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The model.

Actin filaments.
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Mesh of actin filaments.
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Cross-linking proteins.
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Actin filaments with or without cross-linking proteins.

control 8-Br-cGMP




The model.

Action of Cross-linking proteins.

G'(x) : moment force between two filaments.
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Notations.

We the case where the density of proteins is homogeneous in
space.

o p(t, ) € MY(S! or R). p(t,x) is the density of filaments of
orientation x. We normalise it by :

[ dole) =1

@ G(x) is the interaction potential between two filaments. We
assume that this potential is symetric.
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The model.

The force applied to one filament is :
Ox (G % p).

We assume that the rotating speed of a particule is proportionnal
to the moment applied. Then, p evolves as :

{ p(0,-) = po, (1
Oep = Ox (pOx (G *x p)) -

~—
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simulations
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simulations
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non-unicity of steady-states

.




The model.

non-unicity of steady-states
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Pseudo-inverse

Let consider a measure p € M*(R), of total mass 1 : [, dp = 1.

Then, .
X r—>/ dp,

is a increasing function R — [0, 1]. One can then define its
pseudo-inverse u : [0,1] — R as:

u(z):inf{xeR; /_XoodeZ}.
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The Pseudo-inverse equation

u then satisfies the following equation :
Oru(t, z) = 0x (G #x p(u(t, 2))) , (2)

or :

8tu(t,z):/o G’ (u(t, €) — u(t, 7)) de.



Local stability analysis
steady-states are sums of Dirac masses

Proposition

If G is analytical, G € L*(R) and | [ G| < oo, [ G #0, then
every steady solution of equation (1) is a sum of Dirac masses
P = D icn Pidx, where the sequence (x;); has no accumulation
point (this sum is finite if the support of p is bounded).

Proof :
Vz €[0,1], 0=0x(G *p(u(z))).

Then, if u([0,1]) has an accumulation point, 0 = Jy (G * p). Then
Cte = G * p, and if we apply a Fourier transform and evaluate it in

0, we get -
Cte 50(0) = (/R G) (/de>,

which is absurd.
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condition to be a steady-state

1
Oru(t,z) = /0 G' (u(t, &) — u(t,z)) d€.

Proposition

p= .11 pidg, pi # 0 is steady state of eq. (1) if and only if :
(ﬁ,‘),‘ c Ker <(G’(U,— — Bj))i,j) ,

that isVi=1,...,n, 0x(G %« p)(u;) = 0.

Proof :
1
00 = [ 66~ ule.2) de
0
= ZﬁjGI(DJ_Di)
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Necessary conditions for linear stability 1

Proposition

For a steady solution p = "_; pidx;, pi # 0 of eq. (1) to be
linearly stable under small dislocations, it is necessary that :

Vi=1,...,n  92(G *p)(u;) > 0.
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Necessary conditions for linear stability 2

Proposition

For a steady solution p =" _; pidy,, pi # 0 of eq. (1) to be
linearly stable under small perturbations of the uj, it is necessary
that the linear application Ly, defined by the matrix

M = (016" (v — w); — diag (6" (wi = ), 0)s)

has a spectrum included in R* x iR when restricted to the
hyperspace {(w;)i=1,...n; 21 wi = 0}.




Local stability analysis

Local stability with support conditions

Proposition

A steady-state p = > i pidg, is locally stable under a support
condition, that is :

lu(t) = Tllee < Ce™, k& = K(|G" |00, n) > 0,

as soon as ||u(0) — Ul|eo is small enough,

if and only if it is satisfies the linear stability conditions 1 and 2.

v




Local stability analysis
Proofl

We consider a perturbation u = & + v of the steady-state u. We
first estimate [, v

1
v = /0 G' (u(€) - u(2)) dé
— J;G (aj—a,-)/l )d€ — v(z ZG i — ;) p

lj
o(lIvl%.).
Then, if we integrate the equation over [},

e v = (06w~ )~ dlog (6" (i — ), (o)) | // v)

+O(|IvII%)-



Proof2

We now get estimates on |v| :

1
drlvl = sgn(v(2)) /O G (u(€) — u(2)) de

= —G"xp(x)|v|]+ O (H(/, V)i oo)

+O(|IvIIZ.)
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Proof3

[v]loo
f/l 4

So, if we consider the vector w := , we get thanks to

f/n v

previous estimates :

d J—
de” =
—G" * p(xi,) 0(1)
0 (piG"(ui — uj)). . — diag ( (G"(u; — uj))f’_j (Pj)j)
o(lIwll?),

and a Gronwall lemma shows the proposition.
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A Lemma

Lemma

If the steady state p satisfies the linear stability condition 2, there
exist 1 > 0, such that if ||(f;)i=1,...n — (Pi)i=1,...nl| <, then there
exist a unique (T;)ij=1,.. n close to (Uj)i=1,..n such that

p =i pidq is a stable steady solution of (1), and such that p
has the same center of mass as p.

