Digital images are sampled 2-D analogue signals

- Black and white images $\equiv f : \Omega \subset \mathbb{R}^2 \to \mathbb{R}$
- f(x) \equiv intensity level at that point, which varies from zero to 255
- An image can be postulated as an $L^2(\Omega)$ object

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Digital images are sampled 2-D analogue signals
- Black and white images $\equiv f : \Omega \subset \mathbb{R}^2 \to \mathbb{R}$
- f(x) \equiv intensity level at that point, which varies from zero to 255
- An image can be postulated as an $L^2(\Omega)$ object

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Digital images are sampled 2-D analogue signals
- Black and white images $\equiv f : \Omega \subset \mathbb{R}^2 \to \mathbb{R}$
- $f(x) \equiv$ intensity level at that point, which varies from zero to 255

An image can be postulated as an $L^2(\Omega)$ object

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Digital images are sampled 2-D analogue signals
- Black and white images $\equiv f : \Omega \subset \mathbb{R}^2 \to \mathbb{R}$
- $f(x) \equiv$ intensity level at that point, which varies from zero to 255
- An image can be postulated as an $L^2(\Omega)$ object

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

(日) (日) (日) (日) (日) (日) (日)

Image deblurring

- f = TU for a deblurring operator $T : L^2(\Omega) \to L^2(\Omega)$ *T* may not be invertible : ill-posed problem.
- Given *f* we need to get back the deblurred image *U*.

Figure: Can we go from a blurred image (a) to a restored image in (b) ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Image deblurring

- f = TU for a deblurring operator $T : L^2(\Omega) \to L^2(\Omega)$ T may not be invertible : ill-posed problem.
- Given *f* we need to get back the deblurred image *U*.

Figure: Can we go from a blurred image (a) to a restored image in (b) ?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Image denoising: *f* may have some noise η in it.

• $f = U + \eta$, we need to get back the denoised image U.

Figure: Can we go from a noisy image (a) to a restored image in (b) ?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• *f* may be blurry and noisy $f = TU + \eta$

Image segmentation \equiv identifying 'components' in $f \equiv$ edge detection

Figure: Can we identify components in (a) and get a segmented image as in (b) ?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Multiscale image representation: Finding different level of 'scales' in f

Figure: Multiscale images of the city of Mumbai.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Multiscale representation: Family of images {U(t)} for a scaling parameter t
- **Forward marching**: $U(0) = 0, U(t) \rightarrow U$
- **Backward marching**: $U(0) = f, U(t) \rightarrow U$

Multiscale image representation: Finding different level of 'scales' in f

Figure: Multiscale images of the city of Mumbai.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Multiscale representation: Family of images {U(t)} for a scaling parameter t
- **Forward marching**: $U(0) = 0, U(t) \rightarrow U$
- **Backward marching**: $U(0) = f, U(t) \rightarrow U$

Multiscale image representation: Finding different level of 'scales' in f

Figure: Multiscale images of the city of Mumbai.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Multiscale representation: Family of images {U(t)} for a scaling parameter t
- **Forward marching**: $U(0) = 0, U(t) \rightarrow U$
- **Backward marching**: $U(0) = f, U(t) \rightarrow U$

There are two main approaches to solve above problems:

 Variational approaches - Tikhonov regularization, greedy algorithms, wavelets shrinkage etc.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

PDE based approaches - diffusion, Perona-Malik etc.

The approaches are related -

• We need to solve the ill posed problem f = Tu:

Consider interpolation functional

$$\inf_{u\in X}\left(\|u_{\lambda}\|_{X}+\lambda\|f-\mathcal{T}u_{\lambda}\|_{Y}^{2}\right)$$

 $X \subset Y$

 $||u||_X$: regularizing term

 $||f - Tu||_Y^2$: fidelity term

(*X*, *Y*) \equiv (*BV*, *L*²): Rudin-Osher-Fatemi-Vese.

$$\inf_{\{f=u_{\lambda}+v_{\lambda}\}} \left(\int_{\Omega} |\nabla u_{\lambda}| + \lambda \int_{\Omega} |f - \mathcal{T}u_{\lambda}|^2 \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• We need to solve the ill posed problem f = Tu:

Consider interpolation functional

$$\inf_{u\in X}\left(\|u_{\lambda}\|_{X}+\lambda\|f-\mathcal{T}u_{\lambda}\|_{Y}^{2}\right)$$

 $X \subset Y$

 $||u||_X$: regularizing term

 $||f - Tu||_Y^2$: fidelity term

• $(X, Y) \equiv (BV, L^2)$: Rudin-Osher-Fatemi-Vese.

$$\inf_{\{f=u_{\lambda}+v_{\lambda}\}}\left(\int_{\Omega}|\nabla u_{\lambda}|+\lambda\int_{\Omega}|f-\mathcal{T}u_{\lambda}|^{2}\right)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Rudin-Osher-Fatemi (ROF) decomposition $f = u_{\lambda} + v_{\lambda}$ for scale parameter λ .

$$[u_{\lambda}, v_{\lambda}] = \operatorname*{arginf}_{\{f = u_{\lambda} + v_{\lambda}\}} \left(\int_{\Omega} |\nabla u_{\lambda}| + \lambda \int_{\Omega} |f - u_{\lambda}|^{2} \right)$$

- The BV norm $\int_{\Omega} |\nabla u_{\lambda}|$ is a regularizing term
- $\int_{\Omega} |f u_{\lambda}|^2$: a fidelity term

• λ : acts as an **inverse scale** of the u_{λ} part (smaller $\lambda \equiv$ larger scale)

- $u_{\lambda} :=$ smooth parts and edges in f $v_{\lambda} := f - u_{\lambda}$ texture, finer details, noise
- Many other variational methods ...

Rudin-Osher-Fatemi (ROF) decomposition

 $f = u_{\lambda} + v_{\lambda}$ for scale parameter λ .

$$[u_{\lambda}, v_{\lambda}] = \operatorname{arginf}_{\{f=u_{\lambda}+v_{\lambda}\}} \left(\int_{\Omega} |\nabla u_{\lambda}| + \lambda \int_{\Omega} |f-u_{\lambda}|^{2} \right)$$

- The BV norm $\int_{\Omega} |\nabla u_{\lambda}|$ is a regularizing term
- $\int_{\Omega} |f u_{\lambda}|^2$: a fidelity term
- λ : acts as an **inverse scale** of the u_{λ} part (smaller $\lambda \equiv$ larger scale)

(日) (日) (日) (日) (日) (日) (日)

u_λ := smooth parts and edges in *f v_λ* := *f* - *u_λ* texture, finer details, noise
Many other variational methods ...

Rudin-Osher-Fatemi (ROF) decomposition

 $f = u_{\lambda} + v_{\lambda}$ for scale parameter λ .

$$[u_{\lambda}, v_{\lambda}] = \operatorname{arginf}_{\{f=u_{\lambda}+v_{\lambda}\}} \left(\int_{\Omega} |\nabla u_{\lambda}| + \lambda \int_{\Omega} |f-u_{\lambda}|^{2} \right)$$

- The BV norm $\int_{\Omega} |\nabla u_{\lambda}|$ is a regularizing term
- $\int_{\Omega} |f u_{\lambda}|^2$: a fidelity term
- λ : acts as an **inverse scale** of the u_{λ} part (smaller $\lambda \equiv$ larger scale)

•
$$u_{\lambda} :=$$
 smooth parts and edges in f
 $v_{\lambda} := f - u_{\lambda}$ texture, finer details, noise

Many other variational methods ...

Rudin-Osher-Fatemi (ROF) decomposition

 $f = u_{\lambda} + v_{\lambda}$ for scale parameter λ .

$$[u_{\lambda}, v_{\lambda}] = \operatorname{arginf}_{\{f=u_{\lambda}+v_{\lambda}\}} \left(\int_{\Omega} |\nabla u_{\lambda}| + \lambda \int_{\Omega} |f-u_{\lambda}|^{2} \right)$$

- The BV norm $\int_{\Omega} |\nabla u_{\lambda}|$ is a regularizing term
- $\int_{\Omega} |f u_{\lambda}|^2$: a fidelity term

• λ : acts as an **inverse scale** of the u_{λ} part (smaller $\lambda \equiv$ larger scale)

•
$$u_{\lambda} :=$$
 smooth parts and edges in f
 $v_{\lambda} := f - u_{\lambda}$ texture, finer details, noise

Many other variational methods ...

$$[u, v, C] = \operatorname{arginf}_{\{f=u+v, C\}} \left(\int_{\Omega-C} |f-u|^2 + \lambda_1 \int_{\Omega-C} |\nabla u|^2 + \lambda_2 \oint_C d\sigma \right).$$

 $u: \Omega \to \mathbb{R}$: piecewise smooth image $\mathcal{C} \in \Omega$: the set of jump discontinuities

Ambrosio and Tortorelli approximation (1992)

Kass-Witkin-Terzopoulos model (1988)

$$\inf_{c\in\mathcal{C}} \left(\int_a^b |c'|^2 + \lambda_1 \int_a^b |c''|^2 + \lambda_2 \int_a^b g^2(|\nabla f(c)|) \right)$$

C : closed, piecewise regular, parametric curves (snakes) a : a decreasing function vanishing at infinity

- Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
- Osher, Sethian: Level set method (1988)
- · · · · · · ·
- Now we look at some PDE methods ...

$$[u, v, \mathcal{C}] = \operatorname{arginf}_{\{f=u+v, \mathcal{C}\}} \left(\int_{\Omega-\mathcal{C}} |f-u|^2 + \lambda_1 \int_{\Omega-\mathcal{C}} |\nabla u|^2 + \lambda_2 \oint_{\mathcal{C}} d\sigma \right).$$

 $u: \Omega \to \mathbb{R}$: piecewise smooth image $\mathcal{C} \in \Omega$: the set of jump discontinuities

- Ambrosio and Tortorelli approximation (1992)
- Kass-Witkin-Terzopoulos model (1988)

$$\inf_{c\in\mathcal{C}}\left(\int_a^b |c'|^2 + \lambda_1 \int_a^b |c''|^2 + \lambda_2 \int_a^b g^2(|\nabla f(c)|)\right)$$

C : closed, piecewise regular, parametric curves (snakes)

- g: a decreasing function vanishing at infinity
- Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
- Osher, Sethian: Level set method (1988)
- **...**
- Now we look at some PDE methods ...

$$[u, v, C] = \operatorname{arginf}_{\{f=u+v, C\}} \left(\int_{\Omega-C} |f-u|^2 + \lambda_1 \int_{\Omega-C} |\nabla u|^2 + \lambda_2 \oint_C d\sigma \right).$$

 $u: \Omega \to \mathbb{R}$: piecewise smooth image $\mathcal{C} \in \Omega$: the set of jump discontinuities

- Ambrosio and Tortorelli approximation (1992)
- Kass-Witkin-Terzopoulos model (1988)

$$\inf_{c\in\mathcal{C}}\left(\int_a^b |c'|^2 + \lambda_1 \int_a^b |c''|^2 + \lambda_2 \int_a^b g^2(|\nabla f(c)|)\right)$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

C : closed, piecewise regular, parametric curves (snakes)

- g : a decreasing function vanishing at infinity
- Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
- Osher, Sethian: Level set method (1988)

...

