
What is an image ?

Digital images are sampled 2-D analogue signals

Black and white images ≡ f : Ω ⊂ R2 → R
f (x) ≡ intensity level at that point, which varies from zero to 255

An image can be postulated as an L2(Ω) object

(a) (b)

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

What is an image ?

Digital images are sampled 2-D analogue signals

Black and white images ≡ f : Ω ⊂ R2 → R
f (x) ≡ intensity level at that point, which varies from zero to 255

An image can be postulated as an L2(Ω) object

(a) (b)

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

What is an image ?

Digital images are sampled 2-D analogue signals

Black and white images ≡ f : Ω ⊂ R2 → R
f (x) ≡ intensity level at that point, which varies from zero to 255

An image can be postulated as an L2(Ω) object

(a) (b)

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

What is an image ?

Digital images are sampled 2-D analogue signals

Black and white images ≡ f : Ω ⊂ R2 → R
f (x) ≡ intensity level at that point, which varies from zero to 255

An image can be postulated as an L2(Ω) object

(a) (b)

Figure: (a) Image of Lenna and (b) Image of Lenna as a graph of a function

Problems in image processing

Image deblurring
f = TU for a deblurring operator T : L2(Ω)→ L2(Ω)
T may not be invertible : ill-posed problem.

Given f we need to get back the deblurred image U.

(a) (b)

Figure: Can we go from a blurred image (a) to a restored image in (b) ?

Problems in image processing

Image deblurring
f = TU for a deblurring operator T : L2(Ω)→ L2(Ω)
T may not be invertible : ill-posed problem.

Given f we need to get back the deblurred image U.

(a) (b)

Figure: Can we go from a blurred image (a) to a restored image in (b) ?

Problems in image processing...

Image denoising: f may have some noise η in it.

f = U + η, we need to get back the denoised image U.

(a) (b)

Figure: Can we go from a noisy image (a) to a restored image in (b) ?

f may be blurry and noisy f = TU + η

Problems in image processing...

Image segmentation ≡ identifying ‘components’ in f ≡ edge detection

(a) (b)

Figure: Can we identify components in (a) and get a segmented image as in (b) ?

Problems in image processing...

Multiscale image representation: Finding different level of ‘scales’ in f

(a) (b) (c)

Figure: Multiscale images of the city of Mumbai.

Multiscale representation: Family of images {U(t)} for a scaling
parameter t

Forward marching: U(0) = 0,U(t)→ U

Backward marching: U(0) = f ,U(t)→ U

Problems in image processing...

Multiscale image representation: Finding different level of ‘scales’ in f

(a) (b) (c)

Figure: Multiscale images of the city of Mumbai.

Multiscale representation: Family of images {U(t)} for a scaling
parameter t

Forward marching: U(0) = 0,U(t)→ U

Backward marching: U(0) = f ,U(t)→ U

Problems in image processing...

Multiscale image representation: Finding different level of ‘scales’ in f

(a) (b) (c)

Figure: Multiscale images of the city of Mumbai.

Multiscale representation: Family of images {U(t)} for a scaling
parameter t

Forward marching: U(0) = 0,U(t)→ U

Backward marching: U(0) = f ,U(t)→ U

There are two main approaches to solve above problems:

Variational approaches - Tikhonov regularization, greedy algorithms,
wavelets shrinkage etc.

PDE based approaches - diffusion, Perona-Malik etc.

The approaches are related -

Variational methods in image processing: Tikhonov regularization

We need to solve the ill posed problem f = Tu :

Consider interpolation functional

inf
u∈X

(
‖uλ‖X + λ‖f − Tuλ‖2

Y

)
X ⊂ Y

‖u‖X : regularizing term

‖f − Tu‖2
Y : fidelity term

(X ,Y) ≡ (BV , L2): Rudin-Osher-Fatemi-Vese.

inf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − Tuλ|2
)

Variational methods in image processing: Tikhonov regularization

We need to solve the ill posed problem f = Tu :

Consider interpolation functional

inf
u∈X

(
‖uλ‖X + λ‖f − Tuλ‖2

Y

)
X ⊂ Y

‖u‖X : regularizing term

‖f − Tu‖2
Y : fidelity term

(X ,Y) ≡ (BV , L2): Rudin-Osher-Fatemi-Vese.

inf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − Tuλ|2
)

Variational methods in image processing

Rudin-Osher-Fatemi (ROF) decomposition
f = uλ + vλ for scale parameter λ.

[uλ, vλ] = arginf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − uλ|2
)

The BV norm
∫

Ω
|∇uλ| is a regularizing term∫

Ω
|f − uλ|2: a fidelity term

λ : acts as an inverse scale of the uλ part (smaller λ ≡ larger scale)

uλ := smooth parts and edges in f
vλ := f − uλ texture, finer details, noise

Many other variational methods ...

Variational methods in image processing

Rudin-Osher-Fatemi (ROF) decomposition
f = uλ + vλ for scale parameter λ.

[uλ, vλ] = arginf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − uλ|2
)

The BV norm
∫

Ω
|∇uλ| is a regularizing term∫

Ω
|f − uλ|2: a fidelity term

λ : acts as an inverse scale of the uλ part (smaller λ ≡ larger scale)

uλ := smooth parts and edges in f
vλ := f − uλ texture, finer details, noise

Many other variational methods ...

Variational methods in image processing

Rudin-Osher-Fatemi (ROF) decomposition
f = uλ + vλ for scale parameter λ.

[uλ, vλ] = arginf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − uλ|2
)

The BV norm
∫

Ω
|∇uλ| is a regularizing term∫

Ω
|f − uλ|2: a fidelity term

λ : acts as an inverse scale of the uλ part (smaller λ ≡ larger scale)

uλ := smooth parts and edges in f
vλ := f − uλ texture, finer details, noise

Many other variational methods ...

Variational methods in image processing

Rudin-Osher-Fatemi (ROF) decomposition
f = uλ + vλ for scale parameter λ.

[uλ, vλ] = arginf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − uλ|2
)

The BV norm
∫

Ω
|∇uλ| is a regularizing term∫

Ω
|f − uλ|2: a fidelity term

λ : acts as an inverse scale of the uλ part (smaller λ ≡ larger scale)

uλ := smooth parts and edges in f
vλ := f − uλ texture, finer details, noise

Many other variational methods ...

Other variational methods in image processing...

Mumford-Shah segmentation (1985)

[u, v , C] = arginf
{f =u+v,C}

(∫
Ω−C
|f − u|2 + λ1

∫
Ω−C
|∇u|2 + λ2

∮
C

dσ
)
.

u : Ω→ R : piecewise smooth image
C ∈ Ω : the set of jump discontinuities

Ambrosio and Tortorelli approximation (1992)
Kass-Witkin-Terzopoulos model (1988)

inf
c∈C

(∫ b

a
|c′|2 + λ1

∫ b

a
|c′′|2 + λ2

∫ b

a
g2(|∇f (c)|)

)
C : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity

Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
Osher, Sethian: Level set method (1988)
... ...

Now we look at some PDE methods ...

Other variational methods in image processing...

Mumford-Shah segmentation (1985)

[u, v , C] = arginf
{f =u+v,C}

(∫
Ω−C
|f − u|2 + λ1

∫
Ω−C
|∇u|2 + λ2

∮
C

dσ
)
.

u : Ω→ R : piecewise smooth image
C ∈ Ω : the set of jump discontinuities

Ambrosio and Tortorelli approximation (1992)
Kass-Witkin-Terzopoulos model (1988)

inf
c∈C

(∫ b

a
|c′|2 + λ1

∫ b

a
|c′′|2 + λ2

∫ b

a
g2(|∇f (c)|)

)
C : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity

Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
Osher, Sethian: Level set method (1988)
... ...

