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Background and
Motivation

DNA-protein interactions are important in gene transcription and protein production

But: rates of DNA-protein reactions are faster than the theoretical upper limit
predicted by 3D diffusive (Debye-Smoluchowski) theory. [Riggs et al. 1970]

And: rates of reactions also faster than typical 1D diffusive sliding time. For E. coli,
L ∼ 106 bp D ∼ 5 × 106 bp2/s ⇒ T ∼ L2/D ≈ 2 days

Question: how do proteins/enzymes find their targets on DNA so quickly? [Berg et
al. 1981, Von-Hippel and Berg, 1987]
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Proposed solution
Facilitated diffusion [Berg 1981]: combination of 1D sliding and 3D diffusion ⇒

rates predicted to increase up to 100×.

However, acceleration requires D1D and D3D to be comparable and equal time
spent in 1D and 3D diffusion.

This is not true in most situations!
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Other mechanisms
Fast intersegmental transfers [Sheinman and Kafri
2008]

Effect of DNA conformation [Hu et al. 2006]

Protein cooperativity [Cherstvy et al. 2008]

Charge Transport [Yavin et al. 2005, Boon et al. 2003]:
applicable to a particular protein called MutY, a
Base Excision Repair enzyme.
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Base Excision Repair
(BER) enzymes

The genome of all living organisms is constantly under
attack by mutagenic agents e.g. ionizing radiation

Mutagenic agents give rise to damaged base pairs in
DNA (“lesions”) ⇒ miscoded proteins, possibly cancer.

BER enzymes locate lesions on DNA, remove them,
maintain integrity of genome.

MutY searches for lesions via a Charge-Transport (CT)
mechanism [Yavin et al. 2005, Boon et al. 2003]
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Charge Transport
(CT)

(a) Iron-Sulfur cofactors oxidize
when MutY adorbs to DNA.
Release/absorption of electrons ⇔

adsorption/desorption of enzyme.

(b) Guanine radicals (“OxoGs”):
damaged bases that annihilate
upon absorbing an electron.

(c) Lesions prevent passage of
electrons by reflection/absorption.
They require presence of MutY to
be excised from DNA.
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Stochastic Broadwell
Model
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(a) Enzyme is deposited on DNA and releases an electron to either side

(b) “One-sided” Broadwell problem: electron released to right with probability 1

(c) “Two-sided” Broadwell problem : electron released left or right with probability 1/2.

Note: electron return probability = 1 in absence of guanine radicals
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One-sided Broadwell
problem

Governing equations [Bicout, 1997, Fok et al. 2008]:

∂P+

∂T
+ V

∂P+

∂X
= −FP+ + FP− − MP+

∂P−

∂T
− V

∂P−

∂X
= FP+ − FP− − MP−

P±(X, T ): pdfs of rightward and leftward electron, V : electron speed, F : flip rate,
M : decay rate

Boundary conditions:

P+(0, T ) = P−(L, T ) = 0

Initial conditions:

P+(X, 0) = δ(X)

P−(X, 0) = 0
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Dimensionless eqns
Non-dimensionalize space by 1/ρ, time by 1/ρV where ρ = OxoG density:

x = ρX, t = ρV T,

⇒
∂Q

∂t
= LQ, Q =

0
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@
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1
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,

where Q± = P±/ρ and
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−
∂
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− f − µ f
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− f − µ
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and

f =
F

ρV
, µ =

M

ρV
.
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Adsorption/desorption
probabilities

Take µ = 0 always (no electron decay)

Desorption prob:
Z

∞

0

Q−(0, t′)dt′ =
fℓ

1 + fℓ

Adsorption prob:
Z

∞

0

Q+(L, t′)dt′ =
1

1 + fℓ

Extension to two-sided problem:

Πdesorb =
1

2

»

f(ℓ/2 − ξ)

1 + f(ℓ/2 − ξ)
+

f(ℓ/2 + ξ)

1 + f(ℓ/2 + ξ)

–

Πadsorb =
1

2

»

1

1 + f(ℓ/2 − ξ)
+
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1 + f(ℓ/2 + ξ)
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Sticking probability
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Dependence of enzyme sticking probability Πadsorb on its landing position ξ and flipping
rate for gap size (a) ℓ = 1 and (b) ℓ = 2.

f ≪ 1: ballistic limit, f ≫ 1: diffusive limit

Acceleration of DNA repair by charge-transport: stochastic analysis and deterministic models – p. 11/30



Adsorption Statistics
away from lesions

1. Average over landing position ξ:

Π̄adsorb =
1

2ℓ

Z ℓ/2

−ℓ/2

Πadsorb(ξ, ℓ; f)dξ

=
2

fℓ
tanh−1

„

fℓ

2 + fℓ

«

.