Now we look at some PDE methods ...

$$[u, v, C] = \operatorname{arginf}_{\{f=u+v, C\}} \left(\int_{\Omega-C} |f-u|^2 + \lambda_1 \int_{\Omega-C} |\nabla u|^2 + \lambda_2 \oint_C d\sigma \right).$$

 $u: \Omega \to \mathbb{R}$: piecewise smooth image $\mathcal{C} \in \Omega$: the set of jump discontinuities

- Ambrosio and Tortorelli approximation (1992)
- Kass-Witkin-Terzopoulos model (1988)

$$\inf_{c\in\mathcal{C}}\left(\int_a^b |c'|^2 + \lambda_1 \int_a^b |c''|^2 + \lambda_2 \int_a^b g^2(|\nabla f(c)|)\right)$$

C : closed, piecewise regular, parametric curves (snakes)

g: a decreasing function vanishing at infinity

- Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
- Osher, Sethian: Level set method (1988)
- **...**
- Now we look at some PDE methods ...

PDE methods in image processing: Heat equation

Heat equation $\frac{\partial U}{\partial t} = \Delta U$. (Koenderink 1984, Witkin 1983)

- **Backward marching**: U(0) = f and $U(t) \rightarrow U$.
- This gives us Gaussian smoothing with variance=t
- Forward scaling: Anything with scale smaller than t is smoothed out Thus t acts as the scale parameter

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Figure: Different scales in a carpet obtained by heat equation

PDE methods in image processing: Heat equation

Heat equation $\frac{\partial U}{\partial t} = \Delta U$. (Koenderink 1984, Witkin 1983)

- **Backward marching**: U(0) = f and $U(t) \rightarrow U$.
- This gives us Gaussian smoothing with variance=t
- Forward scaling: Anything with scale smaller than t is smoothed out Thus t acts as the scale parameter

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Figure: Different scales in a carpet obtained by heat equation

- **Heat equation** $\frac{\partial U}{\partial t} = \Delta U$. (Koenderink 1984, Witkin 1983)
- **Backward marching**: U(0) = f and $U(t) \rightarrow U$.
- This gives us Gaussian smoothing with variance=t
- Forward scaling: Anything with scale smaller than *t* is smoothed out Thus *t* acts as the scale parameter

Figure: Different scales in a carpet obtained by heat equation

Denoising with heat equation:

(a)

(b)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions
Problem 2: where to stop ?

Denoising with heat equation:

(a)

(b)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions
Problem 2: where to stop ?

Denoising with heat equation:

(a)

(b)

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions

Problem 2: where to stop ?

• Heat equation \equiv **isotropic diffusion** \Rightarrow we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

$$\frac{\partial U}{\partial t} = \operatorname{div}\left(g(|\nabla U|)\nabla U\right), \quad U(0) = f$$

The idea: preserve the edges

Smooth regions $\equiv |\nabla U|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv |\nabla U|$ is large \Rightarrow we need to control the diffusion Examples of suitable function g(s): e^{-s} , $\frac{1}{1+s^2}$, $\frac{1}{\sqrt{1+s}}$

Perona-Malik is not well posed ! Catté et.al. modification² :

$$\frac{\partial U}{\partial t} = \operatorname{div} (g(|\nabla G \star U|) \nabla U),$$

G is Gaussian kernel.

・ロト・西ト・西ト・日下・ 日下

²F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

- Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges
- Perona-Malik proposed an anisotropic diffusion method

$$\frac{\partial U}{\partial t} = \operatorname{div} \left(g(|\nabla U|) \nabla U \right), \quad U(0) = f$$

Smooth regions $\equiv |\nabla U|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv |\nabla U|$ is large \Rightarrow we need to control the diffusion Examples of suitable function $g(s) : e^{-s}, \frac{1}{1+s^2}, \frac{1}{\sqrt{1+s}}$

Perona-Malik is not well posed ! Catté et.al. modification² :

$$\frac{\partial U}{\partial t} = \operatorname{div} (g(|\nabla G \star U|) \nabla U),$$

G is Gaussian kernel.

・ロト・(四ト・(日下・(日下・))

²F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

- Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges
- Perona-Malik proposed an anisotropic diffusion method

$$\frac{\partial U}{\partial t} = \operatorname{div} \left(g(|\nabla U|) \nabla U \right), \quad U(0) = f$$

Smooth regions $\equiv |\nabla U|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv |\nabla U|$ is large \Rightarrow we need to control the diffusion Examples of suitable function $g(s) : e^{-s} = \frac{1}{2}$.

Perona-Malik is not well posed ! Catté et.al. modification² :

$$\frac{\partial U}{\partial t} = \operatorname{div} \left(g(|\nabla G \star U|) \nabla U \right),$$

G is Gaussian kernel.

・ロト・(四ト・(日下・(日下・))

²F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

- Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges
- Perona-Malik proposed an anisotropic diffusion method

$$\frac{\partial U}{\partial t} = \operatorname{div} \left(g(|\nabla U|) \nabla U \right), \quad U(0) = f$$

Smooth regions $\equiv |\nabla U|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv |\nabla U|$ is large \Rightarrow we need to control the diffusion Examples of suitable function $g(s) : e^{-s}, \frac{1}{1+s^2}, \frac{1}{\sqrt{1+s}}$

Perona-Malik is not well posed ! Catté et.al. modification² :

$$\frac{\partial U}{\partial t} = \operatorname{div}\left(g(|\nabla G \star U|) \nabla U\right),$$

G is Gaussian kernel.

²F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

- Heat equation \equiv **isotropic diffusion** \Rightarrow we lose information about edges
- Perona-Malik proposed an anisotropic diffusion method

$$\frac{\partial U}{\partial t} = \operatorname{div} \left(g(|\nabla U|) \nabla U \right), \quad U(0) = f$$

Smooth regions $\equiv |\nabla U|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv |\nabla U|$ is large \Rightarrow we need to control the diffusion Examples of suitable function $g(s) : e^{-s}, \frac{1}{1+s^2}, \frac{1}{\sqrt{1+s}}$

Perona-Malik is not well posed ! Catté et.al. modification² :

$$\frac{\partial U}{\partial t} = \operatorname{div}\left(g(|\nabla G \star U|) \nabla U\right),$$

G is Gaussian kernel.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

²F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

- Heat equation \equiv isotropic diffusion \Rightarrow we lose information about edges
- Perona-Malik proposed an anisotropic diffusion method

$$\frac{\partial U}{\partial t} = \operatorname{div} \left(g(|\nabla U|) \nabla U \right), \quad U(0) = f$$

Smooth regions $\equiv |\nabla U|$ is weak \Rightarrow we need an isotropic smoothing Near the edges $\equiv |\nabla U|$ is large \Rightarrow we need to control the diffusion Examples of suitable function $g(s) : e^{-s}, \frac{1}{1+s^2}, \frac{1}{\sqrt{1+s}}$

Perona-Malik is not well posed ! Catté et.al. modification² :

$$\frac{\partial U}{\partial t} = \operatorname{div}\left(\boldsymbol{g}(|\nabla \boldsymbol{G} \star \boldsymbol{U}|) \nabla \boldsymbol{U}\right),$$

G is Gaussian kernel.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

²F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Alvarez et. al.

L. Alvarez P-L. Lions and J-M Morel's model (1992)

$$\frac{\partial U}{\partial t} = g(|G \star \nabla U|) |\nabla U| \operatorname{div} \left(\frac{\nabla U}{|\nabla U|} \right), \quad U(0) = f$$

Idea: Diffuse U only in the direction orthogonal to its gradient ∇U.
The term |∇U| div (^{∇U}_{|∇U|}) does exactly this.

 \blacksquare g is a diffusion controlling function as before.

(a)

(b)

(日) (日) (日) (日) (日) (日) (日)

Figure: Result of anisotropic diffusion: edges are preserved.

PDE methods in image processing: Alvarez et. al.

L. Alvarez P-L. Lions and J-M Morel's model (1992)

$$\frac{\partial U}{\partial t} = g(|G \star \nabla U|) |\nabla U| \operatorname{div} \left(\frac{\nabla U}{|\nabla U|} \right), \quad U(0) = f$$

Idea: Diffuse U only in the direction orthogonal to its gradient ∇U.
The term |∇U| div (^{∇U}/_{|∇U|}) does exactly this.

■ g is a diffusion controlling function as before.

(a)

(b)

Figure: Result of anisotropic diffusion: edges are preserved.
PDE methods in image processing: Alvarez et. al.

L. Alvarez P-L. Lions and J-M Morel's model (1992)

$$\frac{\partial U}{\partial t} = g(|G \star \nabla U|) |\nabla U| \operatorname{div} \left(\frac{\nabla U}{|\nabla U|} \right), \quad U(0) = f$$

Idea: Diffuse U only in the direction orthogonal to its gradient ∇U.
 The term |∇U| div (^{∇U}/_{|∇U|}) does exactly this.

■ *g* is a diffusion controlling function as before.