Now we look at some PDE methods ...

Other variational methods in image processing...

Mumford-Shah segmentation (1985)

[u, v , C] = arginf
{f =u+v,C}

(∫
Ω−C
|f − u|2 + λ1

∫
Ω−C
|∇u|2 + λ2

∮
C

dσ
)
.

u : Ω→ R : piecewise smooth image
C ∈ Ω : the set of jump discontinuities

Ambrosio and Tortorelli approximation (1992)
Kass-Witkin-Terzopoulos model (1988)

inf
c∈C

(∫ b

a
|c′|2 + λ1

∫ b

a
|c′′|2 + λ2

∫ b

a
g2(|∇f (c)|)

)
C : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity

Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
Osher, Sethian: Level set method (1988)
... ...

Now we look at some PDE methods ...

Other variational methods in image processing...

Mumford-Shah segmentation (1985)

[u, v , C] = arginf
{f =u+v,C}

(∫
Ω−C
|f − u|2 + λ1

∫
Ω−C
|∇u|2 + λ2

∮
C

dσ
)
.

u : Ω→ R : piecewise smooth image
C ∈ Ω : the set of jump discontinuities

Ambrosio and Tortorelli approximation (1992)
Kass-Witkin-Terzopoulos model (1988)

inf
c∈C

(∫ b

a
|c′|2 + λ1

∫ b

a
|c′′|2 + λ2

∫ b

a
g2(|∇f (c)|)

)
C : closed, piecewise regular, parametric curves (snakes)
g : a decreasing function vanishing at infinity

Caselles, Kimmel, Sapiro: Geodesic active contours (1997)
Osher, Sethian: Level set method (1988)
... ...

Now we look at some PDE methods ...

PDE methods in image processing: Heat equation

Heat equation ∂U
∂t = ∆U. (Koenderink 1984, Witkin 1983)

Backward marching: U(0) = f and U(t)→ U.

This gives us Gaussian smoothing with variance=t

Forward scaling: Anything with scale smaller than t is smoothed out
Thus t acts as the scale parameter

Figure: Different scales in a carpet obtained by heat equation

PDE methods in image processing: Heat equation

Heat equation ∂U
∂t = ∆U. (Koenderink 1984, Witkin 1983)

Backward marching: U(0) = f and U(t)→ U.

This gives us Gaussian smoothing with variance=t

Forward scaling: Anything with scale smaller than t is smoothed out
Thus t acts as the scale parameter

Figure: Different scales in a carpet obtained by heat equation

PDE methods in image processing: Heat equation

Heat equation ∂U
∂t = ∆U. (Koenderink 1984, Witkin 1983)

Backward marching: U(0) = f and U(t)→ U.

This gives us Gaussian smoothing with variance=t

Forward scaling: Anything with scale smaller than t is smoothed out
Thus t acts as the scale parameter

Figure: Different scales in a carpet obtained by heat equation

PDE methods in image processing: Heat equation...

Denoising with heat equation:

(a) (b)

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing
information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions

Problem 2: where to stop ?

PDE methods in image processing: Heat equation...

Denoising with heat equation:

(a) (b)

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing
information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions

Problem 2: where to stop ?

PDE methods in image processing: Heat equation...

Denoising with heat equation:

(a) (b)

Figure: Result of isotropic diffusion: reduction of noise at the expense of losing
information at the edges

Problem 1: cannot distinguish between noise and boundaries of regions

Problem 2: where to stop ?

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂U
∂t

= div (g(|∇U|)∇U), U(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇U| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇U| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et.al. modification2 :

∂U
∂t

= div (g(|∇G ? U|)∇U),

G is Gaussian kernel.

2F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂U
∂t

= div (g(|∇U|)∇U), U(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇U| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇U| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et.al. modification2 :

∂U
∂t

= div (g(|∇G ? U|)∇U),

G is Gaussian kernel.

2F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂U
∂t

= div (g(|∇U|)∇U), U(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇U| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇U| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et.al. modification2 :

∂U
∂t

= div (g(|∇G ? U|)∇U),

G is Gaussian kernel.

2F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂U
∂t

= div (g(|∇U|)∇U), U(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇U| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇U| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et.al. modification2 :

∂U
∂t

= div (g(|∇G ? U|)∇U),

G is Gaussian kernel.

2F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂U
∂t

= div (g(|∇U|)∇U), U(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇U| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇U| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et.al. modification2 :

∂U
∂t

= div (g(|∇G ? U|)∇U),

G is Gaussian kernel.

2F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Perona-Malik model (1988)

Heat equation ≡ isotropic diffusion⇒ we lose information about edges

Perona-Malik proposed an anisotropic diffusion method

∂U
∂t

= div (g(|∇U|)∇U), U(0) = f

The idea: preserve the edges
Smooth regions ≡ |∇U| is weak⇒ we need an isotropic smoothing
Near the edges ≡ |∇U| is large⇒ we need to control the diffusion
Examples of suitable function g(s) : e−s, 1

1+s2 , 1√
1+s

Perona-Malik is not well posed ! Catté et.al. modification2 :

∂U
∂t

= div (g(|∇G ? U|)∇U),

G is Gaussian kernel.

2F. Catté, P-L. Lions, J-M. Morel, T. Coll (1992)

PDE methods in image processing: Alvarez et. al.

L. Alvarez P-L. Lions and J-M Morel’s model (1992)

∂U
∂t

= g(|G ?∇U|)|∇U| div
(
∇U
|∇U|

)
, U(0) = f

Idea: Diffuse U only in the direction orthogonal to its gradient ∇U.

The term |∇U| div
(
∇U
|∇U|

)
does exactly this.

g is a diffusion controlling function as before.

(a) (b)

Figure: Result of anisotropic diffusion: edges are preserved.

PDE methods in image processing: Alvarez et. al.

L. Alvarez P-L. Lions and J-M Morel’s model (1992)

∂U
∂t

= g(|G ?∇U|)|∇U| div
(
∇U
|∇U|

)
, U(0) = f

Idea: Diffuse U only in the direction orthogonal to its gradient ∇U.

The term |∇U| div
(
∇U
|∇U|

)
does exactly this.

g is a diffusion controlling function as before.

(a) (b)

Figure: Result of anisotropic diffusion: edges are preserved.

PDE methods in image processing: Alvarez et. al.

L. Alvarez P-L. Lions and J-M Morel’s model (1992)

∂U
∂t

= g(|G ?∇U|)|∇U| div
(
∇U
|∇U|

)
, U(0) = f

Idea: Diffuse U only in the direction orthogonal to its gradient ∇U.

The term |∇U| div
(
∇U
|∇U|

)
does exactly this.

g is a diffusion controlling function as before.

(a) (b)

Figure: Result of anisotropic diffusion: edges are preserved.

PDE methods in image processing: Nordström’s model

Problem: As t →∞ the models discussed before diffuse completely.
... so where to stop ?
Solution: Nordström modified Perona-Malik model.

∂U
∂t

= f − U + div (g(|∇U|)∇U), U(0) = 0.

This equation has non-trivial steady state.

Forward marching: U(0) = 0 and U(t)→ U.

PDE methods in image processing: Nordström’s model

Problem: As t →∞ the models discussed before diffuse completely.
... so where to stop ?
Solution: Nordström modified Perona-Malik model.

∂U
∂t

= f − U + div (g(|∇U|)∇U), U(0) = 0.

This equation has non-trivial steady state.

Forward marching: U(0) = 0 and U(t)→ U.

