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Conservation laws on networks

u  + f(u)  =0t x

Dynamics at nodes?

1. The only conservation at nodes does not determine the dynamics
2. Additional rules should take into account distribution policies
3. Solutions give rise to boundary value problems on arcs



Car Traffic

Irrigation Channels

Supply chains

Gas pipelines

Tlc and data networks

Blood circulation

Air traffic management

Social networks



Dynamics at junctions



Dynamics at junctions(2)
Traffic distribution matrix A = (α ) , 0<α <1,  Σ α =1jiji jij

Rule (A) :      Out. Fluxes Vector =  A · Inc. Fluxes Vector

Rule (B) :       Max    ║Inc. Fluxes Vector║ 1

(A) implies conservation at the junction
(A), (B) equivalent to a LP problem and a unique solution to RPs

SolutionsSolutions on on roadsroads are are givengiven solvingsolving boundaryboundary valuevalue problemsproblems..

→→FluxesFluxes respectrespect RulesRules (A) and (B) (A) and (B) onlyonly ifif boundaybounday valuevalue problemsproblems produceproduce
waveswaves withwith negative negative velocityvelocity on on incomingincoming roadsroads and and withwith positive positive velocityvelocity onon
outgoingoutgoing onesones..



u1 u2 u3 u4 u5 …

t*

1. Approximate initial datum by a piecewise constant function

2. Solve RPs, replace rarefactions by rarefaction shocks fans: 
initially waves evolve independently of one another

3. At time t* > 0 a first interaction between two of such
discontinuities occurs (two shocks collide in this example)

4. Then we solve a new Riemann problem and so on

Wave Front Tracking
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Wave Front Tracking on networks



(P1) ΔTV(f ) ≤ C min{TV(f )–, ΔΓ}

where Γ is the incoming flux

fleft

fright

(P2) ΔΓ ≤ 0

Existence of solutions



Simulation of Re di Roma square

MOVIE

ZOOM



Numerics and FSF scheme

2. Make use of theoretical results to bound the number of 
regime changes

3. Track exactly the regime change (generalized characteristic) 
and use upwind for each zone

1. Use simplified flux function with two characteristic speeds

Network with 5000 roads parametrized by [0,1],
h space mesh size, T real time

G = Godunov, FG = Fast Godunov, 
K3V = 3-velocities Kinetic, FSF = Fast Shock Fitting

Congested phase

f

ρ
ρ max

σ

Free phase

Lemma. If we start from empty network, then each road presents at most one
regime change for every time



NETWORK of SALERNO

Real data

Radars

Manual counting

Videocameras
Plates reading

Satellite data

Problems :
1. Data: measurements and elaboration
2. Dimensionality: big networks

1500 arcs network



Model for data networks
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Riemann solver for Tlc networks
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u u ∈ PC ⊂ L1

Piecewise constant functions

L1

ΔuiPerturbations:

Finsler metric on L^1

||(v, ξ)|| = ||v||L1 + Σ|ξi| Δuii



Family of piecewise smooth curves in 
PC connecting u and u':

γ : [0, 1] → PC

γ(0) = u, γ(1) = u'

L1

γ1

γ2 u'

u, u' ∈ PC

u

and the distance between u and u' (Finsler metric) as

This metric is (compatible with) the usual L1 metric, therefore it can be completed
on the basis of the latter.

Define the length of each of these curves as

||(v, ξ)(s)|| ds∫
0

1

L(γ) =

d(u, u') =   inf L(γ)
γ : u → u'

Finsler metric on L^1 (2)



u'(0)

u(0)

γ0(s)
(v, ξ)(0) γt(s)

(v, ξ)(t)

u'(t)

u(t)

In view of this lemma one has:

Lipschitz continuous dependence

Lemma:||(v, ξ)(t)|| ≤ ||(v, ξ)(0)||

d(u(t), u'(t)) = inf L(η)
η : u(t) → u'(t)

≤ inf L(γt)
γt : u(t) → u'(t)

≤ inf L(γ0) = d(u(0), u'(0))
γ0 : u(0) → u'(0)

Lemma
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Dynamics at junctions(2)



LP problem at junctions

It is enough to solve a LP problem at junctions for incoming
fluxes!

It is enough to determine the incoming fluxes:
-Outgoing fluxes are determined by rule (A)
-Densities are determined inverting the flux function



Solutions via Wave Front Tracking
Technique: rules on the Riemann solver to get bounds on the 
flux variation of the solution

Continuous dynamics estimates by discrete counting of shocks



Packets flow on telecommunication networks

Telecommunication networks as Internet: no conservation of packets at 
small time scales.

Assume there exists a loss probability function and 
packets are re-sent if lost.

Then at 1st step:  (1-p)     packets sent,     p     lost
at 2nd step:   p(1-p)  packets sent,     p^2 lost

….   at  kth step:   p^(k-1) (1-p)    sent,     p^k lost …

Finally the average transmission time and velocity are:



Traffic lights and Viale del Muro Torto

0 2

1

Data reconstruction error: 9% free phase, 19% congested phase

Continuous flow reconstructed from spot (discrete) data



Car trajectory on network
• Determine the trajectory of a car on a loaded network

Theory in papers by Colombo and Marson

Mixed ODE-PDE model



A model fot T-junctions
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Red lights and jams

Are red lights and jams correctly modelled?

Red light or jam



Processor with queue model 
(Goettlich-Herty-Klar)

Processor j

Queue

Queue buffer occupancy change is given by
the difference between incoming and outgoing flux

Queue buffer occupancy change is given by
the difference between incoming and outgoing flux

Mixed ODE-PDE model



BV estimates for Goettlich-
Herty-Klar supply chain model



Lipschitz continuous dependence
(tlc and GHK supply chain model)

Lemma (tlc)