(a)

(b)

(日) (日) (日) (日) (日) (日) (日)

Figure: Result of anisotropic diffusion: edges are preserved.

Problem: As $t \to \infty$ the models discussed before diffuse completely. ... so where to stop ?

Solution: Nordström modified Perona-Malik model.

$$rac{\partial U}{\partial t} = t - U + \operatorname{div}\left(g(|\nabla U|) \nabla U\right), \quad U(0) = 0.$$

This equation has **non-trivial steady state**.

Forward marching: U(0) = 0 and $U(t) \rightarrow U$.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

- **Problem:** As $t \to \infty$ the models discussed before diffuse completely. ... so where to stop ?
- Solution: Nordström modified Perona-Malik model.

$$rac{\partial U}{\partial t} = f - U + \operatorname{div}\left(g(|\nabla U|) \nabla U\right), \quad U(0) = 0.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This equation has non-trivial steady state.

Forward marching: U(0) = 0 and $U(t) \rightarrow U$.

- **Problem:** As $t \to \infty$ the models discussed before diffuse completely. ... so where to stop ?
- Solution: Nordström modified Perona-Malik model.

$$\frac{\partial U}{\partial t} = f - U + \operatorname{div}(g(|\nabla U|)\nabla U), \quad U(0) = 0.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- This equation has **non-trivial steady state**.
- **Forward marching**: U(0) = 0 and $U(t) \rightarrow U$.

$$[u_{\lambda}, v_{\lambda}] = \operatorname*{arginf}_{\{f=u_{\lambda}+v_{\lambda}\}} \left(\int_{\Omega} |\nabla u_{\lambda}| + \lambda \int_{\Omega} |f-u_{\lambda}|^{2} \right)$$

The Euler-Lagrange equation:

$$f-u+rac{1}{2\lambda}\operatorname{div}\left(rac{
abla u}{|
abla u|}
ight)=0.$$

Nordström's modification of Perona-Malik:

$$\frac{\partial u}{\partial t} = f - u + \operatorname{div}\left(g(|\nabla u|)\nabla u\right).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $g(s) = \frac{1}{\lambda s} \Rightarrow$ steady-state of Nordström \equiv Euler-Lagrange of ROF !

$$[u_{\lambda}, v_{\lambda}] = \operatorname*{arginf}_{\{f=u_{\lambda}+v_{\lambda}\}} \left(\int_{\Omega} |\nabla u_{\lambda}| + \lambda \int_{\Omega} |f-u_{\lambda}|^{2} \right)$$

The Euler-Lagrange equation:

$$f-u+rac{1}{2\lambda}\operatorname{div}\left(rac{
abla u}{|
abla u|}
ight)=0.$$

Nordström's modification of Perona-Malik:

$$\frac{\partial u}{\partial t} = f - u + \operatorname{div}\left(g(|\nabla u|)\nabla u\right).$$

(日) (日) (日) (日) (日) (日) (日)

 $g(s) = \frac{1}{\lambda s}$ \Rightarrow steady-state of Nordström \equiv Euler-Lagrange of ROF !

$$[u_{\lambda}, v_{\lambda}] = \operatorname*{arginf}_{\{f=u_{\lambda}+v_{\lambda}\}} \left(\int_{\Omega} |\nabla u_{\lambda}| + \lambda \int_{\Omega} |f-u_{\lambda}|^{2} \right)$$

The Euler-Lagrange equation:

$$f - u + rac{1}{2\lambda} \operatorname{div} \left(rac{
abla u}{|
abla u|}
ight) = 0.$$

Nordström's modification of Perona-Malik:

$$\frac{\partial u}{\partial t} = f - u + \operatorname{div}\left(g(|\nabla u|)\nabla u\right).$$

(日) (日) (日) (日) (日) (日) (日)

 $g(s) = \frac{1}{\lambda s}$ \Rightarrow steady-state of Nordström \equiv Euler-Lagrange of ROF !

$$[u_{\lambda}, v_{\lambda}] = \operatorname*{arginf}_{\{f=u_{\lambda}+v_{\lambda}\}} \left(\int_{\Omega} |\nabla u_{\lambda}| + \lambda \int_{\Omega} |f-u_{\lambda}|^{2} \right)$$

The Euler-Lagrange equation:

$$f - u + rac{1}{2\lambda} \operatorname{div} \left(rac{
abla u}{|
abla u|}
ight) = 0.$$

Nordström's modification of Perona-Malik:

$$\frac{\partial u}{\partial t} = f - u + \operatorname{div}\left(g(|\nabla u|)\nabla u\right).$$

(日) (日) (日) (日) (日) (日) (日)

 $g(s) = \frac{1}{\lambda s} \Rightarrow$ steady-state of Nordström \equiv Euler-Lagrange of ROF !

We propose a novel model.

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

- An Integro-differential equation.
- The scaling function \u03c0(t) : increasing function at our disposal.
- This model gives an inverse scale representation

Compare this with Nordström's model:

$$U(t) + \frac{\partial U(t)}{\partial t} = t + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla U(t)}{|\nabla U(t)|} \right).$$

* * * QUESTIONS * * *

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function $\lambda(t)$ mean ?

We propose a novel model.

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

- An Integro-differential equation.
- The scaling function $\lambda(t)$: increasing function at our disposal.
- This model gives an inverse scale representation.

Compare this with Nordström's model:

$$U(t) + \frac{\partial U(t)}{\partial t} = t + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla U(t)}{|\nabla U(t)|} \right).$$

*** **QUESTIONS** ***

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function $\lambda(t)$ mean ?

We propose a novel model.

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

- An Integro-differential equation.
- The scaling function $\lambda(t)$: increasing function at our disposal.
- This model gives an inverse scale representation.

Compare this with Nordström's model:

$$U(t) + \frac{\partial U(t)}{\partial t} = t + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla U(t)}{|\nabla U(t)|} \right).$$

*** **QUESTIONS** ***

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function $\lambda(t)$ mean ?

We propose a novel model.

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

- An Integro-differential equation.
- The scaling function $\lambda(t)$: increasing function at our disposal.
- This model gives an inverse scale representation.
- Compare this with Nordström's model:

$$U(t) + \frac{\partial U(t)}{\partial t} = t + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla U(t)}{|\nabla U(t)|} \right).$$

* * * **QUESTIONS** * * *

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function $\lambda(t)$ mean ?

We propose a novel model.

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

- An Integro-differential equation.
- The scaling function $\lambda(t)$: increasing function at our disposal.
- This model gives an inverse scale representation.
- Compare this with Nordström's model:

$$U(t) + \frac{\partial U(t)}{\partial t} = t + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla U(t)}{|\nabla U(t)|} \right).$$

*** QUESTIONS ***

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function $\lambda(t)$ mean ?

We propose a novel model.

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

- An Integro-differential equation.
- The scaling function $\lambda(t)$: increasing function at our disposal.
- This model gives an inverse scale representation.
- Compare this with Nordström's model:

$$U(t) + \frac{\partial U(t)}{\partial t} = t + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla U(t)}{|\nabla U(t)|} \right).$$

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function $\lambda(t)$ mean ?

We propose a novel model.

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

- An Integro-differential equation.
- The scaling function $\lambda(t)$: increasing function at our disposal.
- This model gives an inverse scale representation.
- Compare this with Nordström's model:

$$U(t) + \frac{\partial U(t)}{\partial t} = t + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla U(t)}{|\nabla U(t)|} \right).$$

*** QUESTIONS ***

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function $\lambda(t)$ mean ?

We propose a novel model.

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

- An Integro-differential equation.
- The scaling function $\lambda(t)$: increasing function at our disposal.
- This model gives an inverse scale representation.
- Compare this with Nordström's model:

$$U(t) + \frac{\partial U(t)}{\partial t} = t + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla U(t)}{|\nabla U(t)|} \right).$$

*** QUESTIONS ***

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function $\lambda(t)$ mean ?

We propose a novel model.

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

- An Integro-differential equation.
- The scaling function $\lambda(t)$: increasing function at our disposal.
- This model gives an inverse scale representation.
- Compare this with Nordström's model:

$$U(t) + \frac{\partial U(t)}{\partial t} = t + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla U(t)}{|\nabla U(t)|} \right).$$

*** QUESTIONS ***

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function $\lambda(t)$ mean ?

(ロ) (同) (三) (三) (三) (○) (○)

Recall ROF decomposition: $f = u_{\lambda_0} + v_{\lambda_0}$, where λ_0 dictates the scale.

v_{λ_0} can be decomposed with a scaling parameter $\lambda_1 > \lambda_0$.

$$\mathbf{v}_{\lambda_0} = u_{\lambda_1} + v_{\lambda_1}, \quad [u_{\lambda_1}, v_{\lambda_1}] = \operatorname{arginf}_{\{v_{\lambda_0} = u_{\lambda_1} + v_{\lambda_1}\}} \left(\int_{\Omega} |\nabla u_{\lambda_1}| + \lambda_1 \int_{\Omega} |v_{\lambda_0} - u_{\lambda_1}|^2 \right).$$

TNV multiscale decomposition

$$\mathbf{v}_{\lambda_{k-1}} = u_{\lambda_k} + v_{\lambda_k}, \quad \left[u_{\lambda_k}, v_{\lambda_k}\right] = \operatorname{arginf}_{\{v_{\lambda_{k-1}} = u_{\lambda_k} + v_{\lambda_k}\}} \left(\int_{\Omega} |\nabla u_{\lambda_k}| + \lambda_k \int_{\Omega} |\mathbf{v}_{k-1} - u_k|^2\right)$$

• With this scheme after N + 1 steps we get:

$$\begin{aligned} &= & u_{\lambda_0} + v_{\lambda_0} \\ &= & u_{\lambda_0} + u_{\lambda_1} + v_{\lambda_1} \\ &= & \dots \\ &= & u_{\lambda_0} + u_{\lambda_1} + \dots + u_{\lambda_N} + v_{\lambda_N} \end{aligned}$$

i.e. a nonlinear multiscale decomposition: $f \sim \sum_{k=0}^{N} u_{\lambda_k} + v_{\lambda_N}$.