PDE methods in image processing: Nordström’s model

Problem: As t →∞ the models discussed before diffuse completely.
... so where to stop ?
Solution: Nordström modified Perona-Malik model.

∂U
∂t

= f − U + div (g(|∇U|)∇U), U(0) = 0.

This equation has non-trivial steady state.

Forward marching: U(0) = 0 and U(t)→ U.

PDE approach ! variational approach

Rudin-Osher-Fatemi decomposition

[uλ, vλ] = arginf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − uλ|2
)

The Euler-Lagrange equation:

f − u +
1

2λ
div
(
∇u
|∇u|

)
= 0.

Nordström’s modification of Perona-Malik:

∂u
∂t

= f − u + div (g(|∇u|)∇u).

g(s) = 1
λs ⇒ steady-state of Nordström ≡ Euler-Lagrange of ROF !

Let us look at our model now ...

PDE approach ! variational approach

Rudin-Osher-Fatemi decomposition

[uλ, vλ] = arginf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − uλ|2
)

The Euler-Lagrange equation:

f − u +
1

2λ
div
(
∇u
|∇u|

)
= 0.

Nordström’s modification of Perona-Malik:

∂u
∂t

= f − u + div (g(|∇u|)∇u).

g(s) = 1
λs ⇒ steady-state of Nordström ≡ Euler-Lagrange of ROF !

Let us look at our model now ...

PDE approach ! variational approach

Rudin-Osher-Fatemi decomposition

[uλ, vλ] = arginf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − uλ|2
)

The Euler-Lagrange equation:

f − u +
1

2λ
div
(
∇u
|∇u|

)
= 0.

Nordström’s modification of Perona-Malik:

∂u
∂t

= f − u + div (g(|∇u|)∇u).

g(s) = 1
λs ⇒ steady-state of Nordström ≡ Euler-Lagrange of ROF !

Let us look at our model now ...

PDE approach ! variational approach

Rudin-Osher-Fatemi decomposition

[uλ, vλ] = arginf
{f =uλ+vλ}

(∫
Ω

|∇uλ|+ λ

∫
Ω

|f − uλ|2
)

The Euler-Lagrange equation:

f − u +
1

2λ
div
(
∇u
|∇u|

)
= 0.

Nordström’s modification of Perona-Malik:

∂u
∂t

= f − u + div (g(|∇u|)∇u).

g(s) = 1
λs ⇒ steady-state of Nordström ≡ Euler-Lagrange of ROF !

Let us look at our model now ...

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation.
The scaling function λ(t) : increasing function at our disposal.
This model gives an inverse scale representation.
Compare this with Nordström’s model:

U(t) +
∂U(t)
∂t

= f +
1

2λ
div
(
∇U(t)
|∇U(t)|

)
.

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation.
The scaling function λ(t) : increasing function at our disposal.
This model gives an inverse scale representation.
Compare this with Nordström’s model:

U(t) +
∂U(t)
∂t

= f +
1

2λ
div
(
∇U(t)
|∇U(t)|

)
.

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation.
The scaling function λ(t) : increasing function at our disposal.
This model gives an inverse scale representation.
Compare this with Nordström’s model:

U(t) +
∂U(t)
∂t

= f +
1

2λ
div
(
∇U(t)
|∇U(t)|

)
.

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation.
The scaling function λ(t) : increasing function at our disposal.
This model gives an inverse scale representation.
Compare this with Nordström’s model:

U(t) +
∂U(t)
∂t

= f +
1

2λ
div
(
∇U(t)
|∇U(t)|

)
.

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation.
The scaling function λ(t) : increasing function at our disposal.
This model gives an inverse scale representation.
Compare this with Nordström’s model:

U(t) +
∂U(t)
∂t

= f +
1

2λ
div
(
∇U(t)
|∇U(t)|

)
.

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation.
The scaling function λ(t) : increasing function at our disposal.
This model gives an inverse scale representation.
Compare this with Nordström’s model:

U(t) +
∂U(t)
∂t

= f +
1

2λ
div
(
∇U(t)
|∇U(t)|

)
.

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation.
The scaling function λ(t) : increasing function at our disposal.
This model gives an inverse scale representation.
Compare this with Nordström’s model:

U(t) +
∂U(t)
∂t

= f +
1

2λ
div
(
∇U(t)
|∇U(t)|

)
.

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation.
The scaling function λ(t) : increasing function at our disposal.
This model gives an inverse scale representation.
Compare this with Nordström’s model:

U(t) +
∂U(t)
∂t

= f +
1

2λ
div
(
∇U(t)
|∇U(t)|

)
.

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

A novel integro-differential model

We propose a novel model.

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

An Integro-differential equation.
The scaling function λ(t) : increasing function at our disposal.
This model gives an inverse scale representation.
Compare this with Nordström’s model:

U(t) +
∂U(t)
∂t

= f +
1

2λ
div
(
∇U(t)
|∇U(t)|

)
.

? ? ? QUESTIONS ? ? ?

What is the motivation ?

Where to start ?

Where to stop ?

What does the scaling function λ(t) mean ?
?

Starting point: the idea of Tadmor-Nezzar-Vese (TNV) 2004, 2008

Recall ROF decomposition: f = uλ0 + vλ0 , where λ0 dictates the scale.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = uλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=uλ1
+vλ1

}

(∫
Ω

|∇uλ1 |+ λ1

∫
Ω

|vλ0 − uλ1 |
2
)
.

TNV multiscale decomposition

vλk−1 = uλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω
|∇uλk |+ λk

∫
Ω
|vk−1 − uk |2

)
.

With this scheme after N + 1 steps we get:

f = uλ0 + vλ0

= uλ0 + uλ1 + vλ1

= ...

= uλ0 + uλ1 + ...+ uλN + vλN .

i.e. a nonlinear multiscale decomposition: f ∼
∑N

k=0 uλk + vλN .

Starting point: the idea of Tadmor-Nezzar-Vese (TNV) 2004, 2008

Recall ROF decomposition: f = uλ0 + vλ0 , where λ0 dictates the scale.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = uλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=uλ1
+vλ1

}

(∫
Ω

|∇uλ1 |+ λ1

∫
Ω

|vλ0 − uλ1 |
2
)
.

TNV multiscale decomposition

vλk−1 = uλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω
|∇uλk |+ λk

∫
Ω
|vk−1 − uk |2

)
.

With this scheme after N + 1 steps we get:

f = uλ0 + vλ0

= uλ0 + uλ1 + vλ1

= ...

= uλ0 + uλ1 + ...+ uλN + vλN .

i.e. a nonlinear multiscale decomposition: f ∼
∑N

k=0 uλk + vλN .

Starting point: the idea of Tadmor-Nezzar-Vese (TNV) 2004, 2008

Recall ROF decomposition: f = uλ0 + vλ0 , where λ0 dictates the scale.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = uλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=uλ1
+vλ1

}

(∫
Ω

|∇uλ1 |+ λ1

∫
Ω

|vλ0 − uλ1 |
2
)
.

TNV multiscale decomposition

vλk−1 = uλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω
|∇uλk |+ λk

∫
Ω
|vk−1 − uk |2

)
.

With this scheme after N + 1 steps we get:

f = uλ0 + vλ0

= uλ0 + uλ1 + vλ1

= ...

= uλ0 + uλ1 + ...+ uλN + vλN .

i.e. a nonlinear multiscale decomposition: f ∼
∑N

k=0 uλk + vλN .

