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The simulation of waves in unbounded media arises in many applications from
acoustics, electromagnetics, or elasticity. Typically, the local phenomenon of inter-
est contains complicated geometric features, inhomogeneity, and possibly nonlinear
effects. Modern numerical methods can handle complicated geometry, inhomoge-
neous media, and nonlinearities. However, they require an artificial boundary B,
which truncates the unbounded exterior domain and restricts the region of interest
to a finite computational domain 2. It then becomes necessary to impose a boundary
condition at B, which ensures that the solution in € coincides with the restriction to
Q of the solution in the unbounded region. Usually various approximate boundary
conditions are used, such as the Bayliss-Turkel [1] or Engquist-Majda [2] boundary
conditions, which produce some spurious reflection. To eliminate spurious reflection
from the artificial boundary, we have devised ezact nonreflecting boundary conditions
for the wave equation [3,4], Maxwell’s equations [5], and the elastic wave equation
[6,7]. These boundary conditions are local in time and involve only first derivatives of
the solution. Therefore, they are easy to use with standard finite difference or finite
element methods. Numerical examples demonstrate the improvement in accuracy

over standard methods.

The accurate simulation of waves at high frequencies or the detailed representa-
tion of small scale geometric features requires the use of adaptive mesh strategies.
Then, explicit time integrators become prohibitively expensive because of the strin-
gent CFL condition; hence, implicit methods, such as Crank-Nicolson, are typically
used, yet they require the solution of a large linear system of equations at every
time step. Because of the nonreflecting boundary condition, this linear system is no
longer symmetric, unlike the situation in bounded domains. However, it is possi-
ble to reformulate the discretized equations by decoupling the additional unknowns
needed on the artificial boundary from the interior unknowns [8]. As a consequence
the symmetry and positive definiteness of the linear system are restored while the
additional computational effort due to the nonreflecting boundary condition becomes

negligible.

For multiple scattering problems the use of a single artificial boundary surround-
ing all scatterers involved becomes prohibitively expensive in memory requirement.
Instead, it is necessary to enclose each scatterer within a single separate computa-
tional domain. Clearly waves that leave a certain domain, 2y, will impinge upon a

different domain, 25, at later times; hence they are no longer purely outgoing waves.



To transfer the time-retarded information from {2y to 2 an analytical representa-
tion of the solution in the unbounded medium becomes necessary. This analytical
representation is inherent to the exact nonreflecting boundary conditions described
above and thus naturally leads to exact transmission boundary conditions for multi-

ple scattering problems.
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