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What is an image ?

m Digital images are sampled 2-D analogue signals

m Black and white images =f: Q c R?> = R

m f(x) = intensity level at that point, which varies from zero to 255
m An image can be postulated as an L%(Q) object

(b)

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function
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= Image deblurring

m f = TU for a deblurring operator T : L3(Q) — L?(Q)
T may not be invertible : ill-posed problem.




Problems in image processing

= Image deblurring

m f = TU for a deblurring operator T : L3(Q) — L?(Q)
T may not be invertible : ill-posed problem.

m Given f we need to get back the deblurred image U.

Figure: Can we go from a blurred image (a) to a restored image in (b) ?



Problems in image processing...

m Image denoising: f may have some noise 7 in it.
m f = U+ n, we need to get back the denoised image U.

Figure: Can we go from a noisy image (a) to a restored image in (b) ?

m f may be blurry and noisy f = TU + 7



Problems in image processing...

m Image segmentation = identifying ‘components’ in f = edge detection

Figure: Can we identify components in (a) and get a segmented image as in (b) ?
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parameter t
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Problems in image processing...

m Multiscale image representation: Finding different level of ‘scales’ in f

(a) (b) (©)

Figure: Multiscale images of the city of Mumbai.

m Multiscale representation: Family of images {U(t)} for a scaling
parameter t

m Forward marching: U(0) =0, U(t) — U
m Backward marching: U(0) = f, U(t) — U



There are two main approaches to solve above problems:

m Variational approaches - Tikhonov regularization, greedy algorithms,
wavelets shrinkage etc.

m PDE based approaches - diffusion, Perona-Malik etc.

The approaches are related -
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m We need to solve the ill posed problem f = Tu :
Consider interpolation functional
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Variational methods in image processing: Tikhonov regularization

m We need to solve the ill posed problem f = Tu :
Consider interpolation functional
. 2
int (flurllx + Alf = T )
XCcyY
|lul|x : regularizing term

If — Tul)? : fidelity term

® (X, Y) = (BV,L?): Rudin-Osher-Fatemi-Vese.

inf (/ \VUA|+/\/|f—TU>\|2)
{f=ux+va} Q Q
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Variational methods in image processing

® Rudin-Osher-Fatemi (ROF) decomposition
f = uyx + v, for scale parameter .

[ux,va] = arginf (/ |Vu| +>\/ |f — uA|2)
{f=ux+vy} Q Q

The BV norm [, [Vux| is a regularizing term

Jo If — ux[?: afidelity term
A @ acts as an inverse scale of the u, part ( smaller A = larger scale )

m u, := smooth parts and edges in f
va 1= f — uy texture, finer details, noise

Many other variational methods ...
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Other variational methods in image processing...

m Mumford-Shah segmentation (1985)

[u,v,C] = arginf </ |f—u® + /\1/ |Vul]? + )\gj[ d0> .
{f=u+v,c} \Ja-c Q-c c

u: Q — R : piecewise smooth image
C € Q : the set of jump discontinuities

m Ambrosio and Tortorelli approximation (1992)
m Kass-Witkin-Terzopoulos model (1988)

b b b
int (/ S [ e [ g2(|w(c)|)>
ceC a a a

C : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity

m Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
m Osher, Sethian: Level set method (1988)

m Now we look at some PDE methods ...
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PDE methods in image processing: Heat equation

m Heat equation % = AU. (Koenderink 1984, Witkin 1983)
m Backward marching: U(0) = f and U(t) — U.
m This gives us Gaussian smoothing with variance=t

m Forward scaling: Anything with scale smaller than ¢t is smoothed out
Thus t acts as the scale parameter

Figure: Different scales in a carpet obtained by heat equation
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Figure: Result of isotropic diffusion: reduction of noise at the expense of losing
information at the edges
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PDE methods in image processing: Heat equation...

m Denoising with heat equation:

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing
information at the edges

m Problem 1: cannot distinguish between noise and boundaries of regions
m Problem 2: where to stop ?
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PDE methods in image processing: Perona-Malik model (1988)

m Heat equation = isotropic diffusion = we lose information about edges
m Perona-Malik proposed an anisotropic diffusion method

9 — div(g(VU)VU),  U(O) =1
m The idea: preserve the edges
Smooth regions = |V U] is weak = we need an isotropic smoothing
Near the edges = |V U] is large = we need to control the diffusion
Examples of suitable function g(s) : e~%, — 1

P42 Vits
m Perona-Malik is not well posed ! Catté et.al. modification? :
% — div(g(|V G+ U))VU),

G is Gaussian kernel.