Starting point: the idea of Tadmor-Nezzar-Vese (TNV) 2004, 2008

Recall ROF decomposition: f = uλ0 + vλ0 , where λ0 dictates the scale.

vλ0 can be decomposed with a scaling parameter λ1 > λ0.

vλ0 = uλ1 + vλ1 , [uλ1 , vλ1] = arginf
{vλ0

=uλ1
+vλ1

}

(∫
Ω

|∇uλ1 |+ λ1

∫
Ω

|vλ0 − uλ1 |
2
)
.

TNV multiscale decomposition

vλk−1 = uλk + vλk ,
[
uλk , vλk

]
= arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω
|∇uλk |+ λk

∫
Ω
|vk−1 − uk |2

)
.

With this scheme after N + 1 steps we get:

f = uλ0 + vλ0

= uλ0 + uλ1 + vλ1

= ...

= uλ0 + uλ1 + ...+ uλN + vλN .

i.e. a nonlinear multiscale decomposition: f ∼
∑N

k=0 uλk + vλN .

TNV scheme

k th step in TNV scheme: uλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − uλk |
2
)

uλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
uλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk + vλN = f

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme

k th step in TNV scheme: uλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − uλk |
2
)

uλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
uλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk + vλN = f

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme

k th step in TNV scheme: uλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − uλk |
2
)

uλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
uλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk + vλN = f

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme

k th step in TNV scheme: uλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − uλk |
2
)

uλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
uλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk + vλN = f

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme

k th step in TNV scheme: uλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − uλk |
2
)

uλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
uλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk + vλN = f

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme

k th step in TNV scheme: uλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − uλk |
2
)

uλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
uλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk + vλN = f

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

TNV scheme

k th step in TNV scheme: uλk + vλk = vλk−1

[uλk , vλk] = arginf
{vλk−1

=uλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − uλk |
2
)

uλk −
1

2λk
div
(
∇uλk

|∇uλk |

)
︸ ︷︷ ︸

vλk

= vλk−1

TNV iteration:
uλk + vλk = vλk−1

Telescopic sum of the above gives us:
N∑

k=0

uλk + vλN = f

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)

A new formulation of the TNV scheme

We have the TNV scheme as follows:

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
.

Define UN as the sum UN =
∑N

k=0 uk ⇒ uN = UN − UN−1, we get :

New formulation of TNV

UN = f +
1

2λN
div
(
∇(UN − UN−1)

|∇(UN − UN−1)|

)

Question: How do we solve this numerically ?

A new formulation of the TNV scheme

We have the TNV scheme as follows:

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
.

Define UN as the sum UN =
∑N

k=0 uk ⇒ uN = UN − UN−1, we get :

New formulation of TNV

UN = f +
1

2λN
div
(
∇(UN − UN−1)

|∇(UN − UN−1)|

)

Question: How do we solve this numerically ?

A new formulation of the TNV scheme

We have the TNV scheme as follows:

N∑
k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
.

Define UN as the sum UN =
∑N

k=0 uk ⇒ uN = UN − UN−1, we get :

New formulation of TNV

UN = f +
1

2λN
div
(
∇(UN − UN−1)

|∇(UN − UN−1)|

)

Question: How do we solve this numerically ?

How to solve TNV numerically ?

We need to solve this : UN = f + 1
2λN

div
(
∇(UN−UN−1)

|∇(UN−UN−1)|

)
.

cE (U) ≡
1√

(εh)2 + (∆+x Ui,j)2 + (∆0y Ui,j)2
, cW (U) ≡

1√
(εh)2 + (∆−x Ui,j)2 + (∆0y Ui−1,j)2

,

cS (U) ≡
1√

(εh)2 + (∆0x Ui,j)2 + (∆+y Ui,j)2
, cN (U) ≡

1√
(εh)2 + (∆0x Ui,j−1)2 + (∆−y Ui,j)2

.

Given UN−1 we get UN by solving the following fixed point iteration.

Un
i,j =

2λhfi,j + cE (Un−1
i+1,j − UN−1

i+1,j) + cW (Un−1
i−1,j − UN−1

i−1,j) + cS (Un−1
i,j+1 − UN−1

i,j+1) + cN (Un−1
i,j−1 − UN−1

i,j−1) + (
∑

c)UN−1

2λhfi,j +
∑

c
,

where cE ≡ cE (Un−1 − UN−1) etc. and
∑

c ≡ cE + cW + cN + cS .

How to solve TNV numerically ?

We need to solve this : UN = f + 1
2λN

div
(
∇(UN−UN−1)

|∇(UN−UN−1)|

)
.

cE (U) ≡
1√

(εh)2 + (∆+x Ui,j)2 + (∆0y Ui,j)2
, cW (U) ≡

1√
(εh)2 + (∆−x Ui,j)2 + (∆0y Ui−1,j)2

,

cS (U) ≡
1√

(εh)2 + (∆0x Ui,j)2 + (∆+y Ui,j)2
, cN (U) ≡

1√
(εh)2 + (∆0x Ui,j−1)2 + (∆−y Ui,j)2

.

Given UN−1 we get UN by solving the following fixed point iteration.

Un
i,j =

2λhfi,j + cE (Un−1
i+1,j − UN−1

i+1,j) + cW (Un−1
i−1,j − UN−1

i−1,j) + cS (Un−1
i,j+1 − UN−1

i,j+1) + cN (Un−1
i,j−1 − UN−1

i,j−1) + (
∑

c)UN−1

2λhfi,j +
∑

c
,

where cE ≡ cE (Un−1 − UN−1) etc. and
∑

c ≡ cE + cW + cN + cS .

How to solve TNV numerically ?

We need to solve this : UN = f + 1
2λN

div
(
∇(UN−UN−1)

|∇(UN−UN−1)|

)
.

cE (U) ≡
1√

(εh)2 + (∆+x Ui,j)2 + (∆0y Ui,j)2
, cW (U) ≡

1√
(εh)2 + (∆−x Ui,j)2 + (∆0y Ui−1,j)2

,

cS (U) ≡
1√

(εh)2 + (∆0x Ui,j)2 + (∆+y Ui,j)2
, cN (U) ≡

1√
(εh)2 + (∆0x Ui,j−1)2 + (∆−y Ui,j)2

.

Given UN−1 we get UN by solving the following fixed point iteration.

Un
i,j =

2λhfi,j + cE (Un−1
i+1,j − UN−1

i+1,j) + cW (Un−1
i−1,j − UN−1

i−1,j) + cS (Un−1
i,j+1 − UN−1

i,j+1) + cN (Un−1
i,j−1 − UN−1

i,j−1) + (
∑

c)UN−1

2λhfi,j +
∑

c
,

where cE ≡ cE (Un−1 − UN−1) etc. and
∑

c ≡ cE + cW + cN + cS .

Numerical results of standard TNV continued ...

Numerical results of UN = f + 1
2λN

div
(
∇(UN−UN−1)

|∇(UN−UN−1)|

)
.

Figure: Numerical results with standard TNV model. We used λk = (0.0005)× 2k .

Going from TNV to a novel integro-differential equation

Recall for TNV formulation: UN =
∑N

k=0 uk and uN = UN − UN−1.

UN = f +
1

2λN
div
(
∇(UN − UN−1)

|∇(UN − UN−1)|

)
N∑

k=0

uk = f +
1

2λN
div
(
∇uN

|∇uN |

)
.

This motivates us to write the following model.

The novel integro-differential model

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where λ(t) > 0 is an increasing scaling function at our disposal.

Going from TNV to a novel integro-differential equation

Recall for TNV formulation: UN =
∑N

k=0 uk and uN = UN − UN−1.