Recall ROF decomposition: f = u_{λ0} + v_{λ0}, where λ0 dictates the scale.
 v_{λ0} can be decomposed with a scaling parameter λ1 > λ0.

$$\mathbf{v}_{\lambda_0} = u_{\lambda_1} + v_{\lambda_1}, \quad [u_{\lambda_1}, v_{\lambda_1}] = \operatorname*{arginf}_{\{\mathbf{v}_{\lambda_0} = u_{\lambda_1} + v_{\lambda_1}\}} \left(\int_{\Omega} |\nabla u_{\lambda_1}| + \lambda_1 \int_{\Omega} |\mathbf{v}_{\lambda_0} - u_{\lambda_1}|^2 \right)$$

TNV multiscale decomposition

$$\mathbf{v}_{\lambda_{k-1}} = u_{\lambda_k} + v_{\lambda_k}, \quad \left[u_{\lambda_k}, v_{\lambda_k}\right] = \operatorname{arginf}_{\{v_{\lambda_{k-1}} = u_{\lambda_k} + v_{\lambda_k}\}} \left(\int_{\Omega} |\nabla u_{\lambda_k}| + \lambda_k \int_{\Omega} |v_{k-1} - u_k|^2 \right)$$

• With this scheme after N + 1 steps we get:

$$\begin{aligned} &= & u_{\lambda_0} + v_{\lambda_0} \\ &= & u_{\lambda_0} + u_{\lambda_1} + v_{\lambda_1} \\ &= & \dots \\ &= & u_{\lambda_0} + u_{\lambda_1} + \dots + u_{\lambda_N} + v_{\lambda_N} \end{aligned}$$

i.e. a nonlinear multiscale decomposition: $f \sim \sum_{k=0}^{N} u_{\lambda_k} + v_{\lambda_N}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Recall ROF decomposition: f = u_{λ0} + v_{λ0}, where λ0 dictates the scale.
 v_{λ0} can be decomposed with a scaling parameter λ1 > λ0.

$$\mathbf{v}_{\lambda_0} = u_{\lambda_1} + v_{\lambda_1}, \quad [u_{\lambda_1}, v_{\lambda_1}] = \operatorname{arginf}_{\{\mathbf{v}_{\lambda_0} = u_{\lambda_1} + v_{\lambda_1}\}} \left(\int_{\Omega} |\nabla u_{\lambda_1}| + \lambda_1 \int_{\Omega} |\mathbf{v}_{\lambda_0} - u_{\lambda_1}|^2 \right)$$

TNV multiscale decomposition

$$\mathbf{v}_{\lambda_{k-1}} = u_{\lambda_k} + v_{\lambda_k}, \quad \left[u_{\lambda_k}, v_{\lambda_k}\right] = \operatorname{arginf}_{\{\mathbf{v}_{\lambda_{k-1}} = u_{\lambda_k} + v_{\lambda_k}\}} \left(\int_{\Omega} |\nabla u_{\lambda_k}| + \lambda_k \int_{\Omega} |\mathbf{v}_{k-1} - u_k|^2 \right)$$

• With this scheme after N + 1 steps we get:

$$= u_{\lambda_0} + v_{\lambda_0}$$

$$= u_{\lambda_0} + u_{\lambda_1} + v_{\lambda_1}$$

$$= \dots$$

$$= u_{\lambda_0} + u_{\lambda_1} + \dots + u_{\lambda_N} + v_{\lambda_N}$$

i.e. a nonlinear multiscale decomposition: $f \sim \sum_{k=0}^{N} u_{\lambda_k} + v_{\lambda_N}$.

Recall ROF decomposition: f = u_{λ0} + v_{λ0}, where λ0 dictates the scale.
 v_{λ0} can be decomposed with a scaling parameter λ1 > λ0.

$$\mathbf{v}_{\lambda_0} = u_{\lambda_1} + v_{\lambda_1}, \quad [u_{\lambda_1}, v_{\lambda_1}] = \operatorname{arginf}_{\{\mathbf{v}_{\lambda_0} = u_{\lambda_1} + v_{\lambda_1}\}} \left(\int_{\Omega} |\nabla u_{\lambda_1}| + \lambda_1 \int_{\Omega} |\mathbf{v}_{\lambda_0} - u_{\lambda_1}|^2 \right)$$

TNV multiscale decomposition

$$\mathbf{v}_{\lambda_{k-1}} = u_{\lambda_k} + v_{\lambda_k}, \quad \left[u_{\lambda_k}, v_{\lambda_k}\right] = \operatorname{arginf}_{\{\mathbf{v}_{\lambda_{k-1}} = u_{\lambda_k} + v_{\lambda_k}\}} \left(\int_{\Omega} |\nabla u_{\lambda_k}| + \lambda_k \int_{\Omega} |\mathbf{v}_{k-1} - u_k|^2 \right)$$

• With this scheme after N + 1 steps we get:

$$= u_{\lambda_0} + v_{\lambda_0}$$

$$= u_{\lambda_0} + u_{\lambda_1} + v_{\lambda_1}$$

$$= \dots$$

$$= u_{\lambda_0} + u_{\lambda_1} + \dots + u_{\lambda_N} + v_{\lambda_N}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

i.e. a nonlinear multiscale decomposition: $f \sim \sum_{k=0}^{N} u_{\lambda_k} + v_{\lambda_N}$.

• k^{th} step in TNV scheme: $u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \underset{\{v_{\lambda_{k-1}} = u_{\lambda_{k}} + v_{\lambda_{k}}\}}{\operatorname{arginf}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - u_{\lambda_{k}}|^{2} \right)$$
$$u_{\lambda_{k}} \underbrace{-\frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)}_{= v_{\lambda_{k-1}}} = v_{\lambda_{k-1}}$$

TNV iteration:

$$u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$$

$$\sum_{k=0}^{N} u_{\lambda_k} + v_{\lambda_N} = f$$

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{1}{2\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|}\right)$$

• k^{th} step in TNV scheme: $u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \operatorname*{arginf}_{\{v_{\lambda_{k-1}} = u_{\lambda_{k}} + v_{\lambda_{k}}\}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - u_{\lambda_{k}}|^{2} \right)$$
$$u_{\lambda_{k}} \underbrace{-\frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)}_{v_{\lambda_{k}}} = v_{\lambda_{k-1}}$$

TNV iteration:

$$u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$$

$$\sum_{k=0}^{N} u_{\lambda_k} + v_{\lambda_N} = f$$

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{1}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right).$$

• k^{th} step in TNV scheme: $u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \operatorname*{arginf}_{\{v_{\lambda_{k-1}} = u_{\lambda_{k}} + v_{\lambda_{k}}\}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - u_{\lambda_{k}}|^{2} \right)$$
$$u_{\lambda_{k}} \underbrace{-\frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)}_{v_{\lambda_{k}}} = v_{\lambda_{k-1}}$$

TNV iteration:

$$U_{\lambda_k} + V_{\lambda_k} = V_{\lambda_{k-1}}$$

$$\sum_{k=0}^{N} u_{\lambda_k} + v_{\lambda_N} = f$$

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{1}{2\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|}\right)$$

• k^{th} step in TNV scheme: $u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \operatorname*{arginf}_{\{v_{\lambda_{k-1}} = u_{\lambda_{k}} + v_{\lambda_{k}}\}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - u_{\lambda_{k}}|^{2} \right)$$
$$u_{\lambda_{k}} \underbrace{-\frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)}_{v_{\lambda_{k}}} = v_{\lambda_{k-1}}$$

TNV iteration:

$$u_{\lambda_k} + \mathbf{v}_{\lambda_k} = \mathbf{v}_{\lambda_{k-1}}$$

Telescopic sum of the above gives us:

$$\sum_{k=0}^{N} u_{\lambda_k} + \mathbf{v}_{\lambda_N} = f$$

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{1}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right)$$

• k^{th} step in TNV scheme: $u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \underset{\{v_{\lambda_{k-1}} = u_{\lambda_{k}} + v_{\lambda_{k}}\}}{\operatorname{arginf}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - u_{\lambda_{k}}|^{2} \right)$$
$$u_{\lambda_{k}} \underbrace{-\frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)}_{v_{\lambda_{k}}} = v_{\lambda_{k-1}}$$

TNV iteration:

$$u_{\lambda_k} + \mathbf{v}_{\lambda_k} = \mathbf{v}_{\lambda_{k-1}}$$

$$\sum_{k=0}^{N} u_{\lambda_k} + \mathbf{v}_{\lambda_N} = f$$

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{1}{2\lambda_N} \operatorname{div} \left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|} \right)$$

• k^{th} step in TNV scheme: $u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \operatorname*{arginf}_{\{v_{\lambda_{k-1}} = u_{\lambda_{k}} + v_{\lambda_{k}}\}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - u_{\lambda_{k}}|^{2} \right)$$
$$u_{\lambda_{k}} \underbrace{-\frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)}_{v_{\lambda_{k}}} = v_{\lambda_{k-1}}$$

TNV iteration:

$$u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$$

Telescopic sum of the above gives us:

$$\sum_{k=0}^{N} u_{\lambda_k} + \mathbf{v}_{\lambda_N} = f$$

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|} \right)$$

ヘロン ヘロン ヘビン ヘビン しど

• k^{th} step in TNV scheme: $u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \operatorname*{arginf}_{\{v_{\lambda_{k-1}} = u_{\lambda_{k}} + v_{\lambda_{k}}\}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - u_{\lambda_{k}}|^{2} \right)$$
$$u_{\lambda_{k}} \underbrace{-\frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)}_{v_{\lambda_{k}}} = v_{\lambda_{k-1}}$$

TNV iteration:

$$u_{\lambda_k} + v_{\lambda_k} = v_{\lambda_{k-1}}$$

Telescopic sum of the above gives us:

$$\sum_{k=0}^{N} u_{\lambda_k} + \mathbf{v}_{\lambda_N} = f$$

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{1}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right)$$

・ロト・ロト・モト・モト モ

A new formulation of the TNV scheme

We have the TNV scheme as follows:

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{1}{2\lambda_N} \operatorname{div} \left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|} \right).$$

• Define U^N as the sum $U^N = \sum_{k=0}^N u_k \Rightarrow u^N = U^N - U^{N-1}$, we get :

New formulation of TNV

$$U^{N} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla (U^{N} - U^{N-1})}{|\nabla (U^{N} - U^{N-1})|} \right)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Question: How do we solve this numerically ?

