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Bow Shock in Space generated by a Solar Explosion

FIG. 50: SOLAR EXPLOSION

A shock wave in space generated by a solar eruption. The sketch shows the fully ionized
nucleons attached to the solar magnetic field lines acting as the driving piston for the
shock wave. (Courtesy: UTLAS, after Gold, 1962).
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Shock Waves generated by Blunt-Nosed and Shape-Nosed
Supersonic Aircrafts
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FIG. 41: SHOCK WAVES ABOUT MODEL AEROSPACECRAFT
Schlieren photographs of the wave systems generated about blunt-nosed and sharp-nosed

supersonic models at a Mach number M = 2.5 in the UTIAS 16 x 16 inch supersonic wind
tunnel. (Courtesy: UTIAS).
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Blast Wave from a TNT Surface Explosion

FIG. 22: EXPLOSION FROM A 20-TON HEMISPHERE OF TNT

The blast wave S, and fireball F, from a 20-ton TNT surface explosion are clearly shown.
The backdrops are 50 feet by 30 feet and in conjunction with the rocket smoke trails, it is
possible to distinguish shock waves and particle paths and to measure their velocities,
Owing to unusual daylight conditions, the hemispherical shock wave became visible.
(Courtesy: Defence Research Board of Canada).
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Shock Wave from an Underwater Nuclear Explosion

FIG. 33: AN UNDERWATER NUCLEAR EXPLOSION

The condensation cloud C, formed just after a shallow underwater nuclear explosion, and
the slick S, due to the shock wave on the surface, are clearly illustrated. An appreciation
of the tremendous size of the blast zone can be obtained by comparing it with the old
destroyers and other naval vessels used in the test. (Courtesy: u.s. Atomic Energy
Commission).
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(1) (0)
Wedge

? Shock Wave Patterns Around a Wedge (airfoils, inclined ramps, - - )

Complexity of Reflection-Diffraction Configurations Was First Identified
and Reported by Ernst Mach 1879

Experimental Analysis: 1940s=—-: von Neumann, Bleakney, Bazhenova
Glass, Takyama, Henderson, - - -
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Guderley Mach Reflection:
A. M. Tesdall and J. K. Hunter: TSD, 2002
A. M. Tesdall, R. Sanders, and B. L. Keyfitzz NWE, 2006; Full Euler, 2008

B. Skews and J. Ashworth: J. Fluid Mech. 542 (2005), 105-114
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Shock Reflection-Diffraction Patterns

e Gabi Ben-Dor Shock Wave Reflection Phenomena
Springer-Verlag: New York, 307 pages, 1992.

Experimental results before 1991
Various proposals for transition criteria

@ Milton Van Dyke  An Album of Fluid Motion
The parabolic Press: Stanford, 176 pages, 1982.

Various photographs of shock wave reflection phenomena

@ Richard Courant & Kurt Otto Friedrichs
Supersonic Flow and Shock Waves
Springer-Verlag: New York, 1948.
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Scientific Issues

@ Structure of the Shock Reflection-Diffraction Patterns
o Transition Criteria among the Patterns
o Dependence of the Patterns on the Parameters
wedge angle 0,  adiabatic exponent v > 1
incident-shock-wave Mach number M

Interdisciplinary Approaches:

o Experimental Data and Photographs

o Large or Small Scale Computing
Colella, Berger, Deschambault, Glass, Glaz, ....
Anderson, Hindman, Kutler, Schneyer, Shankar, ...
Yu. Dem'yanov, Panasenko, ....

o Asymptotic Analysis: Keller, Lighthill, Hunter, Majda, Rosales,
Tabak, Gamba, Harabetian, Morawetz....

o Rigorous Mathematical Analysis  (Global Analysis?)
Existence, Stability, Regularity, Bifurcation, ------
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2-D Riemann Problem for Hyperbolic Conservation Laws

