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Outline

• Swarming: a phenomenon in biological systems

• Some examples

• A particle model

• Kinetic theory and a Vlasov type model

• Particular solutions (steady states)

• Rigorous treatment of the mean field limit

• Conclusions
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A natural phenomenon:

Groups of large number of animals (birds, fish, insects) are
frequently observed to form aggregations (flocks, shoals, swarms...)

• Localized in space

• Move in an organized way (in the same direction)

• May serve various purposes (migration, transporting heavy
objects, protection from predators, mating...)

• Self-organize

Question: How to describe the behavior of the system as a whole
based on the principles of interaction of individuums?
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A particle system: (xi, vi) ∈ R2 × R2, i = 1 . . .N ,{
ẋi = vi

miv̇i = (α− β|vi|2) vi −∇xi

∑
i 6=j

U(|xi − xj |)

The α-β-term makes the particles to prefer the speed =
√

α
β

(self-propulsion balances “friction”).

The potential is (Morse)

U(r) = Cre
−r/ℓr − Cae−r/ℓa .

Ref: Levine, Rappel, Cohen; Phys.Rev. E (2000)
D’Orsogna, Chuang, Bertozzi, Chayes; PRL (2006)
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Different types of dynamics

• Dispersion

• Rigid body rotation

• Flocks (localized patterns of particles moving with the same
velocity)

• Mills (vortex type circular motion)
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The patterns are observed to be stable with respect to
perturbations of the potential and by adding a (small amount of)
noise.

Depending on the parameters of the potential, there are different
types of behavior with increasing N :

• Catastrophic

The spacing between particles → 0 with increasing N

• H-stable

The spacing between particles is preserved as N increases. The
system behaves in an extensive way.

Large number of particles ⇒ computational cost increases.

In which cases are “fluid-type” models adequate?
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A kinetic approach [Carrillo, D’Orsogna, P., to appear in KRM, 2009]

f (N)({xi}, {vi}, t) – N -particle probability density

Conservation of probability:∫
At

f (N)(t) d{xi} d{vi} =
∫

A0

f (N)(0) d{xi} d{vi}, if At = Φt(A0),

where Φt is the flow map of the dynamical system.
⇒ Liouville equation

∂tf
(N) +

∑
i

∇xi ·(vi f (N)) +
∑
i

∇vi ·( Fi

mi
f (N)) = 0.

Marginal densities:

f (N−1)(. . . ) =
∫

f (N) dxN dvN – (N -1)-particle

...

f (2)(. . . ) =
∫

. . .
∫

f (N) dx3 dv3 . . . dxN dvN – 2-particle
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f = f (1)(x1, v1, t) =
∫

. . .
∫

f (N) dx2 dv2 . . . dxN dvN – 1-particle

Vlasov’s limit (mean field theory)

Assume:

mi =
1
N

, Fi =
1
N

(α− β|vi|2)vi − 1
N2

∇xi

∑
i 6=j

U(|xi − xj |)

Molecular chaos:

f (2)(x1, x2, v1, v2, t) = f (1)(x1, v1, t) f (1)(x2, v2, t)

Integrate the Liouville equation to obtain

ft +∇x · (vf) +∇v ·((α− β|v|2)vf)− N − 1
N

∇v ·(∇xU ∗ ρ)f) = 0

Take the limit N →∞:

ft +∇x · (vf) +∇v ·((α− β|v|2)vf)−∇v ·(∇xU ∗ ρ)f) = 0

(Vlasov’s equation).
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References:

• Bogoliubov (1946), BBGKY...

• Smereka, Russo (1996)

• Neunzert (1977); Braun, Hepp (1977); Maslov (1978);
Dobrushin (1979); Golse (JEDP, 2003)

(Hamiltonian systems)

• Ha, Tadmor (2008), Ha, Liu (2009)

(Cucker-Smale dynamical system)

• Degond-Motsch (2007)

Couzin-Vicsek model; continuum limit
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Particular solutions at the hydrodynamic level

Equations for the moments

ρ =
∫

f dv, ρu =
∫

fv dv,

take the form{
ρt +∇x ·(ρu) = 0

(ρu)t +∇x ·(ρu⊗ u) = (α− β|u|2)ρu− (∇xU ∗ ρ) ρ + [other terms...]

can be closed by the monokinetic ansatz

f = ρ(x, t) δ(v − u(x, t)),

in which case the “other terms” vanish.

In fact, it works both ways:
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Lemma. If ρ, u are smooth, then f = ρ δ(v − u) is a solution of

ft +∇x · (vf) +∇v ·
(
(α− β|v|2)vf − (∇xU ∗ ρ)f

)
= 0 (K)

⇔ ρ, u are solutions of{
ρt +∇x ·(ρu) = 0

(ρu)t +∇x ·(ρu⊗ u) = (α− β|u|2)ρu− (∇xU ∗ ρ) ρ.
(H)

Proof: Write the weak formulation of (K) and (H).

Flocking solutions: u = u0 = const, |u| =
√

α
β

Then ρ = ρ0(x− u0t), with ρ0 determined from

−(∇xU ∗ ρ0) ρ0 = 0,

i. e. U ∗ ρ0 = C, whenever ρ0 6= 0.