2F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)



PDE methods in image processing: Alvarez et. al.

m L. Alvarez P-L. Lions and J-M Morel’s model (1992)

au VU
22 = g(IG* VU|)|VU| div (IVUI) U(0) = f

Figure: Result of anisotropic diffusion: edges are preserved.
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PDE methods in image processing: Alvarez et. al.

m L. Alvarez P-L. Lions and J-M Morel’s model (1992)

au VU
22 = g(IG* VU|)|VU| div (IVUI) U(0) = f

m Idea: Diffuse U only in the direction orthogonal to its gradient VU.
m The term [V U|div <|VU|> does exactly this.

m g is a diffusion controlling function as before.

(a) (b)

Figure: Result of anisotropic diffusion: edges are preserved.
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PDE methods in image processing: Nordstrom’s model

m Problem: As t — oo the models discussed before diffuse completely.
... so where to stop ?

m Solution: Nordstrom modified Perona-Malik model.
ou

Sp == U+ dv(g(IVUDVY), U(0) =0.

m This equation has non-trivial steady state.
m Forward marching: U(0) = 0 and U(t) — U.



PDE approach « variational approach

Rudin-Osher-Fatemi decomposition

[ur,va] = arginf (/ |Vuk|+)\/|f7uk|2)
{f=ux+vy} Q Q

The Euler-Lagrange equation:
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PDE approach « variational approach

Rudin-Osher-Fatemi decomposition

[ur,va] = arginf (/ |Vuk|+)\/|f7uk|2)
{f=ux+vy} Q Q

The Euler-Lagrange equation:

Yu
f— _
29 (vi7) =°
Nordstrom’s modification of Perona-Malik:
% — f— u+div(g(|Vu))Vu).

g(s) = 5. = steady-state of Nordstrom = Euler-Lagrange of ROF !

Let us look at our model now ...
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A novel integro-differential model

m We propose a novel model.
|

. B 1 . Vu(x,t)
/0 u(x, s)ds = f(x) + 2X(1) 2l (|VU(X7 t)|> .

m An Integro-differential equation.

m The scaling function A(t) : increasing function at our disposal.
m This model gives an inverse scale representation.

m Compare this with Nordstrém’s model:

auty . 1 . ( vU(t)

* %% | QUESTIONS | x + *

What is the motivation ?
Where to start ?
Where to stop ?

What does the scaling function A(f) mean ?
*
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Starting point: the idea of Tadmor-Nezzar-Vese (TNV) 2004, 2008

m Recall ROF decomposition: f = uy, + v»,, where ), dictates the scale.
m v,, can be decomposed with a scaling parameter A1 > Ao.

. 2
Vag = Un, + Vg, [Ur,,Va,]=  arginf (/ [Vux, |+ M / [Vag — Ux,]| ) .
{vag=tr;tvag b \VQ Q
m TNV multiscale decomposition
Ve = Ung + Vo [UAK, ka} = arginf (/ |VU>\K| + /\k/ [Vk—1 — Uk|2>
{Va,_=Untva, P VR Q

m With this scheme after N + 1 steps we get:

f = Uxg + Vg
Uxg + Ux; + Vyy

Uxg + Uxy + oo + Uny + Vay-

i.e. a nonlinear multiscale decomposition: f ~ Z,'(V:o U, + Vg
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1 . Vuy,
- =v
Une 2k div (|VU>\k|) M1

V>‘k

m TNV iteration:
Une + Ve = Vg
Telescopic sum of the above gives us:
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TNV scheme

m k" step in TNV scheme: uy, + va, = Vx,_,

[Un, va ] = arginf (/ [Vuy,| +>\k/ Va1 — UAk|2)
{Vap_1=Un+va, d Q Q

Uy — o div [ TP}
k 2k |VU>\k| k=1

V>‘k

m TNV iteration:
Ux, + Ve = Vn_q

N
Z U, + Wy =1
k=0

Yuy
=f4+ — N
Z Une =1 gy AV (|VUAN|)
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A new formulation of the TNV scheme

m We have the TNV scheme as follows:
N
1 . Vu,
=f+_-—d N
kz:;) e <|VUAN\)
m Define UN as the sum UN = S juk = vV = UY — UM, we get :

New formulation of TNV

V(UN _ UN—1)
V(UM - UN‘1)I>

vy g
U —f+2)\Nd|v<

m Question: How do we solve this numerically ?
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m We need to solve this : UN = f + s div ( vr-UNT) )

