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A natural phenomenon:

Groups of large number of animals (birds, fish, insects) are

frequently observed to form aggregations (flocks, shoals, swarms...)

e Localized in space
e Move in an organized way (in the same direction)

e May serve various purposes (migration, transporting heavy
objects, protection from predators, mating...)

e Self-organize

Question: How to describe the behavior of the system as a whole

based on the principles of interaction of individuums?




A particle system: (z;,v;) € R xR?, ¢=1...N,

Ly = Uj
{ m;v; = (o — 5’Ui|2)vi — Vg, ; U(|w; — x]‘)
i ]

(8

The a-0-term makes the particles to prefer the speed = 3

(self-propulsion balances “friction”).

The potential is (Morse)
Ul(r) = Cre "% — Cpe "/t

Ref: Levine, Rappel, Cohen; Phys. Rev. E (2000)
D’Orsogna, Chuang, Bertozzi, Chayes; PRL (2006)




Different types of dynamics
e Dispersion
e Rigid body rotation

e Flocks (localized patterns of particles moving with the same
velocity)

e Mills (vortex type circular motion)

(double)




The patterns are observed to be stable with respect to

perturbations of the potential and by adding a (small amount of)

noise.

Depending on the parameters of the potential, there are different

types of behavior with increasing /V:

e Catastrophic

The spacing between particles — 0 with increasing N

e H-stable

The spacing between particles is preserved as IV increases. The

system behaves in an extensive way.

Large number of particles = computational cost increases.

In which cases are “fluid-type” models adequate?




A kinetic approach [Carrillo, D’Orsogna, P., to appear in KRM, 2009]
fN (L}, {v;},t)  —  N-particle probability density

Conservation of probability:

: F) d{a;} dfvi} = ) F0) d{x;} d{v;}, if Ay = @4(Ao),

where @, is the flow map of the dynamical system.
= Liouville equation

O f N +3° vmi-(vifN>)+z Vo, (5t fV)) = 0.

Marginal densities:

f(N 1) . ff(N) drn dvy —  (N-1)-particle

fAC) = .. [ W dagdus ... dey doy ~  2-particle




f=FfW,v,t)=[...[ fN)drgdvy...deydvy —  1-particle
Vlasov’s limit (mean field theory)

Assume:

1
m@-:N, F, = — Oz—ﬁ’?}z|

Molecular chaos:

f(z)(x17$27vlav27t) — f(l)(xlavlat> f(l)(x2av27t)

Integrate the Liouville equation to obtain

i+ Vo (0f) + V(@ = BloP)of) = St Ve (Val ) f) = 0

Take the limit N — oo:
fi + Vo (0f) + Vo ((a = Blof)of) = Vo (VU % p) f) = 0

(Vlasov’s equation).




References:
e Bogoliubov (1946), BBGKY...
e Smereka, Russo (1996)

e Neunzert (1977); Braun, Hepp (1977); Maslov (1978);
Dobrushin (1979); Golse (JEDP, 2003)

(Hamiltonian systems)

Ha, Tadmor (2008), Ha, Liu (2009)

(Cucker-Smale dynamical system)

Degond-Motsch (2007)

Couzin-Vicsek model; continuum limit




Particular solutions at the hydrodynamic level

Equations for the moments

p:/fdv, pu:/fvdv,

take the form

{ pt + V- (pu) =0

(pu); + V- (pu @ u) = (o — Blu|*)pu — (VU * p) p+ [other terms...]
can be closed by the monokinetic ansatz
f — 10(377 t) 5(/0 o U(CB, t))?

in which case the “other terms” vanish.

In fact, it works both ways:




Lemma. If p, u are smooth, then f = pd(v — u) is a solution of

fe+ Ve (f) + Vo ((a=B*)of = (VaUsxp)f) =0 (K)

< p, u are solutions of

{ pt + Vi (pu) =0
(o) + V- (o ® ) = (0 — Blul?)pu — (Yol * ) p

(H)

Proof: Write the weak formulation of (K) and (H).

Flocking solutions: u = ug = const, |u| = %

Then p = po(x — upt), with pg determined from
_(vazU * pO) po =0,
i. e. U=xpyg=C, whenever py # 0.

Depending on the potential U there may exist pg with compact

support [Levine, Rappel, Cohen, 2000]



Swarming solutions: |p = p(|z|), u(z)= \/%

(p rad. symmetric, u in a rotatory state).

The continuity eqn. is satisfied automatically;
the moment balance eqn. becomes

(u-Ve)u=—-V,U=xp,
We compute

(u-Vy)u=—F iz = =5 V;log|z|

ATk
Then p is determined from the integral equation
Uxp=D+ Flog x|, whenever p # 0,

where D is a constant of integration.

Depending on U, there may exist solutions p(r) supported in an
interval 0 < a < r < b. [Levine, Rappel, Cohen, 2000]




Double mill solutions A superposition of two monokinetic solutions
f=p16(v—u1)+p20(v—u2),

with
p = p1+p2, pPU=pPiruz+ p2uz.

is a solution of (K) <«

{pt+Vx°(pu)O

(Hz)
(pu)e + Ve (prur @ ui) + Ve (pauz @ uz) = — (V.U * p) p.

In particular, if
pL=p2=73p, UL =—U

then the steady state is possible precisely when
Vg (pu) =0
Ve (pu®u) = —=(VaU * p) p.

Thus, for any single mill solution there is a double mill solution with

p1 = p2 = zp. supported in an interval 0 < a < r < b.




Single and double mills

lsnapshot from a simulation with N = 100]




Rigorous derivation of the Vlasov dynamics

Assume that U(r) is nice.
(of class C?, U and U’ are bounded, and U’(0) = 0)

- : pairwise force ~ m;m;)

The dynamical system (m; = ;

Li = Uy
{ v, = (a = Blvi)*)vi — % Vi, 2 U(|lz — z4])

17 ]
has global in ¢ solutions (z;(t),v;(t)) for any initial data (z?,v?),

and the dependence on (z?,v?) is smooth.

Consider the “empirical measure” on the phase space (z,v):
N
i () = 2 1 O (1) 04(1)

Proposition 1. pup(t) is a solution of equation (K), in the sense
of distributions.




Introduce the energy
1 1
&) =5 [ FoPdodvt 5 Ul yl) o Oplyt) do dy.
Then

% [ sa—swpy P azdv<a [ ol a2 ( [ sopan)’

where M = [ fdxdv. Since the potential energy verifies
1

2 /U(‘:’j —y|) p(z,t)p(y, t) de dy < CM?,

where C' = 1 sup U/, we have

Proposition 2. The energy £(t) satisfies
E(t) < max {£(0), CM* + % :

where M is the total mass.




Theorem. [Mean-field limit for particle dynamics]

Let fo > 0 be such that |E[fo]| < 400, and consider a sequence
{(2?,09)}, such that

N
pn (0) == >0 m; 050 40) — fo
1=1

weakly™ as measures and satisfy E[un(0)] = O(1). Then VT > 0
the correspoding sequence py(t) converges in C([0,T]; M(R* x R%))

(weak™) to the unique solution of the Vlasov equation

fe+ Ve W)+ Ve ((a=B)vf = (VoUxp)f) =0  (K)

with the initial data fj.




Proof: [cf. Golse, 2003; Neunzert 1986]
We have

= (a = Blvil)vi — 5 > Vo, U(lzi — z51),
@753

= |0;(t)| are bounded uniformly in N = (x;(t),v;(t)) are

equicontinuous on R .

= pn(t) is rel. compact in C([0, T]; M(R? x RY)) (weak™)

Take a subsequence uny — p (weak™), pass to the limit
uniformly on cpt. subsets of R, x R?. Then

(VU * pn) puny — (VU * pn)

in the sense of distributions = u is a solution of the Vlasov

equation.




Conclusions / things to do

Single and double mills are obtained as exact steady solutions

on the level of kinetic equation

Vlasov’s equation is obtained rigorously for a regularized

potential in the 1/N scaling

Numerical simulation and comparison of particle/kinetic/fluid

solutions

A more complete description of steady solutions, stability of

the steady states.

Continuum (hydrodynamic) limit of the kinetic model




