However, note
that the two problems are not disjoint, particularly in the case of unprepared data). Away from layers, this may be established in
somewhat standard fashion by paradifferential (symmetrizer) techniques. However, the fast “inner layer” of the solution must
be treated more carefully.
Detailed�� 	 �
 (� � �) linear estimates for planar shock layers have been established in [Z] by direct calculation/resolvent
estimates; however, these techniques are not available in the time-varying “curved shock” setting we now consider, nor for the
time-varying boundary layer problem. Moreover, we are restricted in multi-dimensions by the hyperbolic (or “outer”) part of
the solution to seeking�� 	 �� bounds, analogous to but (even in the constant-coefficient case) distinct from the� � Green’s
function bounds found in [GR]. And, we must obtain these bounds by a method suitable for the analysis of both hyperbolic
boundary-value problems and their parabolic regularizations.
To satisfy these requirements, we follow Kreiss’ analysis of hyperbolic boundary value equations. Our basic estimates concerns
the�� stability of the linearized equations, and are proved using symmetrizers and a suitable extension of Kreiss’ analysis to
parabolic-hyperbolic problems, and to shock (vs. boundary) layers. It can be seen by comparison with explicit representations
of the resolvent in the planar case, carried out respectively in [A] and [Z], that this basic estimate is sharpfor both hyperbolic
and parabolic parts of the equations. Moreover, we signicantly relax the structural assumptions under which the parabolic
results of [Z] were obtained, just as the Kreiss analysis relaxed the assumptions necessary for the hyperbolic results of [A].
In the shock case, there is an additional difficulty that, as in the hyperbolic case, the boundary conditions induced by considering
the problem as a doubled boundary value problem aresingular, with associated Lopatinski determinant vanishing to the order
of the frequency of perturbing signals. In the hyperbolic case [Ma,M], the singularity is confined to a variable describing
front location, so does not affect interior estimates. In the hyperbolic–parabolic case under consideration, this “decoupling” is
not explicit, and must be detected through the analysis. To overcome this difficulty, we introduce a new class of “degenerate
symmetrizers” weighting “parabolic” (fast) modes less than “hyperbolic” (slow) modes. These have the effect to maintain
the usual, hyperbolic interior estimates, while giving up trace estimates in the unique singular parabolic mode. This mode,
approximately described by the spatial derivative of the front, can be viewed as encoding the shock location, so that the
estimates obtained are completely analogous to those of the hyperbolic case.
The basic�� 	 �� symmetrizer estimates just described are the key results needed to carry out the prepared data bounded
time vanishing viscosity problem, which in the shock case roughly corresponds to the artificial problem of long-time asymptotic
stability of planar fronts forzero mass data. However, it is easily seen that they do not suffice for general data. More precisely,
the ordering by strength of neededplanar estimates is: prepared data vanishing viscosity� zero mass planar stability� nonzero
mass planar stability� unprepared data vanishing viscosity. Using a novel (and rather delicate) duality argument together with
the degenerate symmetrizer techniques just described, we are able to obtain also sharp� � 	 �� bounds sufficient for the
treatment of the nonzero mass planar problem. Indeed, we recover the� � decay results of [Z], with only slightly stronger
assumptions on regularity of initial data (needed to control�� by Sobolev embedding). So far as we know, this is the first use
of symmetrizers to obtain estimates from spaces other than��, which are essential for the nonzero mass case.
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Though far from certain, it is our hope that these newer techniques will be of use in treating the unprepared data vanishing
viscosity problem that is our ultimate goal. In any case, they give an appealing (and illuminating) alternative proof of long time
asymptotic stability in the planar case.

REFERENCES
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Parabolic problems which are ill-posed in the zero dissipation limit

Jacob Ystr¨om�

Department of Numerical Analysis and Computer Science KTH Stockholm Sweden

Heinz-Otto Kreiss

Department of Mathematics University of California at Los Angeles, USA

We consider linear second order parabolic Cauchy problems which are ill-posed in the limit of zero dissipation. We show that
for smooth coefficients the principle of frozen coefficients is applicable. That is, the growth rate predicted by this principle for
a small viscosity parameter is correct. We discuss the limitation of this principle and show by examples that if the coefficients
are varying on a scale that is proportional to the viscosity parameter then the problem need not be unstable. For non-linear
problems we can conclude that smooth solutions in regions where the characteristics are complex are not stable. We show that
small perturbations of smooth complex initial data for the viscous Burgers’ equation result in a���� change of the solution. For
two non-linear examples, numerical calculations demonstrate that for smooth initial data the solutions rapidly form non-smooth
solutions – dissipative structures – that stabilizes the inherent instabilities.
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Green’s function pointwise estimates for the modified Lax-Friedrichs scheme

Pauline Godillon-Lafitte

UMPA, ENS Lyon, FRANCE

When considering one-dimensional hyperbolic systems of conservation laws

�� � ����� � �� (1)