A new formulation of the TNV scheme

We have the TNV scheme as follows:

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{1}{2\lambda_N} \operatorname{div} \left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|} \right).$$

• Define U^N as the sum $U^N = \sum_{k=0}^N u_k \Rightarrow u^N = U^N - U^{N-1}$, we get :

New formulation of TNV

$$U^{N} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla (U^{N} - U^{N-1})}{|\nabla (U^{N} - U^{N-1})|} \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Question: How do we solve this numerically ?

A new formulation of the TNV scheme

We have the TNV scheme as follows:

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|} \right).$$

• Define U^N as the sum $U^N = \sum_{k=0}^N u_k \Rightarrow u^N = U^N - U^{N-1}$, we get :

New formulation of TNV

$$U^N = f + rac{1}{2\lambda_N} \operatorname{div} \left(rac{
abla (U^N - U^{N-1})}{|
abla (U^N - U^{N-1})|}
ight)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Question: How do we solve this numerically ?

How to solve TNV numerically ?

• We need to solve this : $U^N = f + \frac{1}{2\lambda_N} \operatorname{div} \left(\frac{\nabla (U^N - U^{N-1})}{|\nabla (U^N - U^{N-1})|} \right).$

$$\begin{split} c_E(U) &\equiv & \frac{1}{\sqrt{(\varepsilon\hbar)^2 + (\Delta_{+X}U_{l,j})^2 + (\Delta_{0Y}U_{l,j})^2}}, \\ c_S(U) &\equiv & \frac{1}{\sqrt{(\varepsilon\hbar)^2 + (\Delta_{-X}U_{l,j})^2 + (\Delta_{0Y}U_{l,j})^2}}, \\ c_S(U) &\equiv & \frac{1}{\sqrt{(\varepsilon\hbar)^2 + (\Delta_{0X}U_{l,j})^2 + (\Delta_{+Y}U_{l,j})^2}}, \\ c_N(U) &\equiv & \frac{1}{\sqrt{(\varepsilon\hbar)^2 + (\Delta_{0X}U_{l,j})^2 + (\Delta_{-Y}U_{l,j})^2}}. \end{split}$$

■ Given U^{N-1} we get U^N by solving the following fixed point iteration. $\frac{u_{i,j}^{n}}{2\lambda h_{i,j}^{n} + c_{E}(u_{i+1,j}^{n-1} - u_{i+1,j}^{N-1}) + c_{W}(u_{i-1,j}^{n-1} - u_{i-1,j}^{N-1}) + c_{S}(u_{i,j+1}^{n-1} - u_{i,j+1}^{N-1}) + c_{N}(u_{i,j-1}^{n-1} - u_{i,j-1}^{N-1}) + (\sum_{c})u^{N-1}}{2\lambda h_{i,j}^{n} + \sum_{c}}$

where $c_E \equiv c_E (U^{n-1} - U^{N-1})$ etc. and $\sum_c \equiv c_E + c_W + c_N + c_S$.

How to solve TNV numerically ?

• We need to solve this : $U^N = f + \frac{1}{2\lambda_N} \operatorname{div} \left(\frac{\nabla (U^N - U^{N-1})}{|\nabla (U^N - U^{N-1})|} \right).$

$$\begin{split} c_E(U) & \equiv & \frac{1}{\sqrt{(\varepsilon\hbar)^2 + (\Delta_{+X}U_{i,j})^2 + (\Delta_{0Y}U_{i,j})^2}}, \\ c_W(U) & \equiv & \frac{1}{\sqrt{(\varepsilon\hbar)^2 + (\Delta_{-X}U_{i,j})^2 + (\Delta_{0Y}U_{i-1,j})^2}}, \\ c_S(U) & \equiv & \frac{1}{\sqrt{(\varepsilon\hbar)^2 + (\Delta_{0X}U_{i,j})^2 + (\Delta_{+Y}U_{i,j})^2}}, \\ c_N(U) & \equiv & \frac{1}{\sqrt{(\varepsilon\hbar)^2 + (\Delta_{0X}U_{i,j-1})^2 + (\Delta_{-Y}U_{i,j})^2}}. \end{split}$$

Given U^{N-1} we get U^N by solving the following fixed point iteration. $\frac{u_{i,j}^n}{2\lambda h_{i,j} + c_E(u_{i+1,j}^{n-1} - u_{i+1,j}^{N-1}) + c_W(u_{i-1,j}^{n-1} - u_{i-1,j}^{N-1}) + c_S(u_{i,j+1}^{n-1} - u_{i,j+1}^{N-1}) + c_N(u_{i,j-1}^{n-1} - u_{i,j-1}^{N-1}) + (\sum_c)u^N}{2\lambda h_{i,j} + \sum_c}$

where $c_E \equiv c_E (U^{n-1} - U^{N-1})$ etc. and $\sum_c \equiv c_E + c_W + c_N + c_S$.

How to solve TNV numerically ?

• We need to solve this : $U^N = f + \frac{1}{2\lambda_N} \operatorname{div} \left(\frac{\nabla (U^N - U^{N-1})}{|\nabla (U^N - U^{N-1})|} \right).$

$$\begin{split} c_{E}(U) &\equiv \quad \frac{1}{\sqrt{(\varepsilon h)^{2} + (\Delta_{+x}U_{i,j})^{2} + (\Delta_{0y}U_{i,j})^{2}}}, c_{W}(U) \equiv \frac{1}{\sqrt{(\varepsilon h)^{2} + (\Delta_{-x}U_{i,j})^{2} + (\Delta_{0y}U_{i-1,j})^{2}}}, \\ c_{S}(U) &\equiv \quad \frac{1}{\sqrt{(\varepsilon h)^{2} + (\Delta_{0x}U_{i,j})^{2} + (\Delta_{+y}U_{i,j})^{2}}}, c_{N}(U) \equiv \frac{1}{\sqrt{(\varepsilon h)^{2} + (\Delta_{0x}U_{i,j-1})^{2} + (\Delta_{-y}U_{i,j})^{2}}}. \end{split}$$

Given U^{N-1} we get U^N by solving the following fixed point iteration.

$$\frac{U_{i,j}^{n}}{2\lambda h_{i,j}^{n} + c_{E}(U_{i+1,j}^{n-1} - U_{i+1,j}^{N-1}) + c_{W}(U_{i-1,j}^{n-1} - U_{i-1,j}^{N-1}) + c_{S}(U_{i,j+1}^{n-1} - U_{i,j+1}^{N-1}) + c_{N}(U_{i,j-1}^{n-1} - U_{i,j-1}^{N-1}) + (\sum_{c})U^{N-1}}{2\lambda h_{i,j}^{n} + \sum_{c}},$$

where $c_E \equiv c_E (U^{n-1} - U^{N-1})$ etc. and $\sum_c \equiv c_E + c_W + c_N + c_S$.

Numerical results of standard TNV continued ...

Numerical results of $U^N = f + \frac{1}{2\lambda_N} \operatorname{div} \left(\frac{\nabla (U^N - U^{N-1})}{|\nabla (U^N - U^{N-1})|} \right).$

Figure: Numerical results with standard TNV model. We used $\lambda_k = (0.0005) \times 2^k$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Going from TNV to a novel integro-differential equation

Recall for TNV formulation: $U_N = \sum_{k=0}^N u_k$ and $u_N = U_N - U_{N-1}$.

$$U_{N} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla (U_{N} - U_{N-1})}{|\nabla (U_{N} - U_{N-1})|} \right)$$
$$\sum_{k=0}^{N} u_{k} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla u_{N}}{|\nabla u_{N}|} \right).$$

This motivates us to write the following model.

The novel integro-differential model

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

where $\lambda(t) > 0$ is an increasing scaling function at our disposal.
Recall for TNV formulation: $U_N = \sum_{k=0}^N u_k$ and $u_N = U_N - U_{N-1}$.

$$U_{N} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla (U_{N} - U_{N-1})}{|\nabla (U_{N} - U_{N-1})|} \right)$$
$$\sum_{k=0}^{N} u_{k} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla u_{N}}{|\nabla u_{N}|} \right).$$

This motivates us to write the following model.

The novel integro-differential model

$$\int_0^t u(x,s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $\lambda(t) > 0$ is an increasing scaling function at our disposal.

$$U(t) := \int_0^t u(x, s) ds = \sum_{k=0}^{N-1} \int_{k\Delta t}^{(k+1)\Delta t} u(x, s) ds$$

$$U^N := \int_0^{N \Delta t} u(x, s) ds \text{ and } u^{k+1} := u((k+1)\Delta t), \text{ with this we have}$$
$$U^N \approx U^{N-1} + u^N \Delta t.$$

Thus, we have the following fixed point iteration.

$$u_{i,j}^{n} = \frac{2\lambda^{N}h(f_{i,j} - U_{i,j}^{N-1}) + c_{E}u_{i+1,j}^{n-1} + c_{W}u_{i-1,j}^{n-1} + c_{S}u_{i,j+1}^{n-1} + c_{N}u_{i,j-1}^{n-1}}{2\lambda^{N}h\Delta t + c_{E} + c_{W} + c_{S} + c_{N}}.$$

This fixed point implementation gives us u^N and thus $U^N = U^{N-1} + u^N \Delta t$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$U(t) := \int_0^t u(x,s) ds = \sum_{k=0}^{N-1} \int_{k\Delta t}^{(k+1)\Delta t} u(x,s) ds$$

•
$$U^N := \int_0^{N\Delta t} u(x, s) ds$$
 and $u^{k+1} := u((k+1)\Delta t)$, with this we have
 $U^N \approx U^{N-1} + u^N \Delta t$.

