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We discuss the half-space problem of the Boltzmann equation,



ξ1Fx = Q(F, F ), x ∈ (0,∞), ξ ∈ R
3,

F |x=0 = F0(ξ), ξ1 > 0, (ξ2, ξ3) ∈ R
2,

F → M∞(ξ) (x → ∞), ξ ∈ R
3,

(1)

where the unknown F = F (x, ξ) is the mass density distribution of gas particles at position
x ∈ (0,∞) with velocity ξ = (ξ1, ξ2, ξ3) ∈ R

3, while ξ1 is the x-component of ξ and Q, the
collision operator, is a quadratic integral operator in ξ whose integral kernel is determined
by the interaction potential of the gas particle. So far, our result is proved only for the
hard ball gas, but the same result seems to hold for general cutoff hard potentials.

The second equation in (1) is the Dirichlet boundary condition at the boundary x = 0.
The Dirichlet data F0(ξ) is assigned only for incoming particles from the boundary, i.e. for
ξ1 > 0. Physically this is natural because we can control only the incoming distribution
but not the outgoing(ξ1 < 0) distribution. Mathematically, this is a well posed boundary
condition. It is known that assigning the outgoing distribution makes the problem (1)
ill-posed.

The third equation of (1) specifies the far field. This is the Dirichlet boundary condition
at x = ∞, and is assigned for all ξ ∈ R

3. Then, two remarks are to follow. One is that
the far field M∞ cannot be arbitrary but must be a zero of Q, that is, a Maxwellian,

M∞(ξ) =
ρ∞

(2πT∞)3/2
exp

(
−|ξ − u∞|2

2T∞

)
,(2)

and ρ∞ > 0, u∞ = (u∞,1, u∞,2, u∞,3) ∈ R
3, and T∞ > 0 are the only quantities which we

can control. By a shift of ξ2, ξ3, we can assume without loss of generality that u∞,2 =
u∞,3 = 0, and then, the sound speed and Mach number of the equilibrium state described
by (2) are given by

c∞ =

√
5
3
T∞, M∞ =

u∞,1

c∞
,

respectively. The other remark is that since the outgoing distribution at x = ∞ (i.e. for
ξ1 > 0) is assigned, the problem (1) may become ill-posed and hence only conditionally
solvable. Indeed, we will show that the solvability condition changes with M∞ as follows.

(a) If M∞ < −1, the problem (1) admits a unique smooth solution for any F0 sufficiently
close to M∞.
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(b) If M∞ > −1, such a solution exists only for F0 close to M∞ and satisfying certain ad-
missible conditions. The set of admissible F0 forms a smooth manifold whose co-dimension
is 1 for the case 0 < M∞ < −1, 4 for 0 < M∞ < 1 and 5 for M∞ > 1, respectively.

The problem (1) arises in the theory of the kinetic boundary layer, the analysis of
the condensation-evaporation and so on. The corresponding linearized problem has been
studied by many authors, e.g. [2],[3],[4],[5], mainly in the context of the classical Milne
and Kramers problems and hence with auxiliary conditions on boundary fluxes. In [6],
an existence theorem was established for the nonlinear case with the specular boundary
condition but the method of proof does not apply to other boundary conditions, especially
the Dirichlet condition. Recently, nonlinear existence and stability theorems have been
established for the discrete velocity model of the Boltzmann equation [7], [9]. Our result
is the first existence theorem on the full nonlinear problem. Furthermore, it provides a
new aspect of the linearized problem and also a partial proof of the numerical results
established in [1], [8], on (1) with F0 fixed to be the standard Maxwellian. The talk will
include the details on these points as well as the idea of proof and the stability of our
stationary solution.
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