UN = f +
1

2λN
div
(
∇(UN − UN−1)

|∇(UN − UN−1)|

)
N∑

k=0

uk = f +
1

2λN
div
(
∇uN

|∇uN |

)
.

This motivates us to write the following model.

The novel integro-differential model

∫ t

0
u(x , s)ds = f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where λ(t) > 0 is an increasing scaling function at our disposal.

How to solve it numerically ?

Let ∆t be the time interval step. Thus, after N steps:

U(t) :=

∫ t

0
u(x , s)ds =

N−1∑
k=0

∫ (k+1)∆t

k∆t
u(x , s)ds

UN :=
∫ N∆t

0 u(x , s)ds and uk+1 := u((k + 1)∆t), with this we have

UN ≈ UN−1 + uN ∆t .

Thus, we have the following fixed point iteration.

un
i,j =

2λNh(fi,j − UN−1
i,j) + cE un−1

i+1,j + cW un−1
i−1,j + cSun−1

i,j+1 + cNun−1
i,j−1

2λNh∆t + cE + cW + cS + cN
.

This fixed point implementation gives us uN and thus UN = UN−1 + uN∆t

How to solve it numerically ?

Let ∆t be the time interval step. Thus, after N steps:

U(t) :=

∫ t

0
u(x , s)ds =

N−1∑
k=0

∫ (k+1)∆t

k∆t
u(x , s)ds

UN :=
∫ N∆t

0 u(x , s)ds and uk+1 := u((k + 1)∆t), with this we have

UN ≈ UN−1 + uN ∆t .

Thus, we have the following fixed point iteration.

un
i,j =

2λNh(fi,j − UN−1
i,j) + cE un−1

i+1,j + cW un−1
i−1,j + cSun−1

i,j+1 + cNun−1
i,j−1

2λNh∆t + cE + cW + cS + cN
.

This fixed point implementation gives us uN and thus UN = UN−1 + uN∆t

How to solve it numerically ?

Let ∆t be the time interval step. Thus, after N steps:

U(t) :=

∫ t

0
u(x , s)ds =

N−1∑
k=0

∫ (k+1)∆t

k∆t
u(x , s)ds

UN :=
∫ N∆t

0 u(x , s)ds and uk+1 := u((k + 1)∆t), with this we have

UN ≈ UN−1 + uN ∆t .

Thus, we have the following fixed point iteration.

un
i,j =

2λNh(fi,j − UN−1
i,j) + cE un−1

i+1,j + cW un−1
i−1,j + cSun−1

i,j+1 + cNun−1
i,j−1

2λNh∆t + cE + cW + cS + cN
.

This fixed point implementation gives us uN and thus UN = UN−1 + uN∆t

How to solve it numerically ?

Let ∆t be the time interval step. Thus, after N steps:

U(t) :=

∫ t

0
u(x , s)ds =

N−1∑
k=0

∫ (k+1)∆t

k∆t
u(x , s)ds

UN :=
∫ N∆t

0 u(x , s)ds and uk+1 := u((k + 1)∆t), with this we have

UN ≈ UN−1 + uN ∆t .

Thus, we have the following fixed point iteration.

un
i,j =

2λNh(fi,j − UN−1
i,j) + cE un−1

i+1,j + cW un−1
i−1,j + cSun−1

i,j+1 + cNun−1
i,j−1

2λNh∆t + cE + cW + cS + cN
.

This fixed point implementation gives us uN and thus UN = UN−1 + uN∆t

Proposed model λ(t) = (0.02)2t , on 256× 256 image of Lenna.

Numerical result for
∫ t

0 u(x , s)ds = f (x) + 1
2λ(t) div

(
∇u(x,t)
|∇u(x,t)|

)
.

Figure: As λ(t)→∞, the image
∫ t

0 u(x , s)ds approaches the given image f .

Modified integro-differential model

We propose a modified version of our model

Modified integro differential model

∫ t

0
u(x , s)ds = f (x) +

g(|G ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where g is diffusion controlling function. (Recall Perona-Malik.)

The motivation: numerical implementation of the ROF model.

Euler-Lagrange differential equation for ROF:

u = f +
1

2λ
div
(
∇u
|∇u|

)
.

There are two problems here.
Problem 1 : |∇u| ≈ 0.
Problem 2 : |∇u| is undefined at the sharp discontinuities.

Modified integro-differential model

We propose a modified version of our model

Modified integro differential model

∫ t

0
u(x , s)ds = f (x) +

g(|G ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where g is diffusion controlling function. (Recall Perona-Malik.)

The motivation: numerical implementation of the ROF model.

Euler-Lagrange differential equation for ROF:

u = f +
1

2λ
div
(
∇u
|∇u|

)
.

There are two problems here.
Problem 1 : |∇u| ≈ 0.
Problem 2 : |∇u| is undefined at the sharp discontinuities.

Modified integro-differential model

We propose a modified version of our model

Modified integro differential model

∫ t

0
u(x , s)ds = f (x) +

g(|G ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where g is diffusion controlling function. (Recall Perona-Malik.)

The motivation: numerical implementation of the ROF model.

Euler-Lagrange differential equation for ROF:

u = f +
1

2λ
div
(
∇u
|∇u|

)
.

There are two problems here.
Problem 1 : |∇u| ≈ 0.
Problem 2 : |∇u| is undefined at the sharp discontinuities.

Modified integro-differential model

We propose a modified version of our model

Modified integro differential model

∫ t

0
u(x , s)ds = f (x) +

g(|G ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where g is diffusion controlling function. (Recall Perona-Malik.)

The motivation: numerical implementation of the ROF model.

Euler-Lagrange differential equation for ROF:

u = f +
1

2λ
div
(
∇u
|∇u|

)
.

There are two problems here.
Problem 1 : |∇u| ≈ 0.
Problem 2 : |∇u| is undefined at the sharp discontinuities.

The motivation: numerical implementation of the ROF model.

Problem 1 : |∇u| ≈ 0 : u = f + 1
2λ div

(
∇u√

ε2+|∇u|2

)
Problem 2 : How to deal with the sharp discontinuities ?

Idea : increase the cell size h if |∇u| is large: non-uniform grid.

Let ĥ = h
g(|G?∇u|) with g(0) = 1 and vanishing at infinity⇒

u = f +
g(|G ?∇u|)

2λ
div

 ∇u√
(εĥ)2 + |∇u|2

 .

This motivates us to look at :

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
.

Numerical results ...

The motivation: numerical implementation of the ROF model.

Problem 1 : |∇u| ≈ 0 : u = f + 1
2λ div

(
∇u√

ε2+|∇u|2

)
Problem 2 : How to deal with the sharp discontinuities ?

Idea : increase the cell size h if |∇u| is large: non-uniform grid.

Let ĥ = h
g(|G?∇u|) with g(0) = 1 and vanishing at infinity⇒

u = f +
g(|G ?∇u|)

2λ
div

 ∇u√
(εĥ)2 + |∇u|2

 .

This motivates us to look at :

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
.

Numerical results ...

The motivation: numerical implementation of the ROF model.

Problem 1 : |∇u| ≈ 0 : u = f + 1
2λ div

(
∇u√

ε2+|∇u|2

)
Problem 2 : How to deal with the sharp discontinuities ?

Idea : increase the cell size h if |∇u| is large: non-uniform grid.

Let ĥ = h
g(|G?∇u|) with g(0) = 1 and vanishing at infinity⇒

u = f +
g(|G ?∇u|)

2λ
div

 ∇u√
(εĥ)2 + |∇u|2

 .

This motivates us to look at :

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
.

Numerical results ...

The motivation: numerical implementation of the ROF model.