Books and Survey Articles
Glimm-Majda 1991, Chang-Hsiao 1989, Li-Zhang-Yang 1998
Zheng 2001, Chen-Wang 2002, Serre 2005, Chen 2005, - - -
Numerical Simulations
Glimm-Klingenberg-McBryan-Plohr-Sharp-Yaniv 1985
Schulz-Rinne-Collins-Glaz 1993, Chang-Chen-Yang 1995, 2000
Lax-Liu 1998, Kurganov-Tadmor 2002, - - -
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Riemann Solutions |

580 TUNG CHANG, GUI-QIANG CHEN AND SHULI YANG

Fic. 5.58

FI1G. 5.5
Self-Mach number contour curves

Density contour curves

F1G. 5.5C. Pressure contour curves
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Riemann Solutions Il

FiG. 5.6a Fic. 5.68
Density contour curves Self-Mach number contour curves

FIG. 5.6c. Pressure contour curves
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Riemann Solutions vs General Entropy Solutions

Asymptotic States and Attractors
Observation (C—Frid 1998):

o Let R( ) be the unique piecewise Lipschitz continuous Riemann
solutlon with Riemann data: R|i—¢ = RO(\XI)

o Let U(t,x) € L™ be an entropy solution with initial data:

X
Ulto = RO(WHPo(x), Ro € L®(S971), Py € LINL>®(RY)

@ The corresponding self-similar sequence UT(t,x) := U(Tt, Tx) is
compact in L,oc(Ri+1)

ess lim /yU(t t€) — R(&)|dé =0  for any Q C RY

Building Blocks and Local Structure
Local structure of entropy solutions
Building blocks for numerical methods
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Full Euler Equations (E-1): (t,x) € R3 := (0,00) x R?

Oep+V-(pv) =0
9e(pv) + V- (pv @ v) +Vp =0

1 1
0e(5pIv* + pe) + V- ((5plv[* + pe + p)v) =0

Constitutive Relations: p = p(p, e)
o p—density, v = (v, v2) "—fluid velocity, p—pressure
@ e—internal energy, f—temperature, S—entropy

For a polytropic gas:  p= (v —1)pe, e = c,0, y=1+ C—RV

p=p(pS)= ,ﬂpve,S/cv7 e =e(p, S)Llpv—leﬁ/cv7
Py_

@ R > 0 may be taken to be the universal gas constant divided by the
effective molecular weight of the particular gas

@ ¢, > 0 is the specific heat at constant volume

@ v > 1 is the adiabatic exponent, x > 0 is any constant under scaling
Hyp08, June 12, 2008 18 / 45
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Euler Equations: Isentropic or Isothermal (E-2)

dep+V-(pv)=0
e (pv) + V- (pv@Vv)+Vp=0

where the pressure is regarded as a function of density with constant Sp:

p = p(p, So)-

For a polytropic gas,
p(p) = kop’, ~y>1 (y=2 also for the shallow water equations)
For an isothermal gas,
p(p) =rop  (i.e. y=1)

where kg > 0 is any constant under scaling
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Euler Equations for Potential Flow (E-3): v=V®

0:d + VO + £ =48

or, equivalently,
Aep(VD,0:9, po) + V - (p(V, 0P, po)VP) =0,
with
p(V®,0:0,p0) = (p§ * — (v — 1)(0:® + %yv¢|2))ﬁ_
Celebrated steady potential flow equation of aerodynamics:
V- (p(V, po) V) = 0.

This approximation is well-known in transonic aerodynamics.

We will see the Euler equations for potential flow is actually EXACT
in an important region of the solution to the shock reflection problem.
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Initial-Boundary Value Problem: 0 < pg < p1, vi > 0

Initial condition at t = 0:

(0 0, po,po) |X2| > xytanf,,x; > 0,
(v,p,p) =
(v1,0,p1,p1), x1 <0;

Slip boundary condition on the wedge bdry: v-v =0.

