

12th International Conference on Hyperbolic Problems: Theory, Numerics, Applications

Center for Scientific Computation and Mathematical Modeling & Department of Mathematics University of Maryland, College Park June 9-13, 2008

Traffic flow on networks: conservation laws models

Benedetto Piccoli I.A.C. – C.N.R. Rome

þ

1. The only conservation at nodes does not determine the dynamics

- 2. Additional rules should take into account distribution policies
- 3. Solutions give rise to boundary value problems on arcs

Dynamics at junctions(2)

Traffic distribution matrix $A = (\alpha_{ji}), 0 < \alpha_{ji} < 1, \Sigma_j \alpha_{ji} = 1$

Rule (A) : Out. Fluxes Vector = A · Inc. Fluxes Vector

Rule (B): Max Inc. Fluxes Vector

Shock

 ρ_0

(A) implies conservation at the junction (A), (B) equivalent to a LP problem and a unique solution to RPs

Solutions on roads are given solving boundary value problems.

 \rightarrow Fluxes respect Rules (A) and (B) only if bounday value problems produce waves with negative velocity on incoming roads and with positive velocity on outgoing ones.

Shock

 ρ_0

Wave Front Tracking

1. Approximate initial datum by a piecewise constant function

2. Solve RPs, replace rarefactions by rarefaction shocks fans: initially waves evolve independently of one another

3. At time $t^* > 0$ a first interaction between two of such discontinuities occurs (two shocks collide in this example)

4. Then we solve a new Riemann problem and so on

Existence of solutions

where Γ is the incoming flux

 $\Delta \Gamma \leq 0$

(P2)

Simulation of Re di Roma square

Numerics and FSF scheme

Network with 5000 roads parametrized by [0,1],

h space mesh size, T real time

Real data

Problems :

- 1. Data: measurements and elaboration
- 2. Dimensionality: big networks

Manual counting

Satellite data

Plates reading

Videocameras

NETWORK of SALERNO

150

Radars

Model for data networks

There is a loss probability function $\mathcal{P}: [0, R_{max}] \to [0, 1]$ such that $(1 - \mathcal{P})(R)$ packets are sent and $\mathcal{P}(R)$ are lost.

In the *n*th attempt $(1 - \mathcal{P}(R))\mathcal{P}(R)^{n-1}$ packets are sent and $\mathcal{P}(R)^n$ are lost.

$$t_{av} = \bar{t} \sum_{n} n(1-\mathcal{P})\mathcal{P}^{n-1} = \frac{\bar{t}}{(1-\mathcal{P})} \to v_{av} = \bar{v}(1-\mathcal{P})$$

Riemann solver for Tlc networks

We essentially invert Rules (A) and (B), giving more importance to through flux than traffic distribution.

Define the maximal fluxes as before γ_i^{max} and γ_i^{max} .

The through flux is $\Gamma = \min\{\sum_i \gamma_i^{max}, \sum_j \gamma_j^{max}\}.$

Finsler metric on L^1

Piecewise constant functions

 $u \in \mathrm{PC} \subset L^1$

Perturbations:

Finsler metric on L^1 (2)

 $u, u' \in PC$

Family of piecewise smooth curves in PC connecting u and u':

 $\gamma : [0, 1] \rightarrow PC$ $\gamma(0) = u, \gamma(1) = u'$

Define the length of each of these curves as

$$L(\gamma) = \int_{0}^{1} ||(v, \xi)(s)|| \, ds$$

and the distance between u and u' (Finsler metric) as

$$d(u, u') = \inf_{\gamma: u \to u'} L(\gamma)$$

This metric is (compatible with) the usual L^1 metric, therefore it can be completed on the basis of the latter.

Lipschitz continuous dependence

<u>Lemma</u>: $||(v, \xi)(t)|| \le ||(v, \xi)(0)||$

In view of this lemma one has:

$$d(u(t), u'(t)) = \inf_{\eta : u(t) \to u'(t)} L(\eta) \leq \inf_{\gamma_t : u(t) \to u'(t)} L(\gamma_t)$$

Lemma
$$\leq \inf_{\gamma_0 : u(0) \to u'(0)} L(\gamma_0) = d(u(0), u'(0))$$

Thank you for your attention!