Problem 1 : |∇u| ≈ 0 : u = f + 1
2λ div

(
∇u√

ε2+|∇u|2

)
Problem 2 : How to deal with the sharp discontinuities ?

Idea : increase the cell size h if |∇u| is large: non-uniform grid.

Let ĥ = h
g(|G?∇u|) with g(0) = 1 and vanishing at infinity⇒

u = f +
g(|G ?∇u|)

2λ
div

 ∇u√
(εĥ)2 + |∇u|2

 .

This motivates us to look at :

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
.

Numerical results ...

The motivation: numerical implementation of the ROF model.

Problem 1 : |∇u| ≈ 0 : u = f + 1
2λ div

(
∇u√

ε2+|∇u|2

)
Problem 2 : How to deal with the sharp discontinuities ?

Idea : increase the cell size h if |∇u| is large: non-uniform grid.

Let ĥ = h
g(|G?∇u|) with g(0) = 1 and vanishing at infinity⇒

u = f +
g(|G ?∇u|)

2λ
div

 ∇u√
(εĥ)2 + |∇u|2

 .

This motivates us to look at :

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
.

Numerical results ...

The motivation: numerical implementation of the ROF model.

Problem 1 : |∇u| ≈ 0 : u = f + 1
2λ div

(
∇u√

ε2+|∇u|2

)
Problem 2 : How to deal with the sharp discontinuities ?

Idea : increase the cell size h if |∇u| is large: non-uniform grid.

Let ĥ = h
g(|G?∇u|) with g(0) = 1 and vanishing at infinity⇒

u = f +
g(|G ?∇u|)

2λ
div

 ∇u√
(εĥ)2 + |∇u|2

 .

This motivates us to look at :

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
.

Numerical results ...

The motivation: numerical implementation of the ROF model.

Problem 1 : |∇u| ≈ 0 : u = f + 1
2λ div

(
∇u√

ε2+|∇u|2

)
Problem 2 : How to deal with the sharp discontinuities ?

Idea : increase the cell size h if |∇u| is large: non-uniform grid.

Let ĥ = h
g(|G?∇u|) with g(0) = 1 and vanishing at infinity⇒

u = f +
g(|G ?∇u|)

2λ
div

 ∇u√
(εĥ)2 + |∇u|2

 .

This motivates us to look at :

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
.

Numerical results ...

Comparison between standard ROF and modified ROF

(a) (b)

Figure: (a) Result of standard ROF and (b) result of the modified ROF with
g(|G ?∇u|); both for the same λ = 0.0001.

Modified TNV and the proposed model

TNV scheme:
N∑

k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
We looked at modified ROF:

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
Can we modify TNV ?

Modified TNV scheme

N∑
k=0

uλk = f +
g(|G ?∇uλN |)

2λN
div
(
∇uλN

|∇uλN |

)

Numerical results ...

Modified TNV and the proposed model

TNV scheme:
N∑

k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
We looked at modified ROF:

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
Can we modify TNV ?

Modified TNV scheme

N∑
k=0

uλk = f +
g(|G ?∇uλN |)

2λN
div
(
∇uλN

|∇uλN |

)

Numerical results ...

Modified TNV and the proposed model

TNV scheme:
N∑

k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
We looked at modified ROF:

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
Can we modify TNV ?

Modified TNV scheme

N∑
k=0

uλk = f +
g(|G ?∇uλN |)

2λN
div
(
∇uλN

|∇uλN |

)

Numerical results ...

Modified TNV and the proposed model

TNV scheme:
N∑

k=0

uλk = f +
1

2λN
div
(
∇uλN

|∇uλN |

)
We looked at modified ROF:

u = f +
g(|G ?∇u|)

2λ
div
(
∇u
|∇u|

)
Can we modify TNV ?

Modified TNV scheme

N∑
k=0

uλk = f +
g(|G ?∇uλN |)

2λN
div
(
∇uλN

|∇uλN |

)

Numerical results ...

Numerical results of modified TNV.

Numerical results of
∑N

k=0 uλk = f +
g(|G?∇uλN

|)
2λN

div
(∇uλN
|∇uλN

|

)
.

Figure: Numerical results of TNV with diffusion controlling function g(s) = 1
1+s2 ,

with initial λk = (0.0005)× 2k .

Can we modify the integro-differential model ?

Numerical results of modified TNV.

Numerical results of
∑N

k=0 uλk = f +
g(|G?∇uλN

|)
2λN

div
(∇uλN
|∇uλN

|

)
.

Figure: Numerical results of TNV with diffusion controlling function g(s) = 1
1+s2 ,

with initial λk = (0.0005)× 2k .

Can we modify the integro-differential model ?

We looked at modified TNV:

N∑
k=0

uλk = f +
g(|G ?∇uλN |)

2λN
div
(
∇uλN

|∇uλN |

)
This leads to modified Integro-differential equation:

∫ t

0
u(x , s)ds = f (x) +

g(|G ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Numerical results ...

We looked at modified TNV:

N∑
k=0

uλk = f +
g(|G ?∇uλN |)

2λN
div
(
∇uλN

|∇uλN |

)
This leads to modified Integro-differential equation:

∫ t

0
u(x , s)ds = f (x) +

g(|G ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Numerical results ...

We looked at modified TNV:

N∑
k=0

uλk = f +
g(|G ?∇uλN |)

2λN
div
(
∇uλN

|∇uλN |

)
This leads to modified Integro-differential equation:

∫ t

0
u(x , s)ds = f (x) +

g(|G ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Numerical results ...

Numerical results of the modified integro-differential model

Numerical results of
∫ t

0 u(x , s)ds = f (x) + g(|G?∇u(x,t)|)
2λ(t) div

(
∇u(x,t)
|∇u(x,t)|

)
.

Figure: Numerical results of modified integro-differential mode with diffusion
controlling function g(s) = 1

1+s2 . The function λ(t) = 10−4e2t × 2t .

What does the scaling function λ(t) mean ?

Recall the integro-differential model∫ t

0
u(x , s)ds − f (x) =

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where λ(t) is an increasing function at our disposal.

Star-norm is the dual of the BV norm w.r.t. the L2 scalar product

‖v‖∗ := sup
φ 6=0

〈v , φ〉∫
Ω
|∇φ|

.

Theorem: Let us define for the integro-differential equation the error
term as

∫ t
0 u(x , s)ds − f (x), then

‖
∫ t

0
u(x , s)ds − f (x)‖∗ =

1
2λ(t)

.

Proof: The proof follows from Meyer’s theorem: for ROF decomposition
f = u + v with scale λ, we get

∫
Ω

uv = ‖u‖BV‖v‖∗ and ‖v‖∗ = 1
2λ .

What does the scaling function λ(t) mean ?

Recall the integro-differential model∫ t

0
u(x , s)ds − f (x) =

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where λ(t) is an increasing function at our disposal.

Star-norm is the dual of the BV norm w.r.t. the L2 scalar product

‖v‖∗ := sup
φ 6=0

〈v , φ〉∫
Ω
|∇φ|

.

Theorem: Let us define for the integro-differential equation the error
term as

∫ t
0 u(x , s)ds − f (x), then

‖
∫ t

0
u(x , s)ds − f (x)‖∗ =

1
2λ(t)

.

Proof: The proof follows from Meyer’s theorem: for ROF decomposition
f = u + v with scale λ, we get

∫
Ω

uv = ‖u‖BV‖v‖∗ and ‖v‖∗ = 1
2λ .

What does the scaling function λ(t) mean ?

Recall the integro-differential model∫ t

0
u(x , s)ds − f (x) =

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where λ(t) is an increasing function at our disposal.