2. Consider gaps with discrete distribution ℓ1, ℓ2, ℓ3, .... Assume a fraction φj of gaps
have size ℓj . Deposit a single enzyme onto the DNA. The probability of landing in gap of
size ℓj is φjℓj/

P

∞

j=1
φjℓj . Fraction that stays adsorbed in gap of size ℓj is

2

fℓj
tanh−1

„

fℓj

2 + fℓj

«

×
φjℓj

P

∞

j=1
φjℓj

Continuous gap size distribution: ℓj → ℓ, φj → φ(ℓ)dℓ:

Ensemble average 〈Π̄adsorb〉 =
2

f〈ℓ〉

Z

∞

0

φ(ℓ) tanh−1

„

fℓ

2 + fℓ

«

dℓ.
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Form of φ(ℓ)?
If OxoGs randomly appear anywhere on an infinite DNA, what is the pdf of the gap size
(distance between 2 consecutive OxoGs)?

Consider a lattice of length L0 with n sites (each site has width a) where OxoGs can
appear with rate Ω radicals per unit time T per lattice site. Time taken for G radicals to
appear is T0 = G/nΩ.

Let N(m, T ) be the pdf of the number of gaps of size m. Then N obeys [D’Orsogna and
Chou 2005]

1

Ω

∂N(m, T )

∂T
= 2

n
X

m′=m+1

N(m′, T ) − mN(m, T )

Define ρ ≡ G/L0 as the OxoG density and the dimensionless variables

y = ρam, t = T/T0, p = N/Gt = gap fraction

Take continuum limit n → ∞, aρ → 0 and G, L0 → ∞ such that ρ remains fixed.

p(y, t) → probability density for continuous gap size y
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Gap distribution
Setting q(y, t) = tp(y, t) where p(y, t) is the continuous pdf of gaps of size y:

∂q

∂t
= 2

Z

∞

y
q(y′, t)dy′ − yq(y, t)

Solve by Laplace transform in time:

⇒ q(y, t) = t2e−yt

⇒ p(y, t = 1) = e−y

⇒ Prob(y ≤ Y ≤ y + dy) = e−ydy ≡ φ(y)dy

Y : non-dimensional gap length at t = 1 ⇔ G radicals have appeared. Hence,

〈Π̄adsorb〉 =
e1/f Ei(1/f)

f

where Ei(x) =
R

∞

x
e−t

t
dt
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Verification

Sticking probabilities for deposition of a single enzyme onto an infinite DNA with gap
distribution φ(ℓ) = e−ℓ. Also expect probabilities to be approximately valid when the

fraction of OxoGs annihilated is ≪ 1.
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Colocalization of
enzymes near lesions

Analyze using Monte Carlo with adsorption/desorption probabilities Πadsorb and Πdesorb:

E1 E2 E2

1d d2 1d d2

lesion

(a) (b)

(a)
Event: E self-desorbs
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MC Results (1/2)
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Evolution of enzyme density as enzymes are adiabatically deposited onto DNA. Results
came from averaging 107 trials using flip rate f = 1.
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MC Results (2/2)

Scaling results in large n limit. (a) xi = distance from lesion to ith closest enzyme.
Convergence of repair enzymes = O(n−2/3). (b) Accumulation of enzymes = O(n1/3).

Enzyme deposition within 5 base pairs of a lesion requires n ≈ 6 × 106 deposition
attempts. If each deposition takes 0.0005s ⇒ total search time ≈ 50 minutes.
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Discussion
Compare with randomly deposited “passive” enzymes that always stick to the
DNA. n ≫ 1: number of depositions

Passive CT

Enzyme number : O(n) O(n1/3)

enzyme-lesion distance : O(n−1) O(n−2/3)

Passive enzymes converge more quickly but search is very redundant/wasteful.

CT search strategy more effective when number of enzymes in system is limited.
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Weaknesses of
model

Search time of 50 minutes is an improvement, but it is still too slow.

Enzymes are stationary on DNA; they do not diffuse along strand.

MC simulations keep bulk chemical potential constant. Number of enzymes on
DNA can grow without bound.

Assumed adiabatic depositions.

All these factors make the discrete model rather unrealistic.

