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Moment Models for Radiative Transfer Equations and approaches

Radiative transfer equation

Boltzmann equation (no frequency dependence, isotropic scattering)

1
c ∂tu + Ω · ∇xu︸ ︷︷ ︸

advection

= σ

(
1

4π

∫
4π

u dΩ′ − u

)
︸ ︷︷ ︸

scattering

+ κ (B(T )− u)︸ ︷︷ ︸
absorption & emission

for radiative intensity u(x ,Ω, t).

Key challenge

High dimensional phase space.

Popular numerical approaches

Monte-Carlo methods: Solve particle transport directly

Discrete ordinates: Discretize x and Ω by grid

Moment methods: Fourier expansion in Ω (spherical Harmonics)
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Moment Models for Radiative Transfer Equations and approaches

True solution Monte Carlo Discrete ordinates S6

Figures from

T. A. Brunner, Forms of approximate

radiation transport, Sandia Report,

2002

Moment model P1 Moment model P5
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Moment Models for Radiative Transfer Moment models

1D slab geometry

Plate (infinite in y and z). Intensity u(x , µ, t) depends only on x , the
azimuthal flight angle θ = arccos(µ), and time.

∂tu + µ∂xu = −(κ+σ)u + σ
2

∫ 1

−1
u dµ′ + q

Moment expansion

Infinite sequence of moments ~u = (u0, u1, . . . )

uk (x , t) =

∫ 1

−1
u(x , µ, t)Pk (µ) dµ ,

where Pk Legendre polynomials.

Three term recursion for Pk yields

∂tuk + bk,k−1∂xuk−1 + bk,k+1∂xuk+1 = −ckuk + qk .
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Moment Models for Radiative Transfer Moment models

Moment system

∂t~u + B · ∂x~u = −C · ~u + ~q

B =


0 1
1
3

0 2
3

2
5

0 3
5

3
7

0
. . .

. . .
. . .

 , C =


κ

κ+σ

. . .

. . .

 , ~q =


2κq

0
...
...


Linear infinite “hyperbolic” system, equivalent to original equation.

Moment closure problem

Truncate system after N-th moment.

PN closure: uN+1 = 0

Diffusion correction to PN : uN+1 = − 1
κ+σ

N+1
2N+3∂xuN [Levermore 2005]

Other linear closures: simplified PN (parabolic system)

Nonlinear closures: minimum entropy, flux-limited diffusion
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Moment Models for Radiative Transfer Moment models

Examples of linear closures

P1 system: {
∂tu0 + ∂xu1 = −κu0 + q0

∂tu1 + 1
3∂xu0 = −(κ+σ)u1

Diffusion approximation:

∂tu0 = −κu0 + q0 + ∂x
1

3(κ+σ)∂xu0

Diffusion correction to P2 (from P3):
Consider ∂tu3 = 0. Thus u3 = − 1

κ+σ
3
7∂xu2.

∂tu0 + ∂xu1 = −κu0 + q0

∂tu1 + 1
3∂xu0 + 2

3∂xu2 = −(κ+σ)u1

∂tu2 + 2
5∂xu1 = −(κ+σ)u2 + ∂x

1
κ+σ

9
35∂xu2

Simplified (simplified) P3 (SSP3): [Frank, Klar, Larsen, Yasuda, JCP 2007]

∂t

(
u0

u2

)
= 1

3(κ+σ)

(
1 2
2
5

11
7

)
· ∂xx

(
u0

u2

)
−
(
κ 0
0 κ+σ

)
·
(

u0

u2

)
+

(
q0

0

)
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Moment Models for Radiative Transfer Moment models

Moment closure

Approximate infinite moment system by finitely many moments.

Closure problem: Model truncated moments.

Classical approach

Assume truncated moments close to 0 or quasi-stationary.

Manipulate moment equations.

Foundations by asymptotic analysis and (formal) series expansions.

A new perspective

Approximate average solution w.r.t. a measure.

Mori-Zwanzig formalism yields exact evolution of truncated system by
memory term.

Approximations to memory term yield