- 1. G. Bretti and B. Piccoli, A tracking algorithm for a single car moving in a road network, to appear on SIAM Appl. Dyn Syst. 2008.
- 2. Bretti G., D'Apice C., Manzo R., Piccoli B., A continuum-discrete model for supply chains dynamics, Networks and Heterogeneous Media 2 (2007), 661–694.
- 3. G. Bretti, R. Natalini and B. Piccoli, Numerical Approximations of Traffic Flow Models on Networks, Networks and Heterogeneous Media, vol. 1 n. 1, (2006), 57-84.
- 4. G. Bretti, R. Natalini and B. Piccoli, Fast algorithms for the approximation of a traffic flow model on networks, Discr. Cont. Dyn. Systems B 6 (2006), 427-448.
- 5. A. Cascone, A. Marigo, B. Piccoli, L. Rarità, M3AS Mathematical Methods and Modelling in Applied Sciences 17 (2007), 1587-1617.
- 6. Y. Chitour, B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discr. Cont. Dyn. Systems B 5 (2005), 599-630.
- 7. G.M. Coclite, M. Garavello, B. Piccoli, Traffic Flow on a Road Network, Siam J. Math. Anal 36 (2005), 1862-1886.
- 8. C. D'Apice, R. Manzo, B. Piccoli, Packets flow on telecommunication networks, SIAM J. Math. Anal. 37 (2006), 717-740.
- 9. D'Apice C., Manzo R., Piccoli B., Modelling supply networks with partial differential equations, to appear on Quarterly Appl. Math. 2008.
- 10. D'apice C., Manzo R., Piccoli B. A fluid dynamic model for telecommunication networks with sources and destinations, to appear on SIAM J. Appl. Math. 2008.
- 11. M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, vol. 1, American Institute of Mathematical Sciences, 2006, ISBN-13: 978-1-60133-000-0.
- 12. M. Garavello, B. Piccoli, Source-Destination Flow on a Road Network, Communications Mathematical Sciences 3 (2005), 261-283.
- 13. M. Garavello, B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations 31 (2006), 243-275.
- 14. M. Garavello, B. Piccoli, Conservation laws on networks, submitted to Ann. Inst. Poincarè.
- 15. M. Garavello, R. Natalini, B. Piccoli and A. Terracina, Conservation laws with discontinuous flux', Network Heterogeneous Media, vol. 2 no. 1, (2007) pp. 159–179.
- 16. M. Herty, A. Klar, B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal. 39 (2007), 160-173.
- 17. A. Marigo and B. Piccoli, A fluid-dynamic model for T-junctions, to appear on SIAM J. Appl. Math. 2008.

JEIN Networks and Heterogeneous Media

An applied mathematics Journal

- <u>http://www.iac.rm.cnr.it/~piccoli/</u>
- <u>http://www.aimsciences.org/journals/NHM/index.htm</u>
- •Google : Networks Heterogeneous Media

Henri Beresticky (Ehess, Paris) Leonid Berlyand (PennState) Andrea Braides (Roma-Tor Vergata) Alberto Bressan (PennState) Suncica Canic (Houston) Jennifer Chayes (Microsoft) **Zhangxin Chen** (Dallas) Camillo De Lellis (Zurich) Antonio DeSimone (SISSA, Trieste) Emmanuele DiBenedetto (Vanderbilt) Luigi Preziosi (Torino) Wilfrid Gangbo (GeorgiaTech) Dirk Helbing (Dresden) Thomas Hillen (Alberta) Shi Jin (Madison) Kenneth Karlsen (Oslo) Axel Klar (Kaiserlautern)

Jean-Patrick Lebacque (INRETS) Claude Le Bris (ENPC, Paris) Pierre-Louis-Lions (Paris Dauphine) Dag Lukkassen (Narvik) David MacDonald (Ottawa) Masayasu Mimura (Meiji) Roberto Natalini (IAC, Rome) Charles Newman (Courant) George Papanicolaou (Stanford) Alfio Ouarteroni (Lausanne) Angela Stevens (Heidelberg) Eitan Tadmor (Maryland) Hans Van Duijn (Eindhoven) Juan Luis Vazquez (Madrid) Shih-Hsien Yu (Hong Kong)

$$\begin{array}{l} \text{Dynamics at junctions(2)} \\ \text{Conservation through the node:} \\ & \sum_{i \in \{incoming \ roads\}} f_i = \sum_{j \in \{outgoing \ roads\}} f_j \\ \text{Fix a matrix } A = (\alpha_{ji}), \ 0 \leq \alpha_{ji} \leq 1 \ \text{and} \ \sum_j \alpha_{ji} = 1. \end{array}$$

$$(1)$$

Rule (A) Incoming fluxes $\gamma_1, \ldots, \gamma_n$, outgoing fluxes $\gamma_{n+1}, \ldots, \gamma_{n+m}$:

$$(\gamma_{n+1}, \dots, \gamma_{n+m}) = A \cdot (\gamma_1, \dots, \gamma_n)$$
(2)

Rule (B) Find the point $(\bar{\gamma}_1, \ldots, \bar{\gamma}_n)$ which maximizes the function

$$E(\gamma_1, \dots, \gamma_n) = \gamma_1 + \dots + \gamma_n, \tag{3}$$

and define $(\bar{\gamma}_{n+1}, \ldots, \bar{\gamma}_{n+m}) := A \cdot (\bar{\gamma}_1, \ldots, \bar{\gamma}_n).$

Rule (A) (i.e. (2)) implies the conservation of cars (1).