X,

o | o \
<«
o
Vs \
N

//1 kY
Shock

\\\\

Invariant under the Self-Similar Scaling: (t,x) — (at,ax), a #0
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Seek Self-Similar Solutions

(v, p, p)(t,x) = (v, p, p)(&,m),  (§m) = (3, 2

t?t
(pU)e + (pV)y +2p =0,
(pU? + p)e + (pUV), + 3pU =0,
(pU )§+(pV2+p)n+3pV:0,
P 1 P 1 P
U P V( P 2 T y=o0
( ( pq° + e+ ( (2pq o T+ (qu + - 1) =0

where g = VU2 4+ V2 and (U, V) = (vi — €, v

—n) is the pseudo-velocity.
. UVtcy/q?—c2
Eigenvalues: )\ = {; (repeated), Ar = b,
where ¢ = \/yp/p is the sonic speed
When the flow is pseudo-subsonic: g < c, the system is

hyperbolic-elliptic composite-mixed
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Euler Equations in Self-Similar Coordinates

Entropy: S = ¢, In(pp”)
Pseudo-velocity Angle: \o = V/U =tan©
Pseudo-velocity Magnitude: g = v U? + V2

Se + XS, =0,

pq(ge + Mogy) + pe + Xopy = —p(U + Ao V),

(U~ c2)p§§ +2UVpe, + (V2= )pyy + Arpe + Aapy +--- =0,

(U2 — cH)Noge + 22UV Agey + (V2 — ) Aoy + Atdog + Aoy + - = 0.

When the flow is pseudo-subsonic: g < c, the system consists of

@ 2-transport equations

@ 2-nonlinear equations of hyperbolic-elliptic mixed type
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Boundary Value Problem in the Unbounded Domain

Slip boundary condition on the wedge boundary:
(U,V)-v=0 on 0D
Asymptotic boundary condition as &2 + n? — oo:

(0707p07p0)7 5 > 50777 > gtan Ow,

(U—’_f V"‘U;I%P) -
(v1,0,p1,p1), & <&,n>0.

! /
(v, =& =n,p1,1) X

CAUTDOR VA

!
V=0 |40) \:

[T - — Y
5’J_l"l’f’o ¢
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Normal Reflection

When 6,, = 7/2, the reflection becomes the normal
reflection, for which the incident shock normally
reflects and the reflected shock is also a plane.

n
/
@) i
reflected _— location of
shock incident shock
/
M — -
O
500\00 —
/
(=& =mp2p)|
— M"% o = Mt
& PPy | % P17Po
/
elliptic
ip -
Sonie Circjq -
hyperbolic
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von Neumann Criteria & Conjectures (1943)

Local Theory for Regular Reflection (cf. Chang-C 1986)

304 = 04(Ms,~) € (0,75) such that, when € (04, 5), there exist two
states (2) = (U3, V4, p3, p3) and (U2, VP, p5. p5) such that

(U3, V3)] > |(Ug, V)] and [(UZ, V)] < 5.

Detachment Conjecture: There exists a Regular Reflection
Configuration when the wedge angle Oy € (64, 5).

Sonic Conjecture: There exists a Regular Reflection Configuration
when Oy € (0s,75), for s > 04 such that |(U3, V)| > ¢} at A.

(0)

(6]

Incident
shock

/

Reflected
shock

Sonic Circle
of (2)
/
/" Subsonic?

V2,

o
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Detachment Criterion vs Sonic Criterion 6. > 0s: v = 1.4

Courtesy of W. Sheng and G. Yin: ZAMP, 2008
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Global Theory?

Gui-Qiang Chen (Northwestern) Shock Reflection-Diffraction Hyp08, June 12, 2008 29 / 45



Euler Equations under Decomposition (U, V) = Vo + W

V- (pVe)+2p+ V- (pVW) =0,
1 1
VGIVel + )+ SVp=YVF",

(Vo+ W) -Vw+ (1+ Ap)w =0,
(Vo+W)-VS=0.
where
S = ¢y In(pp~7)-Entropy
w = curl W = curl(U, V)-Vorticity

When w = 0,5 = const. on a curve transverse to the fluid direction
= W=0, VP*=0
Then we obtain the Potential Flow Equation:

1 = const. > 0.
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Potential Flow Dominates the Regular Reflection

Potential Flow Equation

{ V- (pVe) +2p =0,
y—1

~y—1
Vel +o+ g =2y

Potential Flow
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Potential Flow Equation

@ Incompressible: p = const. — Ap+2=20

@ Subsonic (Elliptic):

2 _
IVeo| < el po) := ¢7+1(p8 - (1))
@ Supersonic (Hyperbolic):
2
Vel > ci(e, po) = m(ﬂo —(v=1)¢)
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Linear and Nonlinear Models

Linear Models
Tricomi Equation:  uy + xu,, = 0 (Hyperbolic Degeneracy at x = 0);

Keldysh Equation:  xu. + u,, =0 (Parabolic Degeneracy at x = 0).

Nonlinear Models

@ Transonic Small Disturbance Equation:
u

((u—x)ux + >

), +uy =0
or, forv=u— x,

Morawetz, Hunter, Canic-Keyfitz-Lieberman-Kim, - - -
@ Pressure-Gradient Equations, Nonlinear Wave Equations

Y. Zheng-K. Song, Canic-Keyfitz-Kim-Katarina, - - -
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Steady Potential Flow Equation

@ Pure Elliptic Case: Subsonic Flow past an Obstacle
Shiffman, Bers, Finn-Gilbarg, G. Dong, - - -

o Degenerate Elliptic Case: Subsonic-Sonic Flow past an Obstacle
Shiffman, C—Dafermos-Slemrod-Wang, - - -

e Pure Hyperbolic Case (even Full Euler Egs.):

Gu, Li, Schaeffer, S. Chen, S. Chen-Xin-Yin, Y. Zheng, - --
T.-P. Liu-Lien, S. Chen-Zhang-Wang, C—Zhang-Zhu, - - -

o Elliptic-Hyperbolic Mixed Case

Transonic Nozzles: C—Feldman, S. Chen, J. Chen, Yuan, Xin-Yin,...
Wedge or Conical Body: S. Chen, B. Fang, C-Fang, - --
Transonic Flow past an Obstacle: Morawetz, C-Slemrod-Wang,...
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Self-Similar Potential Flow Equation

Glimm-Majda: IMA Volume in Memory of Ronald DiPerna, 1991

Morawetz: CPAM 1994
Shock Reflection Patterns via Asymptotic Analysis

C-Feldman: PNAS 2005, Ann. Math. 2006 (accepted)
Mathematical Existence and Regularity of Global Regular Reflection
Configuration for Large-Angle Wedges

Elling-Liu: CPAM 2008 (to appear)
Supersonic Flow onto a Solid Wedge (Prandtl Conjecture)

— Recent Research Activities -- - - - -
For example, several talks during this conference
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Global Theory?
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Setup of the Problem for ¢ := ¢ — 5 in Q

div (o(Vh, 1,€,1, p0) (Vi +v2 — (1) + Lot =0 (%)
V’l,f) : V|wedge =0
lregne =0 == ufr, =0
Rankine-Hugoniot Conditions on Shock S:
[¢]s =0
[o(VY, 9, &, p0)(VY +v2 — (§,1)) - v]s =0

Free Boundary Problem
o 35 = {¢ = f(n)} such that f € C** f'(0) = 0 and

Qp ={>f)}ND={y <1 -2} ND

e solves (*) in Q4
° e Ch Q)N () { is subsc()n)ic in 5+

with (1/)7 ¢V)‘rsonic =0, Vi - V|Wedge =0
o (v, f) satisfy the Rankine-Hugoniot Conditions
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Theorem (Global Theory for Shock Reflection (C-Feldman 2005))

3 0c = 0c(po, p1,7) € (0,75) such that, when O\, € (0c, %), there exist
(¢, f) satisfying

° v € C®(Q) N CH(Q) and f € C=®(P1P2) N C2({P1});
e ¢ € CH1 across the sonic circle Py Py

@ p — YNR IN Wll’l as Oy — E.