� � ���� 	 �'� � � ����'�� ) � ��

with an initial datum���� �� � ������ � � �, a natural way to approximate solutions is to mesh the time and space variables
: � % %�, � � � and� % �0, 0 � �. We are interested here in the non-homogeneous numerical problem associated to the
modified Lax-Friedrichs scheme

���� � & ����� � � �� and��� � ��0�� (2)

where the (nonlinear) operator& reads

�&��� � �� � �%����'��� � ������'������ ����� 0 � �� (3)

the numerical flux' being defined'��� 	� � ����� � ��	��������� 	�� with � a scalar constant. Assuming that, given a
non-characteristic stationary shock���� ��� of (1) such that (1) is strictly hyperbolic at��, there exists an associated discrete
shock profile�� of (3), that is, a fixed point of& , we aim here to study the linear stability of�� : denoting by� the linearized
operator about��, we consider the non-homogeneous problem

	��� � �	� � �	� � � �� (4)

	�� �	 �� 0 	 (�� � � �� (5)

	� � �� (6)

where�	 and� are given. Given3 � �, the Green’s function�8�0� �� 3�� �������	� is a sequence of matrices that satisfies (4)-
(5)-(6) with �	 � � and�� � Æ��, Æ denoting the Kronecker symbol, so that, thanks to the superposition principle, the solutions
of (4)-(5)-(6) can be expressed through8, �	 and�.
Following Zumbrun and Howard’s work on the viscous approximation [5] and assuming that�� is spectrally stable, that is�
has no spectrum outside the disc�
L� �
 � �� except possiblyL � �, we obtain a precise description of the behaviour of the
Green’s function [3]:

8�0� �� 3� � ����.�

where� corresponds to an excited stationary term, that takes the form of a projection on the kernel of�, � is a sum of
Gaussian-type waves that reads
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with '�� the eigenvalues of&����� and4�� some corresponding eigenvectors, and. is a fast-time decaying term.
This result is analogous to the ones proved by Zumbrun and Howard [5] in the case of viscous shock profiles, although they do
not set on� (the continuous analogue of our discrete variable3) to be bounded.
Let us now give a physical interpretation of this result. At first, the Dirac mass splits into waves that propagate along the
outgoing characteristics and waves that propagate along the entering characteristics. The waves that are carried by the outgoing
characteristics, that is eigenvectors corresponding to negative (respectively positive) eigenvalues if the Dirac mass was on the
left-hand (resp. right-hand) side of the shock, take the shape of moving Gaussians that are damped by the numerical viscosity.
Their asymptotic speeds are the corresponding eigenvalues of the derivatives of the flux at the endstates multiplied by the ratio
%��. The waves propagating along the entering characteristics move towards the shock, and when each wave corresponding
to a different characteristic reaches the position of the shock (0 � �), similar outgoing waves as described above are emitted.
Furthermore, if the shock is compressive, as soon as the first entering waves has reached the shock, a stationary residual wave
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that is strongly related to the kernel of� may appear, depending on the position of the Dirac mass as initial datum. There
is also a fast-time decaying term. Note that the fact that the outgoing waves are Gaussian-shaped is compatible with theJ �

conservation of the mass.
Numerical simulations are available athttp://www.umpa.ens-lyon.fr/˜pgodillo/.
The main tool that we use is the Laplace transform with respect to� that is defined by

	 � �	����� �	
�
* � � �	 ,	�*� ��

�
���

@�3�	�

�
� (7)

where� is a subset of� that we choose such that the sum in (7) converges. In particular, since (7) is"� -periodic, we set on
� to be contained in the strip) �� �* � ���  � -��*� �  �. Given3 � �, the Laplace transform of8�
� 
� 3� with respect
to � that we denote by83�0� 3� is a solution of the following problem

��� @3 � ��83�0� 3� � �Æ��@3M'� 0 � �� (8)

83�0� 3� �	 �� 0 	 (�� (9)

We rewrite the eigenvalue equation��� @3 � ��	 � � associated to� as a first-order dynamical system

�� � ���*������ �� �

�
	�

	��� � 	�

�
� ��'� 0 � �� (10)

Thanks to the spectral stability assumption,* �	 83�
� 3� is holomorphic in���*� � ��. Besides, we express83�
� 3� in a
basis� (resp.*) of solutions of system (10) that tend to� as0 tends to�� (resp. as0 tends to��), so that we are able to
prove that, thanks to the Gap Lemma of Gardner and Zumbrun [2, 5],8 3�
� 3� is meromorphic in���*� � �9� 
+�*�
 �  �,
9 being positive, with a pole at* � � or holomorphic in this neighborhood depending on the nature of the shock. Then we
compute estimates of83 for bounded3. Finally, we find estimates of8 thanks to the inverse Laplace transform

8�0� �� 3� �
�

�" 