Thus, we have the following fixed point iteration.

$$u_{i,j}^{n} = \frac{2\lambda^{N}h(f_{i,j} - U_{i,j}^{N-1}) + c_{E}u_{i+1,j}^{n-1} + c_{W}u_{i-1,j}^{n-1} + c_{S}u_{i,j+1}^{n-1} + c_{N}u_{i,j-1}^{n-1}}{2\lambda^{N}h\Delta t + c_{E} + c_{W} + c_{S} + c_{N}}.$$

This fixed point implementation gives us u^N and thus $U^N = U^{N-1} + u^N \Delta t$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$U(t) := \int_0^t u(x,s) ds = \sum_{k=0}^{N-1} \int_{k\Delta t}^{(k+1)\Delta t} u(x,s) ds$$

•
$$U^N := \int_0^{N\Delta t} u(x, s) ds$$
 and $u^{k+1} := u((k+1)\Delta t)$, with this we have
 $U^N \approx U^{N-1} + u^N \Delta t$.

Thus, we have the following fixed point iteration.

$$u_{i,j}^{n} = \frac{2\lambda^{N}h(f_{i,j} - U_{i,j}^{N-1}) + c_{E}u_{i+1,j}^{n-1} + c_{W}u_{i-1,j}^{n-1} + c_{S}u_{i,j+1}^{n-1} + c_{N}u_{i,j-1}^{n-1}}{2\lambda^{N}h\Delta t + c_{E} + c_{W} + c_{S} + c_{N}}.$$

This fixed point implementation gives us u^N and thus $U^N = U^{N-1} + u^N \Delta t$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$U(t) := \int_0^t u(x,s) ds = \sum_{k=0}^{N-1} \int_{k\Delta t}^{(k+1)\Delta t} u(x,s) ds$$

•
$$U^N := \int_0^{N\Delta t} u(x, s) ds$$
 and $u^{k+1} := u((k+1)\Delta t)$, with this we have
 $U^N \approx U^{N-1} + u^N \Delta t$.

Thus, we have the following fixed point iteration.

$$u_{i,j}^{n} = \frac{2\lambda^{N}h(f_{i,j} - U_{i,j}^{N-1}) + c_{E}u_{i+1,j}^{n-1} + c_{W}u_{i-1,j}^{n-1} + c_{S}u_{i,j+1}^{n-1} + c_{N}u_{i,j-1}^{n-1}}{2\lambda^{N}h\Delta t + c_{E} + c_{W} + c_{S} + c_{N}}.$$

• This fixed point implementation gives us u^N and thus $U^N = U^{N-1} + u^N \Delta t$

Numerical result for $\int_0^t u(x, s) ds = f(x) + \frac{1}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|}\right)$.

Figure: As $\lambda(t) \to \infty$, the image $\int_0^t u(x, s) ds$ approaches the given image *f*.

(日) (日) (日) (日) (日) (日) (日)

Modified integro differential model

$$\int_0^t u(x,s) ds = f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

where g is diffusion controlling function. (Recall Perona-Malik.)

The motivation: numerical implementation of the ROF model.

Euler-Lagrange differential equation for ROF:

$$u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

There are two problems here.

- Problem 1 : $|\nabla u| \approx 0$
- Problem 2 : |\(\nabla u\)| is undefined at the sharp discontinuities

Modified integro differential model

$$\int_0^t u(x,s) ds = f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

where *g* is diffusion controlling function. (Recall Perona-Malik.) The motivation: numerical implementation of the ROF model.

Euler-Lagrange differential equation for ROF:

$$u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

There are two problems here.

- Problem 1 : $|\nabla u| \approx 0$
- Problem 2 : |\(\nabla u\)| is undefined at the sharp discontinuities

Modified integro differential model

$$\int_0^t u(x,s) ds = f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

where g is diffusion controlling function. (Recall Perona-Malik.)

- The motivation: numerical implementation of the ROF model.
- Euler-Lagrange differential equation for ROF:

$$u = f + rac{1}{2\lambda} \operatorname{div} \left(rac{
abla u}{|
abla u|}
ight).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

There are two problems here.

- Problem 1 : $|\nabla u| \approx 0$
- Problem 2 : |\(\nabla u\)| is undefined at the sharp discontinuities

Modified integro differential model

$$\int_0^t u(x,s) ds = f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

where g is diffusion controlling function. (Recall Perona-Malik.)

The motivation: numerical implementation of the ROF model.

Euler-Lagrange differential equation for ROF:

$$u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

There are two problems here.

Problem 1 : $|\nabla u| \approx 0$.

Problem 2 : $|\nabla u|$ is undefined at the sharp discontinuities.

Problem 1 :
$$|\nabla u| \approx 0$$
 : $u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{\varepsilon^2 + |\nabla u|^2}} \right)$

Problem 2 : How to deal with the sharp discontinuities ?

Idea : increase the cell size *h* if $|\nabla u|$ is large: **non-uniform grid**.

Let $\hat{h} = \frac{h}{g(|G_{\star} \nabla u|)}$ with g(0) = 1 and vanishing at infinity \Rightarrow

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{(\varepsilon \hat{h})^2 + |\nabla u|^2}} \right)$$

This motivates us to look at :

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

Numerical results ...

▲□▶▲□▶▲□▶▲□▶ ■ のへの

Problem 1 :
$$|\nabla u| \approx 0$$
 : $u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{\varepsilon^2 + |\nabla u|^2}} \right)$

Problem 2 : How to deal with the sharp discontinuities ?

■ Idea : increase the cell size *h* if $|\nabla u|$ is large: **non-uniform grid**. ■ Let $\hat{h} = \frac{h}{g(|G \star \nabla u|)}$ with g(0) = 1 and vanishing at infinity \Rightarrow

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div}\left(\frac{\nabla u}{\sqrt{(\varepsilon \hat{h})^2 + |\nabla u|^2}}\right)$$

This motivates us to look at :

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

Numerical results ...

・ロト・雪・・ヨト・ヨー うへで

Problem 1 :
$$|\nabla u| \approx 0$$
 : $u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{\varepsilon^2 + |\nabla u|^2}} \right)$

Problem 2 : How to deal with the sharp discontinuities ?

Idea : increase the cell size *h* if $|\nabla u|$ is large: **non-uniform grid**.

Let
$$\hat{h} = \frac{h}{q(|G \star \nabla u|)}$$
 with $g(0) = 1$ and vanishing at infinity \Rightarrow

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{(\varepsilon \hat{h})^2 + |\nabla u|^2}} \right)$$

This motivates us to look at :

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

Numerical results ...

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < ○ < ○

Problem 1 :
$$|\nabla u| \approx 0$$
 : $u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{\varepsilon^2 + |\nabla u|^2}} \right)$

- **Problem 2** : How to deal with the sharp discontinuities ?

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{(\varepsilon \hat{h})^2 + |\nabla u|^2}} \right)$$

This motivates us to look at :

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Problem 1 :
$$|\nabla u| \approx 0$$
 : $u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{\epsilon^2 + |\nabla u|^2}} \right)$

- **Problem 2** : How to deal with the sharp discontinuities ?

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{(\varepsilon \hat{h})^2 + |\nabla u|^2}} \right)$$

This motivates us to look at :

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

Numerical results ...

Problem 1 :
$$|\nabla u| \approx 0$$
 : $u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{\epsilon^2 + |\nabla u|^2}} \right)$

- Problem 2 : How to deal with the sharp discontinuities ?

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{(\varepsilon \hat{h})^2 + |\nabla u|^2}} \right)$$

This motivates us to look at :

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Problem 1 :
$$|\nabla u| \approx 0$$
 : $u = f + \frac{1}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{\sqrt{\epsilon^2 + |\nabla u|^2}} \right)$

- Problem 2 : How to deal with the sharp discontinuities ?

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div}\left(\frac{\nabla u}{\sqrt{(\varepsilon \hat{h})^2 + |\nabla u|^2}}\right)$$

This motivates us to look at :

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Figure: (a) Result of standard ROF and (b) result of the modified ROF with $g(|G \star \nabla u|)$; both for the same $\lambda = 0.0001$.

Modified TNV and the proposed model

TNV scheme:

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|} \right)$$

We looked at modified ROF:

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$$

Can we modify TNV ?

Modified TNV scheme

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{g(|G \star \nabla u_{\lambda_N}|)}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right)$$

Numerical results ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Modified TNV and the proposed model

TNV scheme:

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|} \right)$$

We looked at modified ROF:

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right)$$

Can we modify TNV ?

Modified TNV scheme

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{g(|G \star \nabla u_{\lambda_N}|)}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right)$$

Numerical results ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

TNV scheme:

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|} \right)$$

We looked at modified ROF:

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right)$$

Can we modify TNV ?

Modified TNV scheme

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{g(|G \star \nabla u_{\lambda_{N}}|)}{2\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|}\right)$$

Numerical results ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

TNV scheme:

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{1}{2\lambda_{N}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|} \right)$$

We looked at modified ROF:

$$u = f + \frac{g(|G \star \nabla u|)}{2\lambda} \operatorname{div} \left(\frac{\nabla u}{|\nabla u|} \right)$$

Can we modify TNV ?

Modified TNV scheme

$$\sum_{k=0}^{N} u_{\lambda_{k}} = f + \frac{g(|G \star \nabla u_{\lambda_{N}}|)}{2\lambda_{N}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{N}}}{|\nabla u_{\lambda_{N}}|}\right)$$

Numerical results ...

Numerical results of modified TNV.

• Numerical results of
$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{g(|G \star \nabla u_{\lambda_N}|)}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right).$$

Figure: Numerical results of TNV with diffusion controlling function $g(s) = \frac{1}{1+s^2}$, with initial $\lambda_k = (0.0005) \times 2^k$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Can we modify the integro-differential model ?

Numerical results of modified TNV.

• Numerical results of
$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{g(|G \star \nabla u_{\lambda_N}|)}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right).$$

Figure: Numerical results of TNV with diffusion controlling function $g(s) = \frac{1}{1+s^2}$, with initial $\lambda_k = (0.0005) \times 2^k$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Can we modify the integro-differential model ?

