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Actin filaments.
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Mesh of actin filaments.
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Cross-linking proteins.

filamin, ABP-50, fibrillin, villin, fascin...
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Actin filaments with or without cross-linking proteins.
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Action of Cross-linking proteins.

G ′(x) : moment force between two filaments.
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Notations.

We the case where the density of proteins is homogeneous in
space.

ρ(t, ·) ∈ M1(S1 or R). ρ(t, x) is the density of filaments of
orientation x . We normalise it by :∫

Rn

dρ(t, ·) = 1,

G (x) is the interaction potential between two filaments. We
assume that this potential is symetric.
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The model.

The force applied to one filament is :

∂x (G ∗ ρ) .

We assume that the rotating speed of a particule is proportionnal
to the moment applied. Then, ρ evolves as :{

ρ(0, ·) = ρ0,
∂tρ = ∂x (ρ∂x (G ∗x ρ)) .

(1)



The model. Local stability analysis Remarks

simulations
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non-unicity of steady-states
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non-unicity of steady-states
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Pseudo-inverse

Let consider a measure ρ ∈ M1(R), of total mass 1 :
∫

R dρ = 1.
Then,

x 7→
∫ x

−∞
dρ,

is a increasing function R→ [0, 1]. One can then define its
pseudo-inverse u : [0, 1]→ R as :

u(z) = inf

{
x ∈ R;

∫ x

−∞
dρ ≥ z

}
.
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The Pseudo-inverse equation

u then satisfies the following equation :

∂tu(t, z) = ∂x (G ∗x ρ(u(t, z))) , (2)

or :

∂tu(t, z) =

∫ 1

0
G ′ (u(t, ξ)− u(t, z)) dξ.
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steady-states are sums of Dirac masses

Proposition

If G is analytical, G ∈ L1(R) and
∣∣∫

R G
∣∣ <∞,

∫
R G 6= 0 , then

every steady solution of equation (1) is a sum of Dirac masses
ρ̄ =

∑
i∈N ρiδxi , where the sequence (xi )i has no accumulation

point (this sum is finite if the support of ρ̄ is bounded).

Proof :
∀z ∈ [0, 1], 0 = ∂x (G ∗ ρ̄(ū(z))) .

Then, if u([0, 1]) has an accumulation point, 0 = ∂x (G ∗ ρ̄). Then
Cte = G ∗ ρ̄, and if we apply a Fourier transform and evaluate it in
0, we get :

Cte δ0(0) =

(∫
R

G

)(∫
R

dρ

)
,

which is absurd.
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condition to be a steady-state

∂tu(t, z) =

∫ 1

0
G ′ (u(t, ξ)− u(t, z)) dξ.

Proposition

ρ̄ =
∑n

i=1 ρ̄iδūi , ρ̄i 6= 0 is steady state of eq. (1) if and only if :

(ρ̄i )i ∈ Ker
((

G ′(ūi − ūj)
)
i ,j

)
,

that is ∀i = 1, . . . , n, ∂x(G ∗x ρ)(ui ) = 0.

Proof :

∂t ū =

∫ 1

0
G ′ (ū(t, ξ)− ū(t, z)) dξ

=
∑

i

ρ̄jG
′ (ūj − ūi )
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Necessary conditions for linear stability 1

Proposition

For a steady solution ρ̄ =
∑n

i=1 ρiδxi , ρi 6= 0 of eq. (1) to be
linearly stable under small dislocations, it is necessary that :

∀i = 1, . . . , n, ∂2
xx(G ∗ ρ)(ui ) > 0.
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Necessary conditions for linear stability 2

Proposition

For a steady solution ρ̄ =
∑n

i=1 ρiδui , ρi 6= 0 of eq. (1) to be
linearly stable under small perturbations of the ui , it is necessary
that the linear application LM defined by the matrix

M =
(
ρiG

′′(ui − uj)
)
i ,j
− diag

((
G ′′(ui − uj)

)
i ,j

(ρj)j

)
,

has a spectrum included in R∗− × iR when restricted to the
hyperspace {(wi )i=1,...,n;

∑n
i=1 wi = 0}.
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Local stability with support conditions

Proposition

A steady-state ρ̄ =
∑n

i=1 ρ̄iδūi is locally stable under a support
condition, that is :

‖u(t)− ū‖∞ ≤ Ce−κt , κ = κ(‖G ′′′‖∞, n) > 0,

as soon as ‖u(0)− ū‖∞ is small enough,

if and only if it is satisfies the linear stability conditions 1 and 2.
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Proof1

We consider a perturbation u = ū + v of the steady-state ū. We
first estimate

∫
Ii

v :

∂tv =

∫ 1

0
G ′ (u(ξ)− u(z)) dξ

=
n∑

j=1

G ′′ (ūj − ūi )

∫
Ij

v(ξ) dξ − v(z)
n∑

j=1

G ′′ (ūj − ūi ) ρ̄j

+O(‖v‖2
∞).

Then, if we integrate the equation over Ii ,

d

dt

∫
Ii

v =
[(
ρiG

′′(ui − uj)
)
i ,j
− diag

((
G ′′(ui − uj)

)
i ,j

(ρj)j

)]
(

∫
Ii

v)i

+O(‖v‖2
∞).
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Proof2

We now get estimates on |v | :

∂t |v | = sgn(v(z))

∫ 1

0
G ′ (u(ξ)− u(z)) dξ

= −G ′′ ∗ ρ̄(xi )|v |+ O

(∥∥∥∥(

∫
Ii

v)i

∥∥∥∥
∞

)
+O(‖v‖2

∞)
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Proof3

So, if we consider the vector w :=


‖v‖∞∫

I1
v

...∫
In

v

, we get thanks to

previous estimates :

d

dt
w =(
−G ′′ ∗ ρ̄(xi0) O(1)

0 (ρiG
′′(ui − uj))i ,j − diag

(
(G ′′(ui − uj))i ,j (ρj)j

) )w

+O(‖w‖2),

and a Gronwall lemma shows the proposition.
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A Lemma

Lemma

If the steady state ρ̄ satisfies the linear stability condition 2, there
exist η > 0, such that if ‖(ρ̃i )i=1,...,n − (ρ̄i )i=1,...,n‖ < η, then there
exist a unique (ũi )i=1,...,n close to (ūi )i=1,...,n such that
ρ̃ :=

∑n
i=1 ρ̃iδũi is a stable steady solution of (1), and such that ρ̃

has the same center of mass as ρ̄.