1
= d(t,x) = to(%) + 5L, p(t,x) = (p§ 7" = (v — 1)(®¢ + 3| VO[2)) 7
form a solution of the IBVP.

Incident
shock

///////P; &
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Optimal Regularity and Sonic Conjecture

Theorem (Optimal Regularity; Bae—~C—Feldman 2007):
@ € CH' but NOT in C? across Py Py;
p € CHH{PL}) N C>Q\ ({PL} U{Ps})) N CH({P3}) N C>(Q);
fe C2({P1})QCOO(P1P2).

Incident
shock

P; \(}U
111111 Py €
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Optimal Regularity and Sonic Conjecture

Theorem (Optimal Regularity; Bae—~C—Feldman 2007):
@ € CH' but NOT in C? across Py Py;
p e CHH({P}) N C2Q\ ({Pi}U{Ps})) N CH({Ps}) N C=(Q);
fe C2({P1})QCOO(P1P2).

—> The optimal regularity and the global existence hold up to

the sonic wedge-angle 6, for any v >'1
(the von Neumann's sonic conjecture)

Incident
shock

P; \ 0u

P
e g
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Approach

o Cutoff Techniques by Shiffmanization
= Elliptic Free-Boundary Problem with Elliptic Degeneracy on [ ¢opic
Domain Decomposition
Near Isonic
Away from [ sonic
o Iteration Scheme
C—Feldman, J. Amer. Math. Soc. 2003
C1! Parabolic Estimates near the Degenerate
Elliptic Curve [
Corner Singularity Estimates
In particular, when the Elliptic Degenerate Curve [sonic Meets
the Free Boundary, i.e., the Transonic Shock
Removal of the Cutoff
Require the Elliptic-Parabolic Estimates

o Topological Argument
Extend the Large-Angle to the Sonic-Angle 6
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Mach Reflection

[T
7 Right space for vorticity uﬂ

? Chord-arc z(s) = z + [, e®9)ds, b € BMO?
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General Framework for Entropy Solutions to

Multidimensional Conservation Laws

Natural Class of Entropy Solutions:

(i) U(t,x) e M, or LB,1 < p < o0;

(i) For any convex entropy pair (7, q),
om(U)+Vi-qU)<0 D

as long as (n(U(t,x)), q(U(t,x))) € D’

— div(e (n(U(t, %)), q(U(t, x))) € M

— The vector field (n(U(t, x), q(U(t, x)))

is a Divergence-Measure Field

@ Theory of Divergence-Measure Fields for Entropy Solutions
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Some of Other Recent Related Developments

D. Serre: Multi-D Shock Interaction for a Chaplygin Gas
S. Canic, B. Keyfitz, J. Katarina, E. H. Kim:
Self-Similar Solutions of 2-D Conservation Laws
Almost Global Solutions for Shock Reflection Problems
V. Elling: Counterexamples to the Sonic and Detachment Criteria
Y. Zheng+-al: Solutions to Some 2-D Riemann Problems
Full Euler Equations with Adiabatic Exponent v > 1
J. Glimm, X. Ji, J. Li, X. Li, P. Zhang, T. Zhang, and Y. Zheng:
Transonic Shock Formation in a Rarefaction Riemann Problem
0. Gues, G. Métivier, M. Williams, and K. Zumbrun;
S. Benzoni-Gavage; - - -: Local Stability of M-D Shock Waves
and Phase Boundaries

S.-X. Chen: St_ability of Mach Configuration - - -
— Shuxing Chen’s Talk
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Shock Reflection-Diffraction vs New Mathematics

o Free Boundary Techniques

e Mixed and Composite Eqns. of Hyperbolic-Elliptic Type

Degenerate Elliptic Techniques
Degenerate Hyperbolic Techniques
Transport Equations with Rough Coefficients

Regularity Estimates when a Free Boundary Meets a
Degenerate Curve

Boundary Harnack Inequalities

Spaces for Compressible Vortex Sheets

More Efficient Numerical Methods - - -

— Multidimensional Problems in Conservation Laws
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