We looked at modified TNV:

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{g(|G \star \nabla u_{\lambda_N}|)}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right)$$

This leads to modified Integro-differential equation:

$$\int_0^t u(x,s)ds = f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

We looked at modified TNV:

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{g(|G \star \nabla u_{\lambda_N}|)}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right)$$

This leads to modified Integro-differential equation:

$$\int_0^t u(x,s)ds = f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

We looked at modified TNV:

$$\sum_{k=0}^{N} u_{\lambda_k} = f + \frac{g(|G \star \nabla u_{\lambda_N}|)}{2\lambda_N} \operatorname{div}\left(\frac{\nabla u_{\lambda_N}}{|\nabla u_{\lambda_N}|}\right)$$

This leads to modified Integro-differential equation:

$$\int_0^t u(x,s) ds = f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

Numerical results of
$$\int_0^t u(x,s) ds = f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Figure: Numerical results of modified integro-differential mode with diffusion controlling function $g(s) = \frac{1}{1+s^2}$. The function $\lambda(t) = 10^{-4}e^{2t} \times 2^t$.

Recall the integro-differential model

$$\int_0^t u(x,s)ds - f(x) = \frac{1}{2\lambda(t)}\operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right).$$

where $\lambda(t)$ is an increasing function at our disposal.

Star-norm is the dual of the BV norm w.r.t. the L² scalar product

$$\|v\|_* := \sup_{\phi \neq 0} \frac{\langle v, \phi \rangle}{\int_{\Omega} |\nabla \phi|}.$$

Theorem: Let us define for the integro-differential equation the error term as $\int_{0}^{t} u(x, s) ds - f(x)$, then

$$\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}$$

Proof: The proof follows from Meyer's theorem: for ROF decomposition f = u + v with scale λ , we get $\int_{\Omega} uv = ||u||_{BV} ||v||_*$ and $||v||_* = \frac{1}{2\lambda}$.

・ロト・西ト・山田・山田・山下

Recall the integro-differential model

$$\int_0^t u(x,s)ds - f(x) = \frac{1}{2\lambda(t)}\operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right).$$

where $\lambda(t)$ is an increasing function at our disposal.

Star-norm is the dual of the BV norm w.r.t. the L² scalar product

$$\|\mathbf{v}\|_* := \sup_{\phi \neq 0} \frac{\langle \mathbf{v}, \phi \rangle}{\int_{\Omega} |\nabla \phi|}.$$

Theorem: Let us define for the integro-differential equation the error term as $\int_{0}^{t} u(x, s) ds - f(x)$, then

$$\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}$$

Proof: The proof follows from Meyer's theorem: for ROF decomposition f = u + v with scale λ , we get $\int_{\Omega} uv = ||u||_{BV} ||v||_*$ and $||v||_* = \frac{1}{2\lambda}$.

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

Recall the integro-differential model

$$\int_0^t u(x,s)ds - f(x) = \frac{1}{2\lambda(t)}\operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right).$$

where $\lambda(t)$ is an increasing function at our disposal.

Star-norm is the dual of the BV norm w.r.t. the L² scalar product

$$\|\mathbf{v}\|_* := \sup_{\phi \neq 0} \frac{\langle \mathbf{v}, \phi \rangle}{\int_{\Omega} |\nabla \phi|}.$$

Theorem: Let us define for the integro-differential equation the error term as $\int_0^t u(x, s) ds - f(x)$, then

$$\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}$$

Proof: The proof follows from Meyer's theorem: for ROF decomposition f = u + v with scale λ , we get $\int_{\Omega} uv = \|u\|_{BV} \|v\|_*$ and $\|v\|_* = \frac{1}{2\lambda}$.

(日) (日) (日) (日) (日) (日) (日)

Recall the integro-differential model

$$\int_0^t u(x,s)ds - f(x) = \frac{1}{2\lambda(t)}\operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right).$$

where $\lambda(t)$ is an increasing function at our disposal.

Star-norm is the dual of the BV norm w.r.t. the L² scalar product

$$\|\mathbf{v}\|_* := \sup_{\phi \neq 0} \frac{\langle \mathbf{v}, \phi \rangle}{\int_{\Omega} |\nabla \phi|}.$$

Theorem: Let us define for the integro-differential equation the error term as $\int_0^t u(x, s) ds - f(x)$, then

$$\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}$$

Proof: The proof follows from Meyer's theorem: for ROF decomposition f = u + v with scale λ , we get $\int_{\Omega} uv = \|u\|_{BV} \|v\|_*$ and $\|v\|_* = \frac{1}{2\lambda}$.

Corollary: The star-norm of the residual vanishes as $t \to \infty$

Proof: In our model the function $\lim_{t\to\infty} \lambda(t) = \infty$. Thus, the result follows from the previous theorem :

$$\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}.$$

Question: What happens if $\lim_{t\to\infty} \lambda(t) = \lambda_{\infty} < \infty$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary: The star-norm of the residual vanishes as $t \to \infty$

Proof: In our model the function $\lim_{t\to\infty} \lambda(t) = \infty$. Thus, the result follows from the previous theorem :

$$\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}.$$

Question: What happens if $\lim_{t\to\infty} \lambda(t) = \lambda_{\infty} < \infty$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary: The star-norm of the residual vanishes as $t \to \infty$

Proof: In our model the function $\lim_{t\to\infty} \lambda(t) = \infty$. Thus, the result follows from the previous theorem :

$$\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}.$$

Question: What happens if $\lim_{t\to\infty} \lambda(t) = \lambda_{\infty} < \infty$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary: The star-norm of the residual vanishes as $t \to \infty$

Proof: In our model the function $\lim_{t\to\infty} \lambda(t) = \infty$. Thus, the result follows from the previous theorem :

$$\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}.$$

Question: What happens if $\lim_{t\to\infty} \lambda(t) = \lambda_{\infty} < \infty$?

A D F A 同 F A E F A E F A Q A
Starting: We know that for ROF decomposition if $||f||_* < \frac{1}{2\lambda}$ then v = f, thus we start with a very small value of $\lambda(t)$.

Stopping : This is an open problem. We know : $\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}$.

Question : What does the star-norm really mean ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Starting : We know that for ROF decomposition if $||f||_* < \frac{1}{2\lambda}$ then v = f, thus we start with a very small value of $\lambda(t)$.

Stopping : This is an open problem. We know : $\|\int_0^t u(x,s)ds - f(x)\|_* = \frac{1}{2\lambda(t)}$.

Question : What does the star-norm really mean ?

Let $f \sim \{u_k, v_k\}_{k=0}^{\infty}$ and $g \sim \{U_k, V_k\}_{k=0}^{\infty}$ be **any** hierarchical decompositions :

 $v_{-1} = f$ and $v_{k-1} = u_k + v_k$ for $k = 0, 1, 2...\infty$ and $V_{-1} = g$ and $V_{k-1} = U_k + V_k$ for $k = 0, 1, 2...\infty$.

Let us define an inner product

$$\langle f,g\rangle = \sum_{k=0}^{\infty} (u_k,U_k) + (v_k,U_k) + (u_k,V_k) + (v_k,V_k)$$

A D F A 同 F A E F A E F A Q A

Then $\langle f,g \rangle = (f,g)$ if and only if $\lim_{k\to\infty} (v_k, V_k) = 0$.

Indeed for (BV, L^2) multiscale decompositions: $\|v_{\lambda_k}\|_{L^2} \to 0$...

Let $f \sim \{u_k, v_k\}_{k=0}^{\infty}$ and $g \sim \{U_k, V_k\}_{k=0}^{\infty}$ be any hierarchical decompositions :

$$v_{-1} = f$$
 and $v_{k-1} = u_k + v_k$ for $k = 0, 1, 2...\infty$ and $V_{-1} = g$ and $V_{k-1} = U_k + V_k$ for $k = 0, 1, 2...\infty$.

Let us define an inner product

$$\langle f,g\rangle = \sum_{k=0}^{\infty} (u_k, U_k) + (v_k, U_k) + (u_k, V_k) + (v_k, V_k)$$

Then $\langle f, g \rangle = (f, g)$ if and only if $\lim_{k \to \infty} (v_k, V_k) = 0$.

Indeed for (BV, L^2) multiscale decompositions: $\|v_{\lambda_k}\|_{L^2} \to 0 \dots$

Let $f \sim \{u_k, v_k\}_{k=0}^{\infty}$ and $g \sim \{U_k, V_k\}_{k=0}^{\infty}$ be any hierarchical decompositions :

$$v_{-1} = f$$
 and $v_{k-1} = u_k + v_k$ for $k = 0, 1, 2...\infty$ and $V_{-1} = g$ and $V_{k-1} = U_k + V_k$ for $k = 0, 1, 2...\infty$.

Let us define an inner product

$$\langle f,g\rangle = \sum_{k=0}^{\infty} (u_k,U_k) + (v_k,U_k) + (u_k,V_k) + (v_k,V_k)$$

Then $\langle f,g \rangle = (f,g)$ if and only if $\lim_{k\to\infty} (v_k, V_k) = 0$.

Indeed for (BV, L^2) multiscale decompositions: $\|v_{\lambda_k}\|_{L^2} \to 0$...

Let $f \sim \{u_k, v_k\}_{k=0}^{\infty}$ and $g \sim \{U_k, V_k\}_{k=0}^{\infty}$ be any hierarchical decompositions :

$$v_{-1} = f$$
 and $v_{k-1} = u_k + v_k$ for $k = 0, 1, 2...\infty$ and $V_{-1} = g$ and $V_{k-1} = U_k + V_k$ for $k = 0, 1, 2...\infty$.

Let us define an inner product

$$\langle f,g\rangle = \sum_{k=0}^{\infty} (u_k,U_k) + (v_k,U_k) + (u_k,V_k) + (v_k,V_k)$$

Then $\langle f, g \rangle = (f, g)$ if and only if $\lim_{k \to \infty} (v_k, V_k) = 0$.

Indeed for (BV, L^2) multiscale decompositions: $\|v_{\lambda_k}\|_{L^2} \to 0$...

Let $f \sim \{u_k, v_k\}_{k=0}^{\infty}$ and $g \sim \{U_k, V_k\}_{k=0}^{\infty}$ be any hierarchical decompositions :

$$v_{-1} = f$$
 and $v_{k-1} = u_k + v_k$ for $k = 0, 1, 2...\infty$ and $V_{-1} = g$ and $V_{k-1} = U_k + V_k$ for $k = 0, 1, 2...\infty$.

