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Introduction Grand view

Grand challenges in understanding polycrystalline
microstructure

A central problem in materials science is the understanding and control of
microstructure: ensemble of grains that comprise polycrystalline materials.
Performance is influenced by the types of grain boundaries in the material and the way
that they are connected.

Structure sensitive properties:

Superconducting Critical Current Density

Electromigration Damage Resistance

Stress Corrosion Cracking

Electrical activity

Creep Behavior

”Insensitive”:

Average elastic energy density
Fracture follows grain boundaries.
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Introduction Motivation

Questions: are microstructures all like soap froth? C.S. Smith (1951)

MgO looks very much unlike, but appearances can be deceiving.
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Introduction Motivation

Motivation

Experiment: evolution of grain boundary character distribution (GBCD)
GBCD = relative areas of grain boundaries sorted by misorientation angles and normal

Gorzkowski et al. Zeitschrift fur Metallkunde, 96 (2005) 207.

Recent discovery

Grain boundary character (GBCD) is a scale invariant steady state characteristic of a
material.
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Introduction Microscopic dynamics

Foundations

Curvature driven growth of a network of grain boundaries

Mullins equation:

vn = µ(
∂2γ

∂θ2
+ γ)κ on Γ(i)

Herring condition for triple junctions:∑
TJ

(
∂γ

∂θ
n + γt) = 0, at TJ’s

Interfacial energy depends on the misorientation
angle and normal: γ(θ, α)

Mullins-von Neumann law: dAn
dt

= c(n − 6)
extended to Rn MacPherson & Srolovitz, Nature 2007

Other simulation techniques: Potts model, Monte
Carlo, mean field theory etc
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Introduction Mesoscopic view

Bridging micro and macro scales

People have known for a long time that grain boundary populations vary with interfacial
energy, as well as other features. We want to suggest that this relationship is
quantitative and predictable.
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Introduction Mesoscopic view

Coarsening: Numerical simulation and experiment

Movie

Movie

Some grains grow, some shrink. Is this the whole story?

Movies courtesy of D. Kinderlehrer, I. Livshits, S. Taasan, K. Barmak.
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Introduction Mesoscopic view

Motivation

Processes that alter GB distributions:

Continuous part
Will not be discussed in this presentation.
Incremental changes in the areas of faces:
as grain boundaries migrate, areas of GB
faces increase or decrease.

Doesn’t affect misorientations, can be
modeled using calculus on manifolds.

Discontinuous (jump) part
The focus of present work.
Critical events:
- collapse and creation of grain faces
- collapse of small grains

Affects the misorientations and
interfacial energies. Stochastic tools are
more effective.
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Introduction Goals

Goals

Stable distribution has been identified (GBCD). Now need to identify ways to model it.

Grand challenge: Develop predictive theory for the evolution of materials texture
that will

identify stationary statistics
provide a dynamical model based on critical events
quantify rates at which critical events take place
help explain relationship between energy and GB distributions

What we talk about today: Theoretical approaches to modeling evolution of
critical events.

Modeling correlated populations via Boltzmann approach
Generalized continuous time random walk framework
Markov modulated Poisson processes
Numerical features, results, limitations
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1-dimensional model Focusing on critical events

Simplified model

3D
2D

αi - misorientations
γ(α) - interfacial energies

1D

xj − ”triple junctions”
(xj , xj+1) − ”grain boundaries”
lj = xj+1 − xj − ”GB areas”
{αi}i=1,...,n − ”misorientations”

Given initial orientations αi and total system energy in the form

En(t) =
∑

f (αi )(xi+1(t)− xi (t))

define equations of motion through gradient flow dynamics

ẋi = f (αi )− f (αi−1), i = 0, . . . , n.

vi = l̇i = ẋi+1 − ẋi = f (αi+1)− 2f (αi ) + f (αi−1)

where f (α) plays the role of an interfacial energy.
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1-dimensional model Validation

Stable statistics

We consider the following statistics:

ρor (α, t) =
∑

k δ(α− αk) pdf of orientations
ρlen(l , t) =

∑
i δ(l − li ) pdf of lengths

ρw (α, t) =
∑

k lkδ(α− αk) weighted pdf of orientations (GBCD)
ρvel(v , t) =

∑
j δ(v − vj) pdf of velocities

Distributions harvested from simulation stabilize early in the process. Gives evidence for
a well-defined dynamic process.
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1-dimensional model Conformity with experiment

Influence of interfacial energies

Conforming to experimental observations, distribution of orientation parameters α is
inversely correlated with interfacial energies f (α).
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Figure: GBCD distribution for 1d model, 2d large-scale simulation and its

Boltzmann fit.
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Boltzmann approach Simple model

Modeling critical events via inelastic Boltzmann equation

We can think of a critical event as a collision of inelastic particles: particle ≡ GB.

(α2, v2) + (α1, v1) ⇒ (α1, v
∗), where v∗ = v1 + v2 + f (α2)− f (α1),

~~

~~

(a)

(b)

(l∗(+1), v
∗

(+1), α
∗

(+1))(l∗, v∗, α∗)(l∗(−1), v
∗

(−1), α
∗

(−1))

(l(+1), v(+1), α(+1))(l, v, α)(l(−1), v(−1), α(−1))

(l∗(−2), v
∗

(−2), α
∗

(−2))
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Boltzmann approach Simple model

Continuity equation:

∂ρ(l , v , α, t)

∂t
+ v

∂ρ(l , v , α, t)

∂l
= {gain} − {loss}.

where the right hand side term can be written as an integral over all possible collisions:

−
2

N(t)

∫
A+

v ′ρ(0, v ′, α′, t)ρ(l , v − v ′ + f (α)− f (α′), α, t) dα′dv ′

+
2

N(t)

∫
A−

v ′ρ(0, v ′, α′, t)ρ(l , v , α, t) dα′dv ′.

subject to restricting conditions:
A− := {f (α) ≤ v ′ + 2f (α′)} ∩ {f (α′) ≤ v + 2f (α)} ∩ {v ′ < 0},
A+ := {f (α) ≤ v ′ + 2f (α′) ≤ v + 3f (α)} ∩ {v ′ < 0} .

∆

~~

t+   t∆

~~

t

~~

t−   t

(l + v∆t, v, α)

(0, v′, α′)

(l, v∗, α)

(v′∆t, v′, α′) (l − v∗∆t, v∗, α)
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Boltzmann approach Simple model

Simple model performance for quadratic potential
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stages. Possible correlations?

Maria Emelianenko (GMU) Kinetic Theories in Multiscale Modeling of Polycrystals March 4, 2009 16 / 33



Boltzmann approach Extended model

Extended space model

Is there a remedy for complexity and correlation issues?
Then let us expand the state space to include incidence relations: ρ(l , α(−1), α, α(+1), t).

Grain boundaries ≡ colliding particles.

~~

~~

(a)

(b)

α α(+1)

β = α(−1)β(−1) β(+1) = α α(+1)

β(−1)

Maria Emelianenko (GMU) Kinetic Theories in Multiscale Modeling of Polycrystals March 4, 2009 17 / 33



Boltzmann approach Evolution equation

By following these simple collision rules, we can write a Boltzmann-type collision
equation for the density function:

∂ρ
(
l , α(−1), α, α(+1)

)
∂t

+
(
f

(
α(−1)

)
+ f

(
α(+1)

)
− 2f (α)

) ∂ρ
(
l , α(−1), α, α(+1)

)
∂l

= W ,

where W = W+ −W− with

W+ := 1
N(t)

∫
B

(
2f (s)− f (α)− f (α(−1))

)
ρ

(
0, α(−1), s, α

)
ρ

(
l , s, α, α(+1)

)
ds

+ 1
N(t)

∫
B

(
2f (s)− f (α)− f (α(+1))

)
ρ

(
0, α, s, α(+1)

)
ρ

(
l , α(−1), α, s

)
ds.

Similarly

W− := 1
N(t)

∫
B

(
f (α) + f (s)− 2f (α(−1))

)
ρ

(
0, s, α(−1), α

)
ρ

(
l , α(−1), α, α(+1)

)
ds

+ 1
N(t)

∫
B

(
f (α) + f (s)− 2f (α(+1))

)
ρ

(
0, α, α(+1), s

)
ρ

(
l , α(−1), α, α(+1)

)
ds.

where B := R+ × R3.
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Boltzmann approach Evolution equation

Extended model performance for quadratic potential
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Recap

Quick summary

Recap: We have discussed two models capable of describing the evolution of ρ(α, l , t).

1 Advantages:

both models have clear physical interpretation;
extended Boltzmann model completely describes system evolution

2 Drawbacks:

simple model does not take into account correlations
extended approach is informationally complex.