Depending on the potential U there may exist ρ0 with compact
support [Levine, Rappel, Cohen, 2000]
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Swarming solutions: ρ = ρ(|x|), u(x) =
√

α
β

x⊥
|x|

(ρ rad. symmetric, u in a rotatory state).

The continuity eqn. is satisfied automatically;
the moment balance eqn. becomes

(u · ∇x)u = −∇xU ∗ ρ ,

We compute

(u · ∇x)u = −α
β

x
|x|2 = −α

β ∇x log |x|
Then ρ is determined from the integral equation

U ∗ ρ = D + α
β log |x|, whenever ρ 6= 0,

where D is a constant of integration.

Depending on U , there may exist solutions ρ(r) supported in an
interval 0 < a ≤ r ≤ b. [Levine, Rappel, Cohen, 2000]
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Double mill solutions A superposition of two monokinetic solutions

f = ρ1 δ(v − u1) + ρ2 δ(v − u2),

with

ρ = ρ1 + ρ2, ρu = ρ1u2 + ρ2u2.

is a solution of (K) ⇔(
ρt +∇x · (ρu) = 0

(ρu)t +∇x ·(ρ1u1 ⊗ u1) +∇x ·(ρ2u2 ⊗ u2) = −(∇xU ∗ ρ) ρ.
(H2)

In particular, if

ρ1 = ρ2 = 1
2

ρ, u1 = −u2

then the steady state is possible precisely when(
∇x · (ρu) = 0

∇x · (ρu⊗ u) = −(∇xU ∗ ρ) ρ.

Thus, for any single mill solution there is a double mill solution with

ρ1 = ρ2 = 1
2
ρ. supported in an interval 0 < a ≤ r ≤ b.
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Single and double mills

[snapshot from a simulation with N = 100]
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Rigorous derivation of the Vlasov dynamics

Assume that U(r) is nice.
(of class C2, U and U ′ are bounded, and U ′(0) = 0)

The dynamical system (mi = 1
N ; pairwise force ∼ mimj){

ẋi = vi

v̇i = (α− β|vi|2) vi − 1
N ∇xi

∑
i 6=j

U(|xi − xj |)

has global in t solutions (xi(t), vi(t)) for any initial data (x0
i , v

0
i ),

and the dependence on (x0
i , v

0
i ) is smooth.

Consider the “empirical measure” on the phase space (x, v):

µN (t) =
N∑

i=1

mi δ(xi(t),vi(t))

Proposition 1. µN (t) is a solution of equation (K), in the sense
of distributions.
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Introduce the energy

E(t) =
1
2

∫
f |v|2 dx dv +

1
2

∫
U(|x− y|) ρ(x, t)ρ(y, t) dx dy.

Then

dE
dt

=
∫

f(α− β|v|2) |v|2 dx dv ≤ α

∫
f |v|2 dv − β

M

(∫
f |v|2 dv

)2

,

where M =
∫

f dx dv. Since the potential energy verifies

1
2

∫
U(|x− y|) ρ(x, t)ρ(y, t) dx dy ≤ CM2,

where C = 1
2 sup |U |, we have

Proposition 2. The energy E(t) satisfies

E(t) ≤ max
{E(0), CM2 + αM

β

}
,

where M is the total mass.
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Theorem. [Mean-field limit for particle dynamics]

Let f0 ≥ 0 be such that
∣∣E [f0]

∣∣ < +∞, and consider a sequence
{(x0

i , v
0
i )}, such that

µN (0) :=
N∑

i=1

mi δ(x0
i ,v0

i ) → f0

weakly* as measures and satisfy E [µN (0)] = O(1). Then ∀ T > 0
the correspoding sequence µN (t) converges in C([0, T ];M(Rd × Rd))

(weak*) to the unique solution of the Vlasov equation

ft +∇x · (vf) +∇v ·
(
(α− β|v|2)vf − (∇xU ∗ ρ)f

)
= 0 (K)

with the initial data f0.
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Proof: [cf. Golse, 2003; Neunzert 1986]

We have

v̇i = (α− β|vi|2) vi − 1
N

∑
i 6=j

∇xiU(|xi − xj |),

⇒ |v̇i(t)| are bounded uniformly in N ⇒ (xi(t), vi(t)) are
equicontinuous on R+.

⇒ µN (t) is rel. compact in C([0, T ];M(Rd × Rd)) (weak*)

Take a subsequence µN → µ (weak*), pass to the limit

∇U ∗ ρN → ∇U ∗ ρ

uniformly on cpt. subsets of R+ × Rd. Then

(∇U ∗ ρN ) µN → (∇U ∗ ρN ) µ

in the sense of distributions ⇒ µ is a solution of the Vlasov
equation.
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Conclusions / things to do

• Single and double mills are obtained as exact steady solutions
on the level of kinetic equation

• Vlasov’s equation is obtained rigorously for a regularized
potential in the 1/N scaling

• Numerical simulation and comparison of particle/kinetic/fluid
solutions

• A more complete description of steady solutions, stability of
the steady states.

• Continuum (hydrodynamic) limit of the kinetic model
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