Let us define an inner product

$$\langle f,g\rangle = \sum_{k=0}^{\infty} (u_k,U_k) + (v_k,U_k) + (u_k,V_k) + (v_k,V_k)$$

Then $\langle f, g \rangle = (f, g)$ if and only if $\lim_{k \to \infty} (v_k, V_k) = 0$.

Indeed for (BV, L^2) multiscale decompositions: $\|v_{\lambda_k}\|_{L^2} \to 0 \dots$

Consequences of this observation

For (BV, L^2) hierarchical decomposition of f we get

$$(f,f)_{L^2} = \langle f,f \rangle = \sum_{k=0}^{\infty} (u_{\lambda_k}, u_{\lambda_k})_{L^2} + (v_{\lambda_k}, u_{\lambda_k})_{L^2} + (u_{\lambda_k}, v_{\lambda_k})_{L^2}$$

$$\|f\|_{L^2}^2 = \sum_{k=0} \|u_{\lambda_k}\|_{L^2}^2 + 2(u_{\lambda_k}, v_{\lambda_k})_{L^2}.$$

Meyer's theorem: $(u_{\lambda_k}, v_{\lambda_k})_{L^2} = \frac{1}{2\lambda_k} ||u_{\lambda_k}||_{BV}$ we get:

Energy decomposition (Tadmor et. al. 2004)

$$\|f\|_{L^2}^2 = \sum_{k=0}^{\infty} \|u_{\lambda_k}\|_{L^2}^2 + \frac{1}{\lambda_k} \|u_{\lambda_k}\|_{BV}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consequences of this observation

For (BV, L^2) hierarchical decomposition of f we get

$$(f,f)_{L^2} = \langle f,f \rangle = \sum_{k=0}^{\infty} (u_{\lambda_k}, u_{\lambda_k})_{L^2} + (v_{\lambda_k}, u_{\lambda_k})_{L^2} + (u_{\lambda_k}, v_{\lambda_k})_{L^2}$$

$$\|f\|_{L^2}^2 = \sum_{k=0}^{\infty} \|u_{\lambda_k}\|_{L^2}^2 + 2(u_{\lambda_k}, v_{\lambda_k})_{L^2}.$$

Meyer's theorem: $(u_{\lambda_k}, v_{\lambda_k})_{L^2} = \frac{1}{2\lambda_k} ||u_{\lambda_k}||_{BV}$ we get:

Energy decomposition (Tadmor et. al. 2004)

$$\|f\|_{L^2}^2 = \sum_{k=0}^{\infty} \|u_{\lambda_k}\|_{L^2}^2 + rac{1}{\lambda_k} \|u_{\lambda_k}\|_{BV}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consequences of this observation

For (BV, L^2) hierarchical decomposition of f we get

$$(f,f)_{L^2} = \langle f,f \rangle = \sum_{k=0}^{\infty} (u_{\lambda_k}, u_{\lambda_k})_{L^2} + (v_{\lambda_k}, u_{\lambda_k})_{L^2} + (u_{\lambda_k}, v_{\lambda_k})_{L^2}$$

$$\|f\|_{L^2}^2 = \sum_{k=0}^{\infty} \|u_{\lambda_k}\|_{L^2}^2 + 2(u_{\lambda_k}, v_{\lambda_k})_{L^2}.$$

Meyer's theorem: $(u_{\lambda_k}, v_{\lambda_k})_{L^2} = \frac{1}{2\lambda_k} ||u_{\lambda_k}||_{BV}$ we get:

Energy decomposition (Tadmor et. al. 2004)

$$\|f\|_{L^2}^2 = \sum_{k=0}^{\infty} \|u_{\lambda_k}\|_{L^2}^2 + \frac{1}{\lambda_k} \|u_{\lambda_k}\|_{BV}.$$

Other works

Deblurring: Tadmor et. al. (2008) consider hierarchical decomposition:

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \operatorname*{arginf}_{\{v_{\lambda_{k-1}} = \pi u_{\lambda_{k}} + v_{\lambda_{k}}\}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - \pi u_{\lambda_{k}}|^{2} \right)$$
$$\mathcal{T}^{*} \pi u_{\lambda_{k}} = \mathcal{T}^{*} v_{\lambda_{k-1}} + \frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)$$

Figure: A blurred image (a) is deblurred as shown in (b).

Novel 'deblurring' integro-differential equation

$$\int_0^t T^* T u(x,s) ds = T^* f(x) + \frac{1}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

Other works

Deblurring: Tadmor et. al. (2008) consider hierarchical decomposition:

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \underset{\{v_{\lambda_{k-1}} = \overline{u}_{\lambda_{k}} + v_{\lambda_{k}}\}}{\operatorname{arginf}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - \overline{u}_{\lambda_{k}}|^{2} \right)$$
$$T^{*} T u_{\lambda_{k}} = T^{*} v_{\lambda_{k-1}} + \frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)$$

Figure: A blurred image (a) is deblurred as shown in (b).

Novel 'deblurring' integro-differential equation

$$\int_0^t T^* T u(x, s) ds = T^* f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x, t)}{|\nabla u(x, t)|} \right)$$

Other works

Deblurring: Tadmor et. al. (2008) consider hierarchical decomposition:

$$[u_{\lambda_{k}}, v_{\lambda_{k}}] = \underset{\{v_{\lambda_{k-1}} = \overline{u}_{\lambda_{k}} + v_{\lambda_{k}}\}}{\operatorname{arginf}} \left(\int_{\Omega} |\nabla u_{\lambda_{k}}| + \lambda_{k} \int_{\Omega} |v_{\lambda_{k-1}} - \overline{u}_{\lambda_{k}}|^{2} \right)$$
$$T^{*} T u_{\lambda_{k}} = T^{*} \frac{v_{\lambda_{k-1}}}{\lambda_{k-1}} + \frac{1}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)$$

Figure: A blurred image (a) is deblurred as shown in (b).

Novel 'deblurring' integro-differential equation

$$\int_{0}^{t} T^{*} T u(x,s) ds = T^{*} f(x) + \frac{1}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right)$$

Modified TNV deblurring

$$T^{*}Tu_{\lambda_{k}} = T^{*} \frac{v_{\lambda_{k-1}}}{v_{\lambda_{k-1}}} + \frac{g(|G \star \nabla u_{\lambda_{k}}|)}{2\lambda_{k}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|}\right)$$

Figure: A blurred image (a) is deblurred with modified TNV deblurring as shown in (b).

Modified 'deblurring' integro-differential equation

$$\int_0^t T^* T u(x,s) ds = T^* f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Modified TNV deblurring

$$T^{*}Tu_{\lambda_{k}} = T^{*} \frac{v_{\lambda_{k-1}}}{v_{\lambda_{k-1}}} + \frac{g(|G \star \nabla u_{\lambda_{k}}|)}{2\lambda_{k}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|}\right)$$

Figure: A blurred image (a) is deblurred with modified TNV deblurring as shown in (b).

Modified 'deblurring' integro-differential equation

$$\int_0^t T^* T u(x,s) ds = T^* f(x) + \frac{g(|G \star \nabla u(x,t)|)}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

・ロト・西ト・山下・山下・山下・

Other works ...

Modified TNV deblurring with selective diffusion:

$$T^{*} T u_{\lambda_{k}} = T^{*} v_{\lambda_{k-1}} + \frac{g(|G \star \nabla u_{\lambda_{k}}|) |\nabla u_{\lambda_{k}}|}{2\lambda_{k}} \operatorname{div} \left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|} \right)$$

Figure: A blurred image (a) is denoised with modified TNV deblurring with selective diffusion as shown in (b).

Modified 'deblurring' integro-differential equation $\int_{0}^{t} T^{*} T u(x,s) ds = T^{*} f(x) + \frac{g(|G \star \nabla u(x,t)|) |\nabla u(x,t)|}{2\lambda(t)} \operatorname{div} \left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|} \right)$

Other works ...

Modified TNV deblurring with selective diffusion:

$$T^{*} T u_{\lambda_{k}} = T^{*} v_{\lambda_{k-1}} + \frac{g(|G \star \nabla u_{\lambda_{k}}|)|\nabla u_{\lambda_{k}}|}{2\lambda_{k}} \operatorname{div}\left(\frac{\nabla u_{\lambda_{k}}}{|\nabla u_{\lambda_{k}}|}\right)$$

Figure: A blurred image (a) is denoised with modified TNV deblurring with selective diffusion as shown in (b).

Modified 'deblurring' integro-differential equation

$$\int_0^t T^* T u(x,s) ds = T^* f(x) + \frac{g(|G \star \nabla u(x,t)|) |\nabla u(x,t)|}{2\lambda(t)} \operatorname{div}\left(\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\right)$$

・ロ と くぼ と く 切 と く ち く

Other works ...

• multiscale (BV, L^1)

• multiscale $(BV, (L^1)^2)$

multiscale $(BV, L^1), (BV, (L^1)^2)$ with $g(|G \star \nabla u|)$ and $g(|G \star \nabla u|)|\nabla u|$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Figure: A blurred image (a) is denoised with multiscale $(BV, (L^1)^2)$ with $g(|G \star \nabla u|)|\nabla u|$ as shown in (b).

 $\blacksquare \text{ multiscale } (BV, L^1)$

• multiscale $(BV, (L^1)^2)$

multiscale $(BV, L^1), (BV, (L^1)^2)$ with $g(|G \star \nabla u|)$ and $g(|G \star \nabla u|)|\nabla u|$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Figure: A blurred image (a) is denoised with multiscale $(BV, (L^1)^2)$ with $g(|G \star \nabla u|)|\nabla u|$ as shown in (b).

- $\blacksquare \text{ multiscale } (BV, L^1)$
- multiscale $(BV, (L^1)^2)$

■ multiscale $(BV, L^1), (BV, (L^1)^2)$ with $g(|G \star \nabla u|)$ and $g(|G \star \nabla u|)|\nabla u|$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Figure: A blurred image (a) is denoised with multiscale $(BV, (L^1)^2)$ with $g(|G \star \nabla u|)|\nabla u|$ as shown in (b).