�
�

@3�83�3� 0�&*�

where� is at first a path lying in���*� � ��. But, thanks to the extension of* �	 83�
� 3� and the Cauchy formula, we are
able to choose paths of integration that may cross the imaginary axis. One must be very careful with the value* � � that can
be a pole of* �	 83: a stationary residue may appear.
Estimates for the boundary layer problem can be obtained with the same techniques : they are a crucial step towards the proof
of the convergence of the scheme when large boundary layers occur, as was done in the viscous setting by Grenier and Rousset
[4]. The convergence in the discrete case with small amplitude boundary layers was proved by Chainais-Hillairet and Grenier
[1].
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4.14 Tuesday, Session 1 (afternoon): Adaptive methods II

Computational Design of the Adaptive Vertical Coordinate Ocean Circulation Model

Tony Song

Jet Propulsion Laboratory, California Institute of Technology, Oak Grove Drive, Pasadena, CA

An adaptive vertical coordinate system is introduced to better represent the sub gridscale mixing and bottom boundary layer
processes in numerical ocean models. The new vertical coordinate system is formulated by combining three techniques: ar-
bitrary vertical coordinate system of Kasahara (1974), the general pressure gradient formulation of Song (1998) and a new
buoyant parameter which permits a smooth transition scheme to represent the optimal features of commonly-usedF, N and�
coordinates. The numerical design is based on a staggered finite volume method to ensure conservation of physical proper-
ties without altering numerical accuracy in the cases of arbitrary distorted volumes and can be easily applied to any existing
ocean model. Three different problems: a coastal canyon, a basin scale circulation and a global ocean circulation are used
to demonstrate the capability of the new model formulation for a hierarchy of scales from coastal to global. Our modeling
results based on the S-Coordinate Rutgers University Model (Song and Haidvogel 1994) show that the new model is capable of
simultaneously simulating both shallow and deep ocean processes without incurring computational expense. The applications
show that the adaptive feature allows diverse modelers to chose desired vertical structure for a wide range of geophysical flow
problems and to share modeling resources in a uniformed numerical formulation.

Three dimensional numerical modelling convective instability by supernova expolsion with nested grids scheme on
multiprocessors systems

Sergey D. Ustyugov� and Alexander N. Andrianov

Keldysh Institute of Applied Mathematics, Russia

We carried out three dimensional hydrodynamical simulations to study development large scale convective instability into a
protoneutron star by supernova expolsion II type. The initial state is rotating protoneutron star with excess entropy at the
centre. On the last stage of collapse of the iron core of a star the process of nonequilibrium neutronization of matter provides
high entropy and great mean energy of the neutrinos in the central part of the protoneutron star. The hydrodynamically unstable
configuration of a protoneutron star is formed. The statement of the problem consists in studing the development of the
nonuniformity scale of the entropy distribution. The central density and central temperature was taken to be� � �� ��g/cm�

and� � �����. On the boundary of numerical region we keep initial equilibrium values of all variables. The weak solid-body
rotation of protoneutron star was taken into account, with the ratio of the rotational kinetic energy� to the gravitational energy

K 
 being��
K 
 � ����. The coordinate system was chosen so that the plane of rotation of the star coinced with the��
plane. It was assumed that relativistic degenerate electrons and an ideal nonrelativistic Fermi gas of nucleons contribute to
the equation of a state of substance inside the star. The excess entropy was produced close to the center of the star and had
functional form� � �� � ��� � ���@�� ��
G4 � G4�
�
:
�, �� � 	�� and4� � �. The equations of hydrodynamics, in the
adiabatic approximation)��)� � �, with gravitation was used to model the convective processes. In the adiabatic formulation,
the entropy shows the evolution of the dredge-up of hot, lighter matter. The hydrodynamic equations was written in conservative
form

# G,

#�
�
# G�

#�
�
# G8

#�
�
# G&

#F
� G�

The numerical method which we used was an explicit Godunov-type conservative TVD difference scheme with second order
by space and time



80 HYP 2002
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Fluxes along each direction, for example x, was defined by local-characteristic method [1] as follows
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'
where.����� is matrix right eigenvectors of Jacobian matrix��,� � #��#, .
The elements3 of vectorsK����� is
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The amplitude of waves��
����� is elements of vectors
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The functionD is
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F
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F
 � Æ�
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and define entropy correction by
F
, whereÆ�-small positive parameter. The function-limiter5 �� was defined as follows:
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The one step of time integration is defined by Runge-Kutta method [2] as
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The time step is restricted to satisfy the Courant condition along each row in three directions, and is calculated with
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�
and
�� � ��� typically. 	�,	�,	 are the velocity of matter in each direction and!� is the speed of sound.
For higher resolution in the numerical modelling we have used three level of nested rectangular grids with 128 cells in each
directions. Solution results for above described problem were obtained due to the NORMA system application [3] on the
system with distributed memory multiprocesseres ( two Alpha 21264/667 MHz in node, memory 1 Gb in node, SAN Myrinet