Improvements:

Use a continuum PDE model

Model enzyme binding more carefully
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Binding kinetics

Discrete model assumed electron release prob = 1 upon contact with DNA, desorption
prob = 1 upon electron absorption. This is not the same as taking m, koff → ∞.
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PDE model for CT
enzymes

∂Q

∂t
= D+

∂2Q

∂x2
− v(N+ + N−)Q + mRa,

∂Ra

∂t
= D−

∂2Ra

∂x2
+ v(N+ + N−)Q − koffRa + kon

„

Ω

L

«

Rb − mRa,

dRb

dt
= −konRb +

koff

Ω

Z L

0

Radx,

∂N+

∂t
+ v

∂N+

∂x
= fN− − fN+ − vN+(Q + g) +

mRa

2
,

∂N−

∂t
− v

∂N−

∂x
= −fN− + fN+ − vN−(Q + g) +

mRa

2
,

∂g

∂t
= −v(N+ + N−)g.

Q: Oxidized enzyme on DNA, Ra: reduced enzyme on DNA, Rb: reduced enzyme in
solution, N±: rightward and leftward electrons, g: guanine radicals

D±: 1D diffusivities, f : flip rate, v: e− speed, Ω reservoir volume, L: DNA length, m:
oxidation rate, kon: deposition rate, koff: desorption rate of reduced enzymes on DNA.
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Model reduction
Drop derivatives in equation for Ra; obtain “outer” solution in x and t:

Ra ≈
1

m + koff

„

v(N+ + N−)Q + kon

„

Ω

L

«

Rb

«

Reduced, non-dimensional equations are:

∂Q

∂t
= −U(1 − σ)(N+ + N−)Q + ν

∂2Q

∂x2
+ σRb,

dRb

dt
= U(1 − σ)

Z 1

0

(N+ + N−)Qdx − σRb,

∂N+

∂t
+ U

∂N+

∂x
=

h

F +
σ

2
UQ

i

N− −
h

F +
“

1 −
σ

2

”

UQ
i

N+ − gUN+ +
σRb

2
,

∂N−

∂t
− U

∂N−

∂x
= −

h

F +
“

1 −
σ

2

”

UQ
i

N− +
h

F +
σ

2
UQ

i

N+ − gUN− +
σRb

2
,

∂g

∂t
= −U(N+ + N−)g,

σ = m
m+koff

: effective binding rate per enzyme (competition between electron release m
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Reduced model
Dimensionless diffusivity, electron speed, flip rate: ν =

D+

konL2 , U = v
konL

, F = f
kon

Modified flip rates due to enzyme re-attachment: F → F + 1

2
UQ when σ = 1.

Numerical scheme: Finite differences on non-uniform grid. Typical ν ∼ 10−10,
F ∼ 105, σ ∼ 1 ⇒ cluster mesh points near boundary, use stiff solver in time.

Reservoir dynamics: Rb(0) ≡ n0: copy number of MutY ( ≈ 30 in E. coli). Infinite
copy number limit: Rb(t) = n0 ∀t.

U = 0: passive enzyme limit (no CT)

Estimate time τs for enzyme to reach lesion by

Z τs

0

J(t)dt = 1

where J(t) = 2ν ∂Q
∂x

˛

˛

˛

x=0
.
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Enzyme
Profiles/Fluxes

Enzymes colocalize near lesions due to spatially dependent desorption ∝ (N+ + N−)Q.
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Search Times
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τs: search time, g0: initial OxoG number, R: lesion’s electron reflectivity, σ: enzyme
binding affinity, ν: enzyme diffusivity along DNA.
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Search Time
Dependence on ν

For wide range of diffusivities ν, (a) Infinite CN: τs = O(ν−1) insensitive to g0. (b) Finite
CN: τs extremely sensitive to g0. Scaling switches from O(ν−1) → O(ν−1/3)

CT accelerates search only in finite CN case.
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Conclusions
Studied discrete and PDE models of Charge Transport (CT) mediated enzyme
kinetics.

Discrete broadwell model improves over facilitated diffusion

Statistics of enzyme binding for lesion-free DNA

Density profiles/scaling results from MC simulations for DNA with lesions

PDE model improves over discrete model. Included diffusion along DNA,
redox-dependent binding kinetics and “reservoir” effects.

Can yield search time on order of seconds

CT acceleration due to spatially dependent desorption and enzyme “recycling”

lesionlesion

re−adsorption re−adsorptiondesorption
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Extensions
Comparison of discrete and PDE models

Effect of small copy number ⇔ chemical master
equation

PDE asymptotics for F ≫ 1, σ ∼ 1, ν ≪ 1

Other enzyme binding mechanisms with spatially
dependent desorption
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