Star-norm is the dual of the BV norm w.r.t. the L2 scalar product

‖v‖∗ := sup
φ 6=0

〈v , φ〉∫
Ω
|∇φ|

.

Theorem: Let us define for the integro-differential equation the error
term as

∫ t
0 u(x , s)ds − f (x), then

‖
∫ t

0
u(x , s)ds − f (x)‖∗ =

1
2λ(t)

.

Proof: The proof follows from Meyer’s theorem: for ROF decomposition
f = u + v with scale λ, we get

∫
Ω

uv = ‖u‖BV‖v‖∗ and ‖v‖∗ = 1
2λ .

What does the scaling function λ(t) mean ?

Recall the integro-differential model∫ t

0
u(x , s)ds − f (x) =

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)
.

where λ(t) is an increasing function at our disposal.

Star-norm is the dual of the BV norm w.r.t. the L2 scalar product

‖v‖∗ := sup
φ 6=0

〈v , φ〉∫
Ω
|∇φ|

.

Theorem: Let us define for the integro-differential equation the error
term as

∫ t
0 u(x , s)ds − f (x), then

‖
∫ t

0
u(x , s)ds − f (x)‖∗ =

1
2λ(t)

.

Proof: The proof follows from Meyer’s theorem: for ROF decomposition
f = u + v with scale λ, we get

∫
Ω

uv = ‖u‖BV‖v‖∗ and ‖v‖∗ = 1
2λ .

Remark: This theorem is important, in the sense that it dictates the star-norm
of the residual

∫ t
0 u(x , s)ds − f (x) at any time. We get the following result

using this property.

Corollary: The star-norm of the residual vanishes as t →∞

Proof: In our model the function limt→∞ λ(t) =∞. Thus, the result follows
from the previous theorem :

‖
∫ t

0
u(x , s)ds − f (x)‖∗ =

1
2λ(t)

.

Question: What happens if limt→∞ λ(t) = λ∞ <∞ ?

Remark: This theorem is important, in the sense that it dictates the star-norm
of the residual

∫ t
0 u(x , s)ds − f (x) at any time. We get the following result

using this property.

Corollary: The star-norm of the residual vanishes as t →∞

Proof: In our model the function limt→∞ λ(t) =∞. Thus, the result follows
from the previous theorem :

‖
∫ t

0
u(x , s)ds − f (x)‖∗ =

1
2λ(t)

.

Question: What happens if limt→∞ λ(t) = λ∞ <∞ ?

Remark: This theorem is important, in the sense that it dictates the star-norm
of the residual

∫ t
0 u(x , s)ds − f (x) at any time. We get the following result

using this property.

Corollary: The star-norm of the residual vanishes as t →∞

Proof: In our model the function limt→∞ λ(t) =∞. Thus, the result follows
from the previous theorem :

‖
∫ t

0
u(x , s)ds − f (x)‖∗ =

1
2λ(t)

.

Question: What happens if limt→∞ λ(t) = λ∞ <∞ ?

Remark: This theorem is important, in the sense that it dictates the star-norm
of the residual

∫ t
0 u(x , s)ds − f (x) at any time. We get the following result

using this property.

Corollary: The star-norm of the residual vanishes as t →∞

Proof: In our model the function limt→∞ λ(t) =∞. Thus, the result follows
from the previous theorem :

‖
∫ t

0
u(x , s)ds − f (x)‖∗ =

1
2λ(t)

.

Question: What happens if limt→∞ λ(t) = λ∞ <∞ ?

Where to start and stop ?

Starting : We know that for ROF decomposition if ‖f‖∗ < 1
2λ then v = f ,

thus we start with a very small value of λ(t).

Stopping : This is an open problem.
We know : ‖

∫ t
0 u(x , s)ds − f (x)‖∗ = 1

2λ(t) .

Question : What does the star-norm really mean ?

Where to start and stop ?

Starting : We know that for ROF decomposition if ‖f‖∗ < 1
2λ then v = f ,

thus we start with a very small value of λ(t).

Stopping : This is an open problem.
We know : ‖

∫ t
0 u(x , s)ds − f (x)‖∗ = 1

2λ(t) .

Question : What does the star-norm really mean ?

Observation: Let f and g be in (X , (·, ·)), an inner product space.

Let f ∼ {uk , vk}∞k=0 and g ∼ {Uk ,Vk}∞k=0 be any hierarchical decompositions :

v−1 = f and vk−1 = uk + vk for k = 0, 1, 2 . . .∞ and
V−1 = g and Vk−1 = Uk + Vk for k = 0, 1, 2 . . .∞.

Let us define an inner product

〈f , g〉 =
∞∑

k=0

(uk ,Uk) + (vk ,Uk) + (uk ,Vk) +����(vk ,Vk)

Then 〈f , g〉 = (f , g) if and only if limk→∞(vk ,Vk) = 0.

Indeed for (BV , L2) multiscale decompositions: ‖vλk ‖L2 → 0 ...

Observation: Let f and g be in (X , (·, ·)), an inner product space.

Let f ∼ {uk , vk}∞k=0 and g ∼ {Uk ,Vk}∞k=0 be any hierarchical decompositions :

v−1 = f and vk−1 = uk + vk for k = 0, 1, 2 . . .∞ and
V−1 = g and Vk−1 = Uk + Vk for k = 0, 1, 2 . . .∞.

Let us define an inner product

〈f , g〉 =
∞∑

k=0

(uk ,Uk) + (vk ,Uk) + (uk ,Vk) +����(vk ,Vk)

Then 〈f , g〉 = (f , g) if and only if limk→∞(vk ,Vk) = 0.

Indeed for (BV , L2) multiscale decompositions: ‖vλk ‖L2 → 0 ...

Observation: Let f and g be in (X , (·, ·)), an inner product space.

Let f ∼ {uk , vk}∞k=0 and g ∼ {Uk ,Vk}∞k=0 be any hierarchical decompositions :

v−1 = f and vk−1 = uk + vk for k = 0, 1, 2 . . .∞ and
V−1 = g and Vk−1 = Uk + Vk for k = 0, 1, 2 . . .∞.

Let us define an inner product

〈f , g〉 =
∞∑

k=0

(uk ,Uk) + (vk ,Uk) + (uk ,Vk) +����(vk ,Vk)

Then 〈f , g〉 = (f , g) if and only if limk→∞(vk ,Vk) = 0.

Indeed for (BV , L2) multiscale decompositions: ‖vλk ‖L2 → 0 ...

Observation: Let f and g be in (X , (·, ·)), an inner product space.

Let f ∼ {uk , vk}∞k=0 and g ∼ {Uk ,Vk}∞k=0 be any hierarchical decompositions :

v−1 = f and vk−1 = uk + vk for k = 0, 1, 2 . . .∞ and
V−1 = g and Vk−1 = Uk + Vk for k = 0, 1, 2 . . .∞.

Let us define an inner product

〈f , g〉 =
∞∑

k=0

(uk ,Uk) + (vk ,Uk) + (uk ,Vk) +����(vk ,Vk)

Then 〈f , g〉 = (f , g) if and only if limk→∞(vk ,Vk) = 0.

Indeed for (BV , L2) multiscale decompositions: ‖vλk ‖L2 → 0 ...

Observation: Let f and g be in (X , (·, ·)), an inner product space.

Let f ∼ {uk , vk}∞k=0 and g ∼ {Uk ,Vk}∞k=0 be any hierarchical decompositions :

v−1 = f and vk−1 = uk + vk for k = 0, 1, 2 . . .∞ and
V−1 = g and Vk−1 = Uk + Vk for k = 0, 1, 2 . . .∞.