Rule (A) is not sufficient to determine a unique solution.

Given Rule (A), Rule (B) is essentially equivalent to entropy criteria.

Rules (A) and Rule (B) determine fluxes via solution of a LP problem.

LP problem at junctions

It is enough to determine the incoming fluxes: -Outgoing fluxes are determined by rule (A) -Densities are determined inverting the flux function It is enough to solve a LP problem at junctions for incoming fluxes! $\max_{incoming fluxes \gamma_i} \sum_{i} \gamma_i$ $\gamma_j^{max}(u_{j,0}) = \begin{cases} f(\sigma) & \text{if } u_{j,0} \in [0,\sigma], \\ f(u_{j,0}) & \text{if } u_{j,0} \in]\sigma, 1], \end{cases}$ $0 \le \gamma_j = \sum_i \alpha_{ji} \gamma_i \le \gamma_j^{max}$

Solutions via Wave Front Tracking

Technique: rules on the Riemann solver to get bounds on the flux variation of the solution

Continuous dynamics estimates by discrete counting of shocks

Packets flow on telecommunication networks

Telecommunication networks as Internet: no conservation of packets at small time scales.

 $\rightarrow \bigcirc$ — — \rightarrow \bigcirc — — —

Assume there exists a loss probability function and packets are re-sent if lost.

$$p:[0,\rho_{max}]\mapsto [0,1]$$

Then at 1st step: (1-p) packets sent, p lost at 2nd step: p(1-p) packets sent, p^2 lost at kth step: p^(k-1) (1-p) sent, p^k lost ...

Finally the average transmission time and velocity are:

$$\Delta t_{av} = \sum_{n=1}^{+\infty} n \Delta t_0 (1-p) p^{n-1} = \frac{\Delta t_0}{1-p} \qquad v = \frac{\delta}{\Delta t_{av}} = \frac{\delta}{\Delta t_0} (1-p) = \bar{v}(1-p).$$

Traffic lights and Viale del Muro Torto

density at time 0.05

FIGURE 4. Viale del Muro Torto.

Data reconstruction error: 9% rephase, 19% congested phase

Continuous flow reconstructed from spot (discrete) data

Car trajectory on network

Determine the trajectory of a car on a loaded network

A model fot T-junctions

- 1) The flux from road I_i is the same of the corresponding exiting road I_{n+i} .
- 2) The total flux through J does not exceed its maximum capacity Γ_J .
- 3) The total flux through J is maximal respecting rules 1) and 2).

FPR) The flux from road I_{i+1} is \bar{r}_i times the flux from road I_i , for $i = 1, \ldots, n-1$.

Red lights and jams

MODEL	P1	P2	$\mathbf{P3}$
Lighthill-Whitham-Richards model	yes	yes	yes
Multipopulation model	yes	yes	yes
Aw-Rascle-Zhang model	yes	no	no
Colombo phase transition model	yes	yes	yes
Goatin phase transition model	yes	no	no
Siebel-Mauser BVT model	yes	no	asymptotically
Greenberg-Klar-Rascle multilane model	yes	no	asymptotically
Helbing third order model	yes	no	_

BV estimates for Goettlich-Herty-Klar supply chain model

$$\sum_{j=1}^{N} T.V.(\rho_j^{\delta}(\cdot, t)) + \sum_{j=2}^{N} |\partial_t q_j^{\delta}(t)| \le \sum_{j=1}^{N} T.V.(\rho_{j,0}^{\delta}(\cdot)) + \sum_{j=2}^{N} |\partial_t q_j^{\delta}(0)|$$

and $\rho_j^{\delta}(x, t) \le \max_j \mu_j \ \forall j, x.$

$$\sum_{j=2}^{N} T.V.(\partial_t q_j^{\delta}, [0, K\eta]) \le K \sum_{j=2}^{N} \left(2 \ T.V.(\rho_{j-1,0}^{\delta}(\cdot)) + |\partial_t q_j^{\delta}(0)| \right)$$

Lipschitz continuous dependence (tlc and GHK supply chain model)

Lemma 2.7 The norm of tangent vectors are decreasing along wave front tracking approximations.