Notice that the steady state ρ̃ obtained this way is also stable.
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Proof

We consider the function

F ((ũi )i , (ρ̃i )i ) := (G ′(ũi − ũj))i ,j(ρ̃i )i .

We want to apply the implicit function theorem to find to describe
the set {F ((ũi )i , (ρ̃i )i ) = 0}. The derivative to consider then is :

D(ũi )i
F ((ũi )i , (ρ̃i )i ),

which is equal to the matrix of the linear stability assumption 2.
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Necessary conditions for linear stability 3.

Proposition

For a steady state ρ̄ =
∑n

i=1 ρ̄iδx̄i to be linearly stable under
distant invasions, it is necessary that there exist (yi )i=1,...,n−1 such
that :

G ′ ∗ ρ < 0 on (−∞, x1), G ′ ∗ ρ > 0 on (xn,+∞),(
G ′ ∗ ρ(x) = 0, x ∈ (xi , xi+1)

)
⇔ x = yi , (3)

and G ′′ ∗ ρ(yi ) < 0.
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Local stability without support conditions

Proposition

if a steady-state ρ̄ =
∑n

i=1 ρiδxi satisfy the three stability
conditions, then it is locally stable, that is :

if ‖u(0)− ū‖L1 is small enough, and is not flat on neighbourhoods
of the points (yi )i defined in (3), then there exist ρ̃ =

∑n
i=1 ρ̃iδx̃i

close to ρ̄, such that :

‖u(t)− ũ‖L1 ≤ Ce−ct ,

where c > 0.
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Idea of the proof 1
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Idea of the proof 2
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Idea of the proof 3

We want to estimate ρ over the green interval I of size ε. At all
times, there exist y(t) ∈ I such that ∂x(G ∗x ρ)(y(t)) = 0. Then,
for z ∈ I ,

∂tu(t, z) =
(
∂2

xx(G ∗x ρ)(y(t)) + O(ε)
)

(u(t, z)− u(t, y(t))) .

Then,

u(t, z) =

[
u(0, z)−

∫ t

0

(
y(s)e

R s
0 G ′′∗ρ(y(τ))+O(ε) dτ

)
ds

]
e

R t
0 G ′′∗ρ(y(τ))+O(ε) dτ ,

that is u(t) = c(t)u(0) + d(t), where :

c(t) = e
R t

0 G ′′∗ρ(y(τ))+O(ε) dτ ∼ ect →∞.

And all the mass escapes from the interval I .
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Remarks
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refined model.

A more complex model has been introduced by Kang, Perthame,
Primi, Stevens and Velazquez :

∂tρ(t, x) =

∫
T [ρ](y , x)ρ(t, y) dy −

∫
T [ρ](x , y)ρ(x , t) dx ,

where :

T [ρ](x , y) =

∫
Γσ
(
y − x − G ′(z − x)

)
ρ(t, z) dz .
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A refined kinetic model.

They say that for σ small, an approximation of their kinetic model
is :

∂tρ(t, x) =
σ2

2
∂2

xxρ(t, x) + ∂x

(
ρ(t, x)

∫
G ′(x − y)ρ(t, y) dy

)
The local stability result doesn’t pass to this generalised model :
the diffusion can transport mass from one Dirac to another. My
guess would be that the result is true under the additional
assumption that ∀i , j , G ∗x ρ̄(ūi ) = G ∗x ρ̄(ūj)...
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Attractive singular kernels

If G is repulsive and singular at 0, ρ explodes in finite time :

Theorem

(Bertozzi, Carrillo, Laurent) Let ρ be a solution of (1) in RN , with
a nonnegative compactly supported initial data in L∞. Let G

satisfy
∫ 1

0
1

G ′(x) dx < +∞ and G ′(r)
r monotone decreasing. Then

there exists a maximal time T ast <∞ and a unique solution ρ on
the interval [0,T ∗). Moreover,

lim
t→T∗

‖ρ(·, t)‖Lq =∞,

for q ∈ [2,∞] if N > 2 and q ∈ (2,∞] if N = 2.

And if
∫ 1

0
1

G ′(x) dx = +∞, the solution is global in time.
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Attractive singular kernels

If we add a diffusion to the model and if G = − 1
2π log |x | (in

dimension 2), then (1) becomes the Keller-Segel model :{
∂tn = ∆n − ξ∇ · (n∇c),
−∆c = n.
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repulsive singular kernels

If G := δ0, equation (1) becomes the porous medium equation :

∂tρ = ∂x(ρ∂xρ).

If G is singular and repulsive, it also behaves numerically as a slow
diffusion :
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repulsive singular kernels

We only have very few results on this up to now :

Proposition

if G is Lipschitz continuous and C 2 on R \ {0}, then (1) has a
unique solution.

Proposition

Let Gε → (x 7→ −|x |) a sequence of regular kernels, ρ̄ε and ρ̄
steady-states of :

∂tρ = ∂x (ρ∂x (G ∗x ρ) + V ) .

Then,
ρ̄ε → ρ̄ in M1.
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