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Introduction

Kinetic equations are usually solved numerically either by particle meth-
ods, such as Monte Carlo (MC) or molecular dynamics (MD) methods,
or by finite difference, finite element, or finite volume methods (FXMs).
All of these methods become inefficient in regimes where collisions dom-
inate, so-called small mean-free-path regimes, because kinetic equations
become stiff.

In such regimes collisions typically drive the underlying kinetic densities
toward local equilibrium. This fact allows solutions of the kinetic equation
to be approximated by solutions of a reduced system, typically a diffusion
equation or a fluid dynamical system, that then can be solved efficiently by
classical numerical methods.



Transition Regimes

The most difficult regimes to simulate are the so-called transition regimes.
In these collisions are plentiful enough to make the full kinetic equation
fairly stiff and expensive to solve, but are not plentiful enough to drive the
underlying kinetic densities very close to local eqilibrium.

Transition regimes arise in problems that include both small mean-free-
path regimes and large mean-free-path regimes. Astrophysics, radiation
transport, plasma physics, and areospace are sources of such problems.

Transition regimes also arise in problems where the mean-free-path is on
the scale of the problem spatial domain. Semiconductor fabrication and
design and areospace are sources of such problems.



Transition Regime Models

Transition regime models must be designed to bridge the gap between
small mean-free-paths regimes in which traditional reduced models are
accurate, and large mean-free-paths regimes in which kinetic equations
can be solved efficiently by traditional numerical methods. They should:

• be able to recover traditional reduced models derived for small mean-
free-path regimes;

• be more accurate than the reduced models in transition regimes, where
the reduced models typically fail badly;

• be solved more efficiently than the full kinetic equation.



Uses of Transition Regime Models

Such a model can then be used either:

• as a stand-alone model for problems that lie completely within the
small mean-free-path and transition regimes,

• as a matching model between small mean-free-path regimes and large
mean-free-path regimes in a hybrid simulation,

• as the basis for a preconditioner in a full kinetic simulation.



Classical Kinetic Equations

Consider a Boltzmann-like collisional kinetic equation for F(v, x, t) over a
D-dimensional spatial domain:

∂tF + v ·∇xF =
1

ǫ
C(F) , (1)

where ǫ is the Knudsen number, which is small in fluid dynamical regimes.
(Of course, D = 3 is usually the physical case!)

We assume that the collision operator C respects Galilean symmetry, lo-
cally conserves mass, momentum and energy, locally dissipates entropy,
and has local Maxwellians as equilibria.



Local Conservation Laws

The collision operator C satisfies

〈e C(F)〉 = 0 for “every” F ,

where we employ the notation

〈f〉 =

∫

RD
f(v) dv , e =




1
v

1
2|v|

2


 .

This yields the local conservation laws

∂t〈eF 〉 + ∇x · 〈v eF 〉 = 0 .



Local Entropy Dissipation Law

The collision operator C satisfies

〈η′(F) C(F)〉 ≤ 0 for “every” F ,

where η(F) = F log(F) − F .

This yields the local entropy dissipation law

∂t〈η(F)〉 + ∇x · 〈v η(F)〉 =
1

ǫ
〈η′(F) C(F)〉 ≤ 0 .



Local Equilibra

For “every” F the following are equivalent:

(1) 〈η′(F) C(F)〉 = 0 ;

(2) C(F) = 0 ;

(3) F has the Maxwellian form

F = E(ρ) =
ρ

(2πθ)D/2
exp

(
−

|v − u|2

2θ

)
,

where ρ = 〈eF 〉 =




ρ
ρu

1
2ρ|u|2 + D

2 ρθ


 .



Fluid Dynamical Closures

We decompose F into its local equilibrium E and deviation F̃ as

F = E + F̃ , where E = E(ρ) with ρ = 〈eF 〉.

One sees that 〈e E〉 = ρ and 〈e F̃ 〉 = 0.

Expressed in terms of ρ and F̃ , the local conservation laws are

∂tρ + ∇x · 〈v e E〉 + ∇x · 〈v e F̃ 〉 = 0 .

A fluid dynamical closure is specified by expressing F̃ above in terms of ρ

and its derivatives.



Fluid Dynamical System

The resulting fluid dynamical system takes the form

∂tρ + ∇x · (ρu) = 0 ,

∂t(ρu) + ∇x · (ρu ⊗ u + pI + P̃) = 0 ,

∂t(ρe) + ∇x · (ρeu + pu + P̃ u + q̃) = 0 ,

(2)

where p = ρθ, e = 1
2|u|

2 + D
2 θ, and

P̃ = 〈A F̃ 〉 , q̃ = 〈B F̃ 〉 ,

with A and B defined by

A = (v − u) ⊗ (v − u) − 1
D|v − u|2I ,

B = 1
2|v − u|2(v − u) − D+2

2 θ(v − u) .



Euler Approximation

Maxwell was the first to argue that in fluid regimes F should be near E . He
therefore set F̃ = 0 in (2) to first derive the compressible Euler system:

∂tρ + ∇x · (ρu) = 0 ,

∂t(ρu) + ∇x · (ρu ⊗ u + ρθI) = 0 ,

∂t(ρe) + ∇x · (ρeu + ρθu) = 0 .

(3)

Its solutions formally dissipate the so-called Euler entropy 〈η(E)〉 as

∂t〈η(E)〉 + ∇x · 〈v η(E)〉 ≤ 0 .



Deviation Equation

If one wants to improve upon the Euler approximation, one needs a better
approximation for F̃ . The deviation F̃ satisfies

∂tF̃ + P̃v · ∇xF̃ + P̃v ·∇xE =
1

ǫ
C(E + F̃) , (4)

where P̃ = I − P with P defined by

P(ρ)f = Eρ(ρ)〈e f〉 .

One can show P and P̃ are orthogonal projections over L2(E−1dv).



Navier-Stokes Balance

Maxwell argued that the deviation can be approximated by balancing the
leading terms on each side of (4) — namely, that F̃ ≈ F̃NS where

P̃v ·∇xE =
1

ǫ
DC(E)F̃NS .

This leads to the approximations

P̃ ≈ 〈A F̃NS〉 = ǫ 〈A DC(E)−1v ·∇xE〉

= −ǫ µ
(
∇xu + (∇xu)T − 2

DI∇x · u
)

,

q̃ ≈ 〈B F̃NS〉 = ǫ 〈B DC(E)−1v ·∇xE〉 = −ǫ κ∇xθ ,

(5)

where µ(ρ, θ) and κ(ρ, θ) are the coefficients of shear viscosity and ther-
mal conductivity respectively. Most classical collision operators satisfy
C(λF) = λ2C(F). In that case µ and κ will only depend on θ.



Navier-Stokes Approximation

This yields the compressible Navier-Stokes system.

∂tρ + ∇x · (ρu) = 0 ,

∂t(ρu) + ∇x · (ρu ⊗ u + ρθI) = ǫ∇x·
[
µ
(
∇xu + (∇xu)T − 2

DI∇x· u
)]

,

∂t(ρe) + ∇x· (ρeu + ρθu) = ǫ∇x· [κ∇xθ] .
(6)

Its solutions formally dissipate the Euler entropy as

∂t〈η(E)〉+∇x· 〈v η(E)〉+∇x· 〈v η′(E)F̃NS〉 =
1

ǫ
〈η′′(E)F̃NS DC(E)F̃NS〉 .



Beyond Navier-Stokes via Expansions

Hilbert (1912) introduced a derivation of the Navier-Stokes system based
on a systematic expansion in the (small) Knudsen number ǫ. This so-called
Hilbert expansion yields the Euler system at leading order, and corrections
that satisfy linearized Euler systems driven by lower order terms. These
have to be summed through order ǫ to obtain the Navier-Stokes system.

Short afterward, Enskog (1917) introduced a slightly different expansion in
ǫ, subsequently dubbed the Chapman-Enskog expansion, that led directly
to the Navier-Stokes system at order ǫ.

Both these approaches fail to systematically yield corrections to the Navier-
Stokes system that are formally well-posed.



Beyond Navier-Stokes via Moments

Grad (1949) proposed building approximations by taking appropriate ve-
locity moments of (1). In particular, he developed his famous 13 moment
system (for D = 3) which takes moments with respect to

1 , v , v ⊗ v , |v|2v .

The resulting systems classically have the form

∂t〈mF 〉 + ∇x · 〈v mF 〉 =
1

ǫ
〈m C(F)〉 .

This system must be closed by expressing 〈v mF 〉 and 〈m C(F)〉 in terms
of the densities 〈mF 〉. This appoach has also failed to systematically yield
useful corrections to the Navier-Stokes system. Still, this is the path we will
now take.



Gaussian Moment System

Taking the moments of (1) with respect to 1, v, and v∨v, we obtain

∂tρ + ∇x · (ρu) = 0 ,

∂t(ρu) + ∇x · (ρu ∨ u + ρΘ) = 0 ,

∂t(ρu ∨ u + ρΘ) + ∇x · (ρu ∨ u ∨ u + 3ρΘ ∨ u + Q) = R ,

(7)

where

ρ = 〈F 〉 , ρu = 〈v F 〉 , ρΘ = 〈(v − u) ∨ (v − u)F 〉 ,

Q = 〈(v − u) ∨ (v − u) ∨ (v − u)F 〉 ,

R = 〈v∨v C(F) = 〈(v − u) ∨ (v − u) C(F)〉 .

Here ∨ denotes the symmetric tensor product.



Gaussian Closure Criteria

To close this system Q and R must be expressed in terms of ρ, u, and Θ.
This should be done so that the Gaussian moment system (7):

• repects Galilean symmetry,

• has an entropy structure,

• preserves the nonnegative definiteness of Θ,

• recovers known fluid dynamical regimes.



Simple Gaussian Closures

A simple class of closures that formally meets these criteria has the form

R =
ρ

τ
(Iθ − Θ) ,

Q = 9
D+2 ν0 I ∨ tr

(
∇x ∨ Θ−1

)

+ 3 ν1

(
∇x ∨ Θ−1 − 3

D+2I ∨ tr
(
∇x ∨ Θ−1

))
,

(8)

where θ = 1
D tr(Θ), τ(ρ, θ) is a relaxation time, and ν0(ρ, θ) and ν1(ρ, θ)

are nonnegative transport coefficients. Moreover,

τ(ρ, θ) =
µ(ρ, θ)

ρθ
, ν0(ρ, θ) = 2

D+2 θ2κ(ρ, θ) ,

where µ(ρ, θ) and κ(ρ, θ) are the coefficients of shear viscosity and ther-
mal conductivity.



Convective Form

The Gaussian moment system (7) has the convective form

∂tρ + u ·∇xρ + ρ∇x · u = 0 ,

ρ(∂tu + u ·∇xu) + ∇x · (ρΘ) = 0 ,

ρ(∂tΘ + u ·∇xΘ) + ρ
(
Θ ·∇xu + (Θ ·∇xu)T

)
+ ∇x · Q = R .

Because

(∂t + u ·∇x) det(Θ) = det(Θ) tr
(
Θ−1(∂t + u · ∇x)Θ

)
,

we see that

ρ(∂t + u ·∇x) det(Θ) + 2ρdet(Θ)∇x · u + det(Θ) tr
(
Θ−1∇x · Q

)

= det(Θ) tr
(
Θ−1R

)
.



Entropy Dissipation

Let σ = log(det(Θ)/ρ2). Then

ρ(∂tσ + u ·∇xσ) + tr
(
Θ−1∇x · Q

)
= tr

(
Θ−1R

)
,

which becomes

∂t(ρσ) + ∇x · (ρuσ) + ∇x ·
(
Θ−1 :Q

)
=
(
∇x ∨ Θ−1

)
... Q + Θ−1 :R .

For the Gaussian closures given by (8) we have

Θ−1 :R =
ρ

τ

(
θ tr
(
Θ−1

)
− D

)
≥ 0 ,

(
∇x ∨ Θ−1

)
... Q = 3 ν0

∣∣∣ tr
(
∇x ∨ Θ−1

)∣∣∣
2

+ 3 ν1

∣∣∣∇x ∨ Θ−1 − 3
D+2I ∨ tr

(
∇x ∨ Θ−1

)∣∣∣
2
≥ 0 ,

which is in accord with the second law of thermodynamics.



Mathematical Entropy Structure

The mapping
(
ρ , ρu , ρu ∨ u + ρΘ

)
7→ −ρσ is strictly convex .

Moreover, because

Θ−1 :R =
ρ

τ

(
θ tr
(
Θ−1

)
− D

)
≥ 0 ,

with

Θ−1 :R = 0 ⇐⇒ R = 0 ⇐⇒ Θ = Iθ ,

the quantity −ρσ plays the role of a mathematical entropy for our system.

Remark: If we assume that R depends linearly upon Θ − Iθ while Q
depends linearly upon ∇x ∨ Θ−1, and that these linear relations depend
only on ρ and θ and respect Galilean symmetry, then they have the form
given earlier.



Decomposition of the Gaussian Moment System

We introduce the Knudsen number ǫ into the Gaussian moment system (7)
and decompose it into its conservation laws

∂tρ + ∇x· (ρu) = 0 ,

∂t(ρu) + ∇x · (ρu ∨ u + ρΘ) = 0 ,

∂t(ρe) + ∇x · (ρeu + ρΘ ·u + ǫ q) = 0 ,

(9)

where e = 1
2|u|

2 + D
2 θ and q = 1

2 tr(Q), and its relaxation laws

ρ
(
∂tΘ̃ + u ·∇xΘ̃

)
+ ρ

[
Θ ·∇xu + (Θ ·∇xu)T − 2

DIΘ:∇xu
]

+ ǫ
[
∇x · Q − 2

DI∇x · q
]
=

1

ǫ
R ,

where Θ̃ = Θ − Iθ, while Q and R are given by the closure (8).



Fluid Regimes: Leading Order

In fluid dynamical regimes ǫ is small. We use this fact to obtain approximate
expressions for Θ̃ in terms of ρ, u, and θ. We expand Θ̃ as

Θ̃ = Θ̃(0) + ǫ Θ̃(1) + ǫ2Θ̃(2) + · · · .

Because R = −ρ
τ Θ̃, we see that to leading order Θ̃(0) = 0. Hence,

Θ(0) = Iθ and the closure relation (8) implies that

Q(0) = − 9
D+2

ν0

θ2
I ∨ tr

(
∇xθ ∨ I

)
= −3

ν0

θ2
I ∨∇xθ ,

whereby

q(0) = 1
2 tr
(
Q(0)

)
= −D+2

2

ν0

θ2
∇xθ ,

∇x · Q
(0) − 2

DI∇x · q
(0) = −2

[
∇x ∨

(
ν0

θ2
∇xθ

)
− 1

DI∇x ·

(
ν0

θ2
∇xθ

)]
.



Navier-Stokes Regimes

If we assume that ∇xρ, ∇xu, and ∇xθ are of the same order then to next
order the relaxation equations yield

−
ρ

τ
Θ̃(1) = ρθ

(
∇xu + (∇xu)T − 2

DI∇x · u
)

The conservation laws (9) through order ǫ then become the compressible
Navier-Stokes system (6) provided that we set

τ(ρ, θ) =
µ(ρ, θ)

ρθ
, ν0(ρ, θ) = 2

D+2 θ2κ(ρ, θ) ,

where µ(ρ, θ) and κ(ρ, θ) are the coefficients of shear viscosity and ther-
mal conductivity. This implies that the Gaussian moment system (7) with
closure (8) will formally recover the compressible Euler and incompressible
Navier-Stokes limits — both Boussinesq and dominant balance.



Ghost Effect Regime Scaling

If we assume that ∇xρ and ∇xθ are large while

u = O(ǫ) , ∇x · (ρΘ) = O(ǫ2) , ∂t = O(ǫ) ,

then, after rescaling, the conservation laws (9) can be recast as

∂tρ + u · ∇xρ + ρ∇x · u = 0 ,

ρ(∂tu + u ·∇xu) +
1

ǫ2
∇x· (ρΘ) = 0 ,

D
2 ρ(∂tθ + u · ∇xθ) + Θ:∇xu + ∇x· q = 0 ,

while the relaxation equations become

ρ
(
∂tΘ̃ + u ·∇xΘ̃

)
+ ρ

[
Θ ·∇xu + (Θ ·∇xu)T − 2

DIΘ:∇xu
]

+
[
∇x · Q − 2

DI∇x · q
]
=

1

ǫ2
R .



Ghost Effect Regime Balance

We therefore expand Θ̃ as

Θ̃ = Θ̃(0) + ǫ2Θ̃(1) + ǫ4Θ̃(2) + · · · .

Because R = −ρ
τ Θ̃, we again see that to leading order Θ̃(0) = 0. Hence,

Θ(0) = Iθ and, as before,

q(0) = 1
2 tr
(
Q(0)

)
= −D+2

2

ν0

θ2
∇xθ ,

∇x · Q
(0) − 2

DI∇x · q
(0) = −2

[
∇x ∨

(
ν0

θ2
∇xθ

)
− 1

DI∇x ·

(
ν0

θ2
∇xθ

)]
.

However, this time to next order the relaxation equations yield

−
ρ

τ
Θ̃(1) = ρθ

(
∇xu + (∇xu)T − 2

DI∇x · u
)

− 2

[
∇x ∨

(
ν0

θ2
∇xθ

)
− 1

DI∇x ·

(
ν0

θ2
∇xθ

)]
.



Ghost Effect System

We thereby arrive at the ghost effect system

ρ(∂tu + u ·∇xu) + ∇xp + ∇x · S = 0 ,
D
2 ρ(∂tθ + u ·∇xθ) − ∂t(ρθ) −∇x· (κ∇xθ) = 0 ,

where ρθ and u are constrained so that

∇x(ρθ) = 0 , D
2 ∂t(ρθ) + D+2

2 ρθ∇x · u −∇x· (κ∇xθ) = 0 ,

and S is given by the constitutive relation

S = −µ
(
∇xu + (∇xu)T − 2

DI∇x · u
)

+ 4
D+2

µ

ρθ

(
∇x ∨ (κ∇xθ) − 1

DI∇x · (κ∇xθ)
)

.

This limiting dynamics cannot be recovered from the compessible Navier-
Stokes system, but is recovered from kinetic theory and from our Gaussian
moment system.



Open Problems

• Local well-posedness for the Gaussian moment system

• Global existence of weak solutions for the Gaussian moment system

• Justification of any of the above formal fluid limits

• Any derivation of boundary conditions or any boundary layer theory
(This is needed for proper use of these models in hybrid codes.)