Continuous time random walk theory can possibly eliminate some of these difficulties,
while also giving more insight into characteristics of underlying stochastic process.
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Random walk intro Simple walk

Simple random walk model and its master equations

The walker takes a step in a random direction with fixed probabilities pi , s.t.
∑

pi = 1.

Symmetric walk in 1d: pi = 1/2

Symmetric walk in 2d: pi = 1/4

Pi (t + ∆t) =
1

2
Pi−1(t) +

1

2
Pi+1(t)

Pi,j(t + ∆t) =
1

4
(Pi,j−1(t) + Pi,j+1(t) + Pi−1,j(t) + Pi+1,j(t))
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Random walk intro Simple walk

Master equation and PDE

In the symmetric 1d random walk case, the master equation is given by:

Pi (t + ∆t) =
1

2
Pi−1(t) +

1

2
Pi+1(t)

In the continuum limit, ∆t → 0, ∆x → 0:

Pi (t + ∆t) = Pi (t) + ∆t
∂Pi

∂t
+ O(∆t2)

Pi±1(t) = Pi (t)±∆x
∂Pi

∂x
+ ∆x2 ∂2Pi

∂x2
+ O(∆x2)

leads to the diffusion equation
∂Pi

∂t
= K

∂2Pi

∂x2

Many generalizations are possible.
Continuous time random walk: lattice is replaced by continuous state space.
Jump sizes and waiting times are drawn from probability distributions.
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CTRW approach Motivation

Continuous time random walk of the lengths and velocities

Grain areas Grain velocities

Simulation results: steady-state statistics of li and vi (exists for all types of f )
relative areas relative velocities
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CTRW approach Theoretical approach

Continuous Time Random Walk framework

The walker moves according to two parameters:
(1) Waiting times with pdf w(t) (2) Jump sizes with pdf µ(x).

Chapman-Kolmogorov type master equation:

p(s, t) = p0(s)ψ(t) +

∫ ∫
p(s − s′, t − t′)µ(s′)w(t′)dt′ds′

We derive an equivalent form in terms of the memory kernel

Φ̂(u) =
1− ŵ(u)

uŵ(u)
:

∫
Φ(t − t′)

∂

∂t
p(x , t′)dt′ =

∫
[p(x − x ′, t)− p(x , t)]µ(x ′)dx ′

Φ(t) = cδ(t) (equivalent to w(t) ∼ exp(λt): Markov process, no memory

Φ(t) 6= cδ(t): non-Markov process with memory kernel Φ(t).
For the choice of Φ̂(u) = 1

λ
uβ−1

∂β

∂tβ
p(x , t) = λ

∫
[p(x − x ′, t)− p(x , t)]µ(x ′)dx ′
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CTRW approach Fractional kinetics

Non-Markov nature of dynamics

Do we have a Markov process in our model problem? No!

Waiting times have fat tails (left), plus jump sizes are non-Gaussian (right)
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simulation is repeated 10 times for each potential.

Maria Emelianenko (GMU) Kinetic Theories in Multiscale Modeling of Polycrystals March 4, 2009 25 / 33



CTRW approach Asymptotics

Closed form solution

For stable jump sizes distribution µ(s) = αs−α−1, 0 < α < 1, s > 0 and waiting times
w(t) ∼ t−1−β , the master equation coincides with the fractional kinetic equation:

∂βp(x , t)

∂tβ
= Kγ

∂α

∂xα
p(x , t),

It admits a closed form solution in the form

p(x , t) =
1

tβ/α
Wα,β(

x

tβ/α
),

Wα,β is the inverse Laplace transform of the

Mittag-Leffler function Eα,β(z) =
∞∑
j=0

z j

Γ(αj + β)

Fractional derivative in Caputo form

dβ

dtβ
f (t) =

1

Γ(1− β)

∫ t

0

f ′(τ)

(t − τ)β
dτ,

for which

L
[ dβ

dtβ
f (t)

]
= uβ f̂ (u)− uβ−1f (0).
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CTRW approach Numerical results

Numerical results

We look at our simplified model in the coupled 2-dimensional case space of velocities
and lengths:

∂β

∂tβ
ρ(l , v , t) = −v

∂ρ(l , v , t)

∂l
+ λ

∫ ∞

−∞
[ρ(l , v − s, t)− ρ(l , v , t)]µ(s)ds.

Using Grunwald-Letnikov definition of fractional derivative:

∂βf (t)

∂tβ
= lim

h→0

1

hβ

[t/h]∑
k=0

ωβ
k f (t − kh), where ω

(β)
k = (−1)k

(
β
k

)
.

We determine µ(s) from the empirical jump probability density and run the model with
parameter λ = 1.
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CTRW approach Numerical results

Comparison of simulation with fractional PDE.

Taking β = 0.7, numerical solution of the fractional equation can be obtained by
using the explicit FTCS difference scheme

p
(m+1)
i,j = p

(m)
i,j + Sβ

m∑
k=0

ω
(1−β)
k I

(m−k)
i,j ,

where Sβ = ∆β

(∆x)2
, ∆t ≤ 1

43/2−β (∆x)
2
β and

I
(m−k)
i,j = vj(p

(m−k)
i−1,j − p

(m−k)
i+1,j )∆x +

∑
sl :j+sl∈[1,Nj]

µl [p
(m−k)
i,j+sl

− p
(m−k)
i,j ].

which has been shown to be numerically stable.

FPDE (right) are in agreement with simulation (left).
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Generalizations Slowing dynamics

Slowing down effect

Departure from fractional random walk theory: non-identical waiting times distributions

Recall: for a random walk theory, one has to assume that all waiting times are i.i.d.
variables. In this case, variables are independent, but not identically distributed. Analogy
to non-homogeneous Poisson process with decaying frequency.

Maria Emelianenko (GMU) Kinetic Theories in Multiscale Modeling of Polycrystals March 4, 2009 29 / 33



Generalizations Three stages of the process

Connections to renewal processes theory

N(t) - cumulative arrivals, λ(t) - arrival rate, w(t) - waiting times pdf

λ(t) = w(t) +

∫ t

0

λ(s)w(t − s)ds, N(t) =

∫ t

0

λ(s)ds

Fractional regime only describes intermediate steps of the process.

Is there a formalism capable of describing the complete evolution process?
Can we find an evolution equation for pdfs related to velocities and GBCD in this

context?
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Generalizations MMPP

Markov-modulated Poisson processes

Relation to hidden Markov chains:

wi ∼ exp(ri ), with mean parameter ri that increases with i due to the slowing effect
of coarsening dynamics

Markov modulated Poisson process(MMPP) - Poisson process varying its arrival
rate according to an m-state irreducible continuous time Markov chain.

The observable process can be written as Xt = X0 +
∫ t

0
AXudu + Mt with a

martingale part Mt and with rate of arrivals depending upon the state of an
indirectly observed Markov chain with rate matrix A having entries ri .

MMPP is an attractive model for short- and middle-range autocorrelations because it
can be easily parameterized to produce dependence in the series and remains analytically
tractable.
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Generalizations MMPP

MMPP parameter estimation

X (t) - underlying continuous-time homogeneous Markov chain with state space 1, . . . , r .
r - order of the MMPP.
Q = qij - generator of the Markov chain.
N(t) observed process - variable-rate Poisson process with rate λi when X (t) = i .
Ti - time of the i-th Poisson event. Inter-event times Yk = Tk − Tk−1.
X (Tk) - embedded discrete-time Markov chain obtained from sampling the
continuous-time chain at the Poisson event times.
(X (Tk), Yk) - Markov renewal process with transition probability matrix F (y) = {Fij(y)},
where Fij(y) = P(Yk ≤ y , X (tk−1 + y) = j |X (tk−1 = i). The transition density matrix,
obtained from differentiation of Fij w.r.t. y , is given by

f (y) = exp((Q − Λ)y)Λ, Λ = diagλ1, . . . , λr .

Parameters of the stationary MMPP: (Q, Λ) can be estimated by EM algorithm.
Preliminary results: r = 10 fits well with 1-d simulation interarrival times for N = 103

grain boundaries.
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Summary Current work

Work in progress

Further progress can only be achieved through close collaboration with materials
scientists.

Building MMPP formalism for GBCD evolution

Understanding the slowing down effect and its relationship to the fractional
dynamics

Providing physical validation

Studying numerical and analytical issues

Developing the complete predictive theory for the evolution of materials statistical
(texture, GBCD etc) and structural properties from microstructure

In particular, it will

identify stationary statistics
provide a dynamical model based on critical events
quantify rates at which critical events take place
provide the set of simple rules to be used for grain boundary engineering

THANKS!
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