[V(UN-UN=T)]
1 1

\/(en)Z +(B4xU; j)? + (8o Uj )2 \/(sh (B_xU; ) + (8gyUj_1 j)? 1
1 1

V(M2 4 (Bgy U P + Byl ) = R ol 1B By U2

ce(U) =

cs(V)




How to solve TNV numerically ?

m We need to solve this : U" = f + 5 div ( MCASTAS! )

[V (OV=07T)]

m Given UN~" we get U" by solving the following fixed point iteration.
Ul =
2xnf j + op(UTS ) — UiliT,}) +ow W] — U{"gj}.) +os(W LY - U:'A,/jjrb +on(U ) - U{ij11) + (D UNT
2Xhf + Y6

where ¢ = ce(U™"' — UN"") etc. and 3", = ¢e + cw + cn + Cs.



Numerical results of standard TNV continued ...

N N—1
Numerical results of UY = f + 2>\ dIV( ZN ZN 1§|)

Figure: Numerical results with standard TNV model. We used A\, = (0.0005) x 2k.
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Going from TNV to a novel integro-differential equation

Recall for TNV formulation: Uy = ", ux and uy = Uy — Un—1.

U = f+ —dv| ——MM@~
v 2y (\V(uwfuwn
N

I RO 7Y
guk f+ e dlv(WUM).

This motivates us to write the following model.

The novel integro-differential model

; B 1 . VU(X7 t)
/O b slies = k)= el (|Vu(x, t)|> '

where A(t) > 0 is an increasing scaling function at our disposal.
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How to solve it numerically ?
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How to solve it numerically ?

m Let At be the time interval step. Thus, after N steps:
(k+1)A

u(t) ::/0 X s)ds_Z/ u(x s)ds

kAt

m UV = [ y(x, s)ds and U¥*" = u((k + 1)At), with this we have
UV =~ UM+ uNAt.
m Thus, we have the following fixed point iteration.

Ul = 2>‘Nh(ff7f - U,I,\j 1) + CEUI+1 J + CWU: 1/ + CSUI /+1 + CNU/
b 2M\NhAt + ce + cw + Cs + oy

m This fixed point implementation gives us u" and thus UY = UN~1 + uNAt



Proposed model \(t) = (0.02)2, on 256 x 256 image of Lenna.

Numerical result for [ u(x, s)ds = f(x) + gz div ( el

Vulx,

):

Figure: As \(t) — oo, the image fot u(x, s)ds approaches the given image f.
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Modified integro-differential model

m We propose a modified version of our model

Modified integro differential model

, GG Vu ) . ( Vu(x,1)
/o“(x s)ds =100+ =530 d'”<|Vu(x,t>|)'

where g is diffusion controlling function. (Recall Perona-Malik.)
m The motivation: numerical implementation of the ROF model.
m Euler-Lagrange differential equation for ROF:

Yu
u_f+—d|v(|VU|)

m There are two problems here.

m Problem 1: |Vu| = 0.
m Problem 2 : |Vu| is undefined at the sharp discontinuities.
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The motivation: numerical implementation of the ROF model.

m Problem 2 : How to deal with the sharp discontinuities ?
m Idea : increase the cell size hif |Vu| is large: non-uniform grid.

N h
m leth= S

uf+g(|G*vu|)div( vu ) .

22 J(Eh)2 + | Vul?

with g(0) = 1 and vanishing at infinity =

m This motivates us to look at :

_ . 9(G*Vu)) . ([ Vu
u="~F+ o div V)

Numerical results ...



Comparison between standard ROF and modified ROF

(a)

Figure: (a) Result of standard ROF and (b) result of the modified ROF with
9g(]G = Vul); both for the same A = 0.0001.
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N
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m Numerical results ...
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Figure: Numerical results of TNV with diffusion controlling function g(s) = e

with initial A, = (0.0005) x 2k.
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Figure: Numerical results of TNV with diffusion controlling function g(s) = e

with initial A, = (0.0005) x 2k.
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m We looked at modified TNV:

_ G*VUAND Vuxy
ZU)\k f+9 W div o)

m This leads to modified Integro-differential equation:
|

t . g(IG*Vu(x,b)|) ,. [ Vu(x,t)
|, v syas = 10+ ST (|Vu(x, t)|>

m Numerical results ...