Let us define an inner product

〈f , g〉 =
∞∑

k=0

(uk ,Uk) + (vk ,Uk) + (uk ,Vk) +����(vk ,Vk)

Then 〈f , g〉 = (f , g) if and only if limk→∞(vk ,Vk) = 0.

Indeed for (BV , L2) multiscale decompositions: ‖vλk ‖L2 → 0 ...

Consequences of this observation

For (BV , L2) hierarchical decomposition of f we get

(f , f)L2 = 〈f , f 〉 =
∞∑

k=0

(uλk , uλk)L2 + (vλk , uλk)L2 + (uλk , vλk)L2

‖f‖2
L2 =

∞∑
k=0

‖uλk ‖
2
L2 + 2(uλk , vλk)L2 .

Meyer’s theorem: (uλk , vλk)L2 = 1
2λk
‖uλk ‖BV we get:

Energy decomposition (Tadmor et. al. 2004)

‖f‖2
L2 =

∞∑
k=0

‖uλk ‖
2
L2 +

1
λk
‖uλk ‖BV .

Consequences of this observation

For (BV , L2) hierarchical decomposition of f we get

(f , f)L2 = 〈f , f 〉 =
∞∑

k=0

(uλk , uλk)L2 + (vλk , uλk)L2 + (uλk , vλk)L2

‖f‖2
L2 =

∞∑
k=0

‖uλk ‖
2
L2 + 2(uλk , vλk)L2 .

Meyer’s theorem: (uλk , vλk)L2 = 1
2λk
‖uλk ‖BV we get:

Energy decomposition (Tadmor et. al. 2004)

‖f‖2
L2 =

∞∑
k=0

‖uλk ‖
2
L2 +

1
λk
‖uλk ‖BV .

Consequences of this observation

For (BV , L2) hierarchical decomposition of f we get

(f , f)L2 = 〈f , f 〉 =
∞∑

k=0

(uλk , uλk)L2 + (vλk , uλk)L2 + (uλk , vλk)L2

‖f‖2
L2 =

∞∑
k=0

‖uλk ‖
2
L2 + 2(uλk , vλk)L2 .

Meyer’s theorem: (uλk , vλk)L2 = 1
2λk
‖uλk ‖BV we get:

Energy decomposition (Tadmor et. al. 2004)

‖f‖2
L2 =

∞∑
k=0

‖uλk ‖
2
L2 +

1
λk
‖uλk ‖BV .

Other works

Deblurring: Tadmor et. al. (2008) consider hierarchical decomposition:

[uλk , vλk] = arginf
{vλk−1

=Tuλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − Tuλk |
2
)

T ∗Tuλk = T ∗vλk−1 +
1

2λk
div
(
∇uλk

|∇uλk |

)

(a) (b)

Figure: A blurred image (a) is deblurred as shown in (b).

Novel ‘deblurring’ integro-differential equation

∫ t

0
T ∗Tu(x , s)ds = T ∗f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Other works

Deblurring: Tadmor et. al. (2008) consider hierarchical decomposition:

[uλk , vλk] = arginf
{vλk−1

=Tuλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − Tuλk |
2
)

T ∗Tuλk = T ∗vλk−1 +
1

2λk
div
(
∇uλk

|∇uλk |

)

(a) (b)

Figure: A blurred image (a) is deblurred as shown in (b).

Novel ‘deblurring’ integro-differential equation

∫ t

0
T ∗Tu(x , s)ds = T ∗f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Other works

Deblurring: Tadmor et. al. (2008) consider hierarchical decomposition:

[uλk , vλk] = arginf
{vλk−1

=Tuλk
+vλk

}

(∫
Ω

|∇uλk |+ λk

∫
Ω

|vλk−1 − Tuλk |
2
)

T ∗Tuλk = T ∗vλk−1 +
1

2λk
div
(
∇uλk

|∇uλk |

)

(a) (b)

Figure: A blurred image (a) is deblurred as shown in (b).

Novel ‘deblurring’ integro-differential equation

∫ t

0
T ∗Tu(x , s)ds = T ∗f (x) +

1
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Other works ...

Modified TNV deblurring

T ∗Tuλk = T ∗vλk−1 +
g(|G ?∇uλk |)

2λk
div
(
∇uλk

|∇uλk |

)

(a) (b)

Figure: A blurred image (a) is deblurred with modified TNV deblurring as shown in (b).

Modified ‘deblurring’ integro-differential equation

∫ t

0
T ∗Tu(x , s)ds = T ∗f (x) +

g(|G ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Other works ...

Modified TNV deblurring

T ∗Tuλk = T ∗vλk−1 +
g(|G ?∇uλk |)

2λk
div
(
∇uλk

|∇uλk |

)

(a) (b)

Figure: A blurred image (a) is deblurred with modified TNV deblurring as shown in (b).

Modified ‘deblurring’ integro-differential equation

∫ t

0
T ∗Tu(x , s)ds = T ∗f (x) +

g(|G ?∇u(x , t)|)
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Other works ...

Modified TNV deblurring with selective diffusion:

T ∗Tuλk = T ∗vλk−1 +
g(|G ?∇uλk |)|∇uλk |

2λk
div
(
∇uλk

|∇uλk |

)

(a) (b)

Figure: A blurred image (a) is denoised with modified TNV deblurring with
selective diffusion as shown in (b).

Modified ‘deblurring’ integro-differential equation

∫ t

0
T ∗Tu(x , s)ds = T ∗f (x) +

g(|G ?∇u(x , t)|)|∇u(x , t)|
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Other works ...

Modified TNV deblurring with selective diffusion:

T ∗Tuλk = T ∗vλk−1 +
g(|G ?∇uλk |)|∇uλk |

2λk
div
(
∇uλk

|∇uλk |

)

(a) (b)

Figure: A blurred image (a) is denoised with modified TNV deblurring with
selective diffusion as shown in (b).

Modified ‘deblurring’ integro-differential equation

∫ t

0
T ∗Tu(x , s)ds = T ∗f (x) +

g(|G ?∇u(x , t)|)|∇u(x , t)|
2λ(t)

div
(
∇u(x , t)
|∇u(x , t)|

)

Other works ...

multiscale (BV , L1)

multiscale (BV , (L1)2)

multiscale (BV , L1), (BV , (L1)2) with g(|G ?∇u|) and g(|G ?∇u|)|∇u|

(a) (b)

Figure: A blurred image (a) is denoised with multiscale (BV , (L1)2) with
g(|G ?∇u|)|∇u| as shown in (b).

Other works ...

multiscale (BV , L1)

multiscale (BV , (L1)2)

multiscale (BV , L1), (BV , (L1)2) with g(|G ?∇u|) and g(|G ?∇u|)|∇u|

(a) (b)

Figure: A blurred image (a) is denoised with multiscale (BV , (L1)2) with
g(|G ?∇u|)|∇u| as shown in (b).

Other works ...

multiscale (BV , L1)

multiscale (BV , (L1)2)

multiscale (BV , L1), (BV , (L1)2) with g(|G ?∇u|) and g(|G ?∇u|)|∇u|

(a) (b)

Figure: A blurred image (a) is denoised with multiscale (BV , (L1)2) with
g(|G ?∇u|)|∇u| as shown in (b).

	Introduction: what is an image ?
	Problems in image processing
	Multiscale image representation
	Variational methods
	PDE methods

	A novel integro-differential model
	The motivation behind the proposed model
	A new formulation of the Tadmor-Nezzar-Vese model (TNV)
	Numerical results

	Modified integro-differential model
	Modified TNV and the proposed model
	Numerical results

	What does the scaling function (t) mean ?
	Epilogue