Notice that the steady state p obtained this way is also stable.
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Proof

We consider the function
F((@)i, (pi)i) = (G'(& — T;))i j(Pi)i-

We want to apply the implicit function theorem to find to describe
the set {F((Z;)i, (pi)i) = 0}. The derivative to consider then is :

Dy, F((@i)is (5i)i),

which is equal to the matrix of the linear stability assumption 2.
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Necessary conditions for linear stability 3.

Proposition

For a steady state p =Y i, pidx, to be linearly stable under
distant invasions, it is necessary that there exist (y;)i=1,.. n—1 Such
that :

G xp <0 on(—o0,x1), G'xp>0 on (xn+0),

(G'* p(x) =0, x € (xi, Xi41)) < x = yi, (3)
and G" % p(y;) < 0.
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Local stability without support conditions

Proposition

if a steady-state p = Y ., pidy, satisfy the three stability
conditions, then it is locally stable, that is :

if [|u(0) — @||;2 is small enough, and is not flat on neighbourhoods
of the points (y;); defined in (3), then there exist p = >_I_; pidx.
close to p, such that :

lu(t) — bl < Ce™,

where ¢ > 0.




Idea of the proof 1

Local stability analysis

ap

i )
o e |
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Local stability analysis
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Local stability analysis
|dea of the proof 3

We want to estimate p over the green interval | of size . At all
times, there exist y(t) € I such that 0x(G *x p)(y(t)) = 0. Then,
for z € I,

deu(t, 2) = (95(G #x p)(y(1)) + O(e)) (u(t, 2) — u(t, (1))

Then,
t S 1
U(t,z) = |:U(0,Z) —/ (y(s)efo G *P(Y(T))+O(€)dr> ds:|
0
oo G#p(y(7))+0(e) dr.
that is u(t) = c(t)u(0) + d(t), where :
c(t) = efs PN TOE dr et _ o

And all the mass escapes from the interval /.
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Remarks
refined model.

A more complex model has been introduced by Kang, Perthame,
Primi, Stevens and Velazquez :

Oep(t, x) = / Tlpl(y,x)p(t,y) dy — / Tlpl(x, y)p(x, t) dx,

where :

TlGcy) = [ Fo by =x = Gz =) ple.2) .
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A refined kinetic model.

They say that for ¢ small, an approximation of their kinetic model
is :

00t x) = 5 Buale0) + 0 (06 [ 61— y)pten) o)

The local stability result doesn't pass to this generalised model :
the diffusion can transport mass from one Dirac to another. My
guess would be that the result is true under the additional
assumption that Vi, j, G *, p(l;i) = G *x p(T;)...
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Attractive singular kernels

If G is repulsive and singular at 0, p explodes in finite time :

Theorem

(Bertozzi, Carrillo, Laurent) Let p be a solution of (1) in RN, with
a nonnegative compactly supported initial data in L*°. Let G

satisfy fo G, y dx < +00 and monotone decreasing. Then
there exists a maXIma/ time T?st < co and a unique solution p on
the interval [0, T*). Moreover,

G'(r)

lim_[lp(-, )]s = oo,

for q € [2,00] if N > 2 and q € (2,00] if N = 2.

And if [} @0 9 = +00, the solution is global in time.



Remarks
Attractive singular kernels

If we add a diffusion to the model and if G = —%log|x| (in
dimension 2), then (1) becomes the Keller-Segel model :

Oin = An— &V - (nVo),
—Ac = n.
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repulsive singular kernels

If G := dp, equation (1) becomes the porous medium equation :

Oep = Ox(pOxp).

If G is singular and repulsive, it also behaves numerically as a slow
diffusion :
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repulsive singular kernels

We only have very few results on this up to now :

if G is Lipschitz continuous and C? on R\ {0}, then (1) has a
unique solution.

Proposition
Let G. — (x — —|x|) a sequence of regular kernels, p. and p
steady-states of :

Otp = Ox (pOx (G #x p) + V).

Then,

pe — p in ML
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