Numerical results of the modified integro-differential model

Numerical results of [ u(x, s)ds = f(x) + 21 7ule0D diy (lgzgjgl).

2X(1)

Figure: Numerical results of modlfled integro-differential mode with diffusion

controlling function g(s) = 1+ —1. The function A(t) = 10~4€?! x 21,
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What does the scaling function \(t) mean ?

m Recall the integro-differential model

¢ B 1 . VU(X7 t)
/0 u(x, 8)ds — () = 53y IV (|Vu(x, t)l) '

where X(f) is an increasing function at our disposal.
m Star-norm is the dual of the BV norm w.r.t. the L? scalar product

(v, 9)
0 Jo Vel

m Theorem: Let us define for the integro-differential equation the error
term as [ u(x, s)ds — f(x), then

1 utx.s)ds = 100l = g

m Proof: The proof follows from Meyer’s theorem: for ROF decomposition
f = u+ v with scale \, we get [, uv = |[ul|sv||v]|. and V][ = =

vl = = sup
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Remark: This theorem is important, in the sense that it dictates the star-norm
of the residual fo' u(x, s)ds — f(x) at any time. We get the following result
using this property.

Corollary: The star-norm of the residual vanishes as t — oo

Proof: In our model the function lim_.. A(t) = co. Thus, the result follows
from the previous theorem :

1 vt s)ds — 00 = 5

Question: What happens if lim;—. A(f) = Aoc < 00 ?
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m Starting : We know that for ROF decomposition if ||f||. < 5 then v = f,

thus we start with a very small value of A(t).



Where to start and stop ?

m Starting : We know that for ROF decomposition if ||f||. < 5 then v = f,

thus we start with a very small value of A(t).

m Stopping : This is an open problem.

We know : | f u(x, s)ds — f(x)||« = zx-

’ Question : What does the star-norm really mean ?
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Observation: Let f and g be in (X, (-,+)), an inner product space.
Let f ~ {uk, vk }72o and g ~ { Uk, Vi }:2, be any hierarchical decompositions :

vy=fand vx_1 = ux + v fork =0,1,2...c0 and
V_y=gand Vk_1 = U+ Vkfork=0,1,2...00.

Let us define an inner product

oo

(f,9) = (U, Ue) + (Vi, U) + (Ui, Vi) + (e Vi

k=0

\Then (f.g) = (f,g) if and only if limy_ oo (Vk, Vx) = 0. \

Indeed for (BV, L?) multiscale decompositions: ||vx, ||z — O ...
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Consequences of this observation

For (BV, L?) hierarchical decomposition of f we get

(f f)L2 - f f Z Uns U)\k 2+ (V)\k7 U)\k)L2 + (U)\k7 V)\k)L2
k=0

o0
2 2
1152 = > luxellze + 2(uxe, va)ez-
k=0

Meyer’s theorem: (U, Va, )2 llus, |lsv we get:

= 2>\k

Energy decomposition (Tadmor et. al. 2004)

oo
1
2 2
17122 = D NuxeliZ + N xellav-
k=0



m Deblurring: Tadmor et. al. (2008) consider hierarchical decomposition:
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Figure: A blurred image (a) is deblurred as shown in (b).
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[Ur, Vo] = arginf (/ |V, | + )\k/ [Va,_, — TuAk|2>
Q Q

{va,_=Tun +va, t

* T 1 . vu/\k
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Figure: A blurred image (a) is deblurred as shown in (b).

Novel ‘deblurring’ integro-differential equation
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Figure: A blurred image (a) is deblurred with modified TNV deblurring as shown in (b).
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Figure: A blurred image (a) is deblurred with modified TNV deblurring as shown in (b).
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Other works ...

m Modified TNV deblurring with selective diffusion:
9(G* Vun, D[V | div( Vi, )

T Tuy, =T v, + 3
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Figure: A blurred image (a) is denoised with modified TNV deblurring with
selective diffusion as shown in (b).
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m Modified TNV deblurring with selective diffusion:
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Figure: A blurred image (a) is denoised with modified TNV deblurring with
selective diffusion as shown in (b).

Modified ‘deblurring’ integro-differential equation
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Other works ...

m multiscale (BV, L")
m multiscale (BV, (L")?)
® multiscale (BV, L1), (BV, (L1 )2) with g(|G* VUD and g(‘G* VU|)‘VU‘

(a) (b)

Figure: A blurred image (a) is denoised with multiscale (BV, (L')2) with
9(|G * Vu|)|Vu| as shown in (b).
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