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Background and
Motivation

B DNA-protein interactions are important in gene transcription and protein production

protein

/‘
% DNA strand

target (e.g. particular
sequence of base pairs)

B But: rates of DNA-protein reactions are faster than the theoretical upper limit
predicted by 3D diffusive (Debye-Smoluchowski) theory. [Riggs et al. 1970]

B And: rates of reactions also faster than typical 1D diffusive sliding time. For E. coli,
L ~10%bp D ~ 5 x 10% bp?/s = T ~ L?/D =~ 2 days

B Question: how do proteins/enzymes find their targets on DNA so quickly? [Berg et
al. 1981, Von-Hippel and Berg, 1987]
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Proposed solution

B Facilitated diffusion [Berg 1981]: combination of 1D sliding and 3D diffusion =
rates predicted to increase up to 100 x.
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Proteins find their targets through a combination of 1D diffusive sliding,
attachment/detachment and 3D diffusion

B However, acceleration requires D;p and D3 p to be comparable and equal time
spent in 1D and 3D diffusion.

B This is not true in most situations!
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Other mechanisms

m Fast intersegmental transfers [Sheinman and Kafri
2008]

m Effect of DNA conformation [Hu et al. 2006]
m Protein cooperativity [Cherstvy et al. 2008]

m Charge Transport [Yavin et al. 2005, Boon et al. 2003]:
applicable to a particular protein called MutY, a
Base Excision Repair enzyme.
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Base Excision Repair
(BER) enzymes

® The genome of all living organisms is constantly under
attack by mutagenic agents e.g. ionizing radiation

B Mutagenic agents give rise to damaged base pairs in
DNA (“lesions™) = miscoded proteins, possibly cancer.

m BER enzymes locate lesions on DNA, remove them,
maintain integrity of genome.

m MutY searches for lesions via a Charge-Transport (CT)
mechanism [Yavin et al. 2005, Boon et al. 2003]
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Charge Transport
(CT)

(&) Iron-Sulfur cofactors oxidize

desorption adsorption when MutY adorbs to DNA.
(a) Release/absorption of electrons <
adsorption/desorption of enzyme.
MutY| ~ & MutY
i electron absorption electron release (b) Guanine radicals (“OXOGS”):
F damaged bases that annihilate
ox0G [4Fe-4513F -
annihilation _ € upon absorbing an electron.

(b) :. XL MutY

guanine radical

("oxoG") (c) Lesions prevent passage of
electron . .
reflection electrons by reflection/absorption.
Cje' i They require presence of MutY to
(c) lesion = be excised from DNA.
electron
absorption
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Stochastic Broadwell
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(a) Enzyme is deposited on DNA and releases an electron to either side
(b) “One-sided” Broadwell problem: electron released to right with probability 1

(c) “Two-sided” Broadwell problem : electron released left or right with probability 1/2.

Note: electron return probability = 1 in absence of guanine radicals
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One-sided Broadwell
problem

dP, dP;
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P+ (X, T): pdfs of rightward and leftward electron, V': electron speed, F': flip rate,
M decay rate

B Boundary conditions:
Py(0,T) = P_(L,T) =0

M Initial conditions:

Py (X,0) = §(X)
P_(X,0) = 0
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Dimensionless egns

Non-dimensionalize space by 1/p, time by 1/pV where p = OxoG density:

x = pX, t=pVT,
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0
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Adsorption/desorption
probabillities

Take . = 0 always (no electron decay)

| oo £0
Desorption prob: / _(0,¢t")dt" =
> 1
Adsorption prob: / L,t"dt' =
ption p i Q+(L, ") T 74

Extension to two-sided problem:

. _ 1 f(£/2_£) n f(£/2‘|—£)
desorb 9 _1_|_f(£/2_£) 1-|—f(€/2‘|'€)_
1T 1 1 _
Hadson = 2 |1+ £(¢/2 - ¢) + 1+ f(€/2+¢) ]
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Sticking probabillity
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Dependence of enzyme sticking probability IT 4o ON its landing position £ and flipping
rate for gap size (a) £ = 1 and (b) £ = 2.

f < 1: ballistic limit, f > 1: diffusive limit
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Adsorption Statistics
away from lesions

1. Average over landing position &:

¢/2

_ 1
Hadsorb = - / Hadsorb (£, E; f)df

)2

= 3tabnh_l( /e )
fe 2+ fL)

| 2. Consider gaps with discrete distribution 41, £2, 43, .... Assume a fraction ¢; of gaps
have size ¢;. Deposit a single enzyme onto the DNA. The probability of landing in gap of
Size £ is ¢4 /Z ° 1 ¢;¢;. Fraction that stays adsorbed in gap of size ¢; is

itanh_1 (f—3> X ij J
f; 2+ fY; =1 ?54;

Continuous gap size distribution: £; — £, ¢; — ¢(£)dl

_ fe )
Ensemble average adsorb ) = ¢) tanh dl
\Y g < d b / gb( an ( 21 fﬁ
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Form of ¢(¢)?

If OxoGs randomly appear anywhere on an infinite DNA, what is the pdf of the gap size
(distance between 2 consecutive OxoGs)?

Consider a lattice of length L with n sites (each site has width a) where OxoGs can
appear with rate €2 radicals per unit time T per lattice site. Time taken for GG radicals to
appear is Ty = G /nf2.

Let N(m,T) be the pdf of the number of gaps of size m. Then N obeys [D’'Orsogna and
Chou 2005]

1 ON(m,T) - ,
— =2 N(m/,T) — mN(m,T

m’/=m-+1

Define p = G/ Lg as the OxoG density and the dimensionless variables
y = pam, t="1T/Ty, p = N/Gt = gap fraction

Take continuum limit n — oo, ap — 0 and G, Lo — oo such that p remains fixed.

p(y,t) — probability density for continuous gap size y
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Gap distribution

Setting q(y, t) = tp(y, t) where p(y, t) is the continuous pdf of gaps of size y:

dq

—~ =2 h " dy' — b
5 /y q(y’, t)dy" — yq(y,t)

Solve by Laplace transform in time:

— q(y’ t) — t2e—yt
=ply,t=1 = e*
= Prob(y <Y <y + dy) e”Ydy = ¢(y)dy

Y: non-dimensional gap length att = 1 < G radicals have appeared. Hence,

el/FEi(1/f)

<1:Iadsorb > — f

where Ei(x) = [°° &—dt

x t
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sticking probabilities

Sticking probabilities for deposition of a single enzyme onto an infinite DNA with gap
distribution ¢(¢) = e~*. Also expect probabilities to be approximately valid when the

Verification
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flipping rate f = F/(pV)

fraction of OxoGs annihilated is < 1.
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Analyze using Monte Carlo with adsorption/desorption probabilities IT,gsor, and Igesors:

(@)

(b)

Colocalization of
enzymes near lesions

(a) 0 E (b) 0 £
E; ¢ E, lesion ¢ E,
i d; o — d;
FE adsorbs, | F adsorbs,
Event: FE self-desorbs
FE4 desorbs E-> desorbs
T 1 fdq fdo 1 1 1 1
Probability: > (1+fd1 T 1+fd2) 2 T/dx 2 15/ d5
Event: E self-desorbs g adSOtrbS, B adsorbs,
' 2 >SS | B desorbs
adsorbed
Prqb: (reflecting %+ % (1fd%z ) 0 11
|es|on) +f 2 2 1‘|—fd2
Prob: (absorb- 1 ( fdq . fdo ) 11 11
ing |esion) 2 \ 1+ fdq 1+ fd2 2 1+ fdy 2 1+ fdo
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MC Results (1/2)
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Evolution of enzyme density as enzymes are adiabatically deposited onto DNA. Results
came from averaging 107 trials using flip rate f = 1.
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MC Results (2/2)
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Scaling results in large »n limit. (a) x; = distance from lesion to ith closest enzyme.
Convergence of repair enzymes = O(n—2/3). (b) Accumulation of enzymes = O(n1/3).

Enzyme deposition within 5 base pairs of a lesion requires n ~ 6 x 10° deposition
attempts. If each deposition takes 0.0005s = total search time =~ 50 minutes.
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Discussion

B Compare with randomly deposited “passive” enzymes that always stick to the
DNA. n > 1. number of depositions

Passive CT
Enzyme number : O(n) O(n'/3)

enzyme-lesion distance : | O(n™!) | O(n=2/3)

B Passive enzymes converge more quickly but search is very redundant/wasteful.

B CT search strategy more effective when number of enzymes in system is limited.
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Weaknesses of

B Search time of 50 minutes is an improvement, but it is still too slow.
B Enzymes are stationary on DNA; they do not diffuse along strand.

B MC simulations keep bulk chemical potential constant. Number of enzymes on
DNA can grow without bound.

B Assumed adiabatic depositions.

All these factors make the discrete model rather unrealistic.

Improvements:

B Use a continuum PDE model

B Model enzyme binding more carefully
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Binding Kinetics

Bulk enzyme Leftward electron
(a) oxoG density, g(x,2) density, Ry(?) density, N_(x,1)
@ .
OO O——0
x:0 /e x:
Rightward electron Adsorbed, reduced Adsorbed, oxidized
density, Ny (x,2) enzyme density, R, (x,?) enzyme density, O(x,2)

(b) k
MutY-[4Fe-4S]12T "%\ MutY-[4Fe-4S]2T — 2> MutY-[4Fe-4S]3T + e-
(aq) : kot (adsorbed) VN, +N.) (adsorbed)
AN AN -
R, =—— R, =—— Q+e

Discrete model assumed electron release prob = 1 upon contact with DNA, desorption
prob = 1 upon electron absorption. This is not the same as taking m, ki — oo.
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PDE model for CT
enzymes

o0Q 0%Q
_ == D - — N N— Ra;
OR, 02 R, Q
— D_ N N_ - ko Ra kon — R - Ra,
5 ) +v(N+ + N-)Q #Ra + (L) p— m
L
dRty —  —konRp + @/ Rgdx,
i dt Q Jo
. HN ON Raq
ot ox 2
ON_ ON_ mR,
_ - —fN_ Ni. —uvN_
55 ' oa fN_ + fNy+ —oN_(Q +g) + 7
dg
— = —vu(N N_)g.
2y v(Nt + N_)g

(. Oxidized enzyme on DNA, R,: reduced enzyme on DNA, R,: reduced enzyme in
solution, N4 : rightward and leftward electrons, g: guanine radicals

D : 1D diffusivities, f: flip rate, v: e~ speed, €2 reservoir volume, L: DNA length, m:
oxidation rate, kq,: deposition rate, k.. desorption rate of reduced enzymes on DNA.
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Model reduction

Drop derivatives in equation for R, ; obtain “outer” solution in x and ¢:

1 Q
R ~ N N_ kon —_ R
. m ~+ Kog (U( + )Q+ (L) b)

Reduced, non-dimensional equations are:

2Q 0°Q
> = —U(l—a)(N++N_)Q+V$ + o Ry,
dR '
My U(l—a)/ (N} + N_)Qdz — o Ry,
0
ON_ ON_ o o o R
U — F+—-UQ|N_ — |F 1—=)UQ| Ny —gUN —Q
5 T U [+2Q] [—l—( 2)Q]+g++2,
ON_ AN o o o Hy
U = —|F+(1-=)UQ|N-+ |F+-UQ|Ny —gUN_ + —
ot oz 4 (1) VRN [ UQp Ny —gUN- T,
dg
a — _U(N++N—)ga
o = 45— effective binding rate per enzyme (competition between electron release m

and desorptlon k‘off) Acceleration of DNA repair by charge-transport: stochastic analysis and deterministic models — p. 23/30



Reduced model

U=- =1

B Dimensionless diffusivity, electron speed, flip rate: v = T -

Dy
Kon L2’
B Modified flip rates due to enzyme re-attachment: F' — F + %UQ when o = 1.

B Numerical scheme: Finite differences on non-uniform grid. Typical v ~ 10~19,
F ~ 10°, o ~ 1 = cluster mesh points near boundary, use stiff solver in time.

B Reservoir dynamics: Ry (0) = ng: copy number of MutY (=~ 30 in E. coli). Infinite
copy number limit: Ry(t) = ngo Vt.

B U = 0: passive enzyme limit (no CT)

B Estimate time 7, for enzyme to reach lesion by

/0 " It =1

where J(t) = 2v 29
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Enzyme
Profiles/Fluxes

Infinite copy number Finite copy number (n,=30)
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Enzymes colocalize near lesions due to spatially dependent desorption < (N4 + N_)Q.
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Search Times

150

100

Ts. Search time, gg: initial OxoG number, R: lesion’s electron reflectivity, o: enzyme
binding affinity, v: enzyme diffusivity along DNA.
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Search Time
Dependence on v

Infinite copy number Finite copy number (n, =30)
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For wide range of diffusivities v, (a) Infinite CN: 7. = O(v 1) insensitive to go. (b) Finite
CN: 75 extremely sensitive to gg. Scaling switches from O(v—1) — O(v—1/3)

CT accelerates search only in finite CN case.
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Conclusions

B Studied discrete and PDE models of Charge Transport (CT) mediated enzyme
kinetics.
B Discrete broadwell model improves over facilitated diffusion
M Statistics of enzyme binding for lesion-free DNA
B Density profiles/scaling results from MC simulations for DNA with lesions
B PDE model improves over discrete model. Included diffusion along DNA,
redox-dependent binding kinetics and “reservoir” effects.
B Can yield search time on order of seconds
B CT acceleration due to spatially dependent desorption and enzyme “recycling”

- ¢ —° N\
re—adsorption desorption re—adsorption

/ \/ \

O—@ oo 00 ¢ -

lesion lesion
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Extensions

m Comparison of discrete and PDE models

m Effect of small copy number < chemical master
equation

m PDE asymptotics for F > 1,0~ 1, v < 1

m Other enzyme binding mechanisms with spatially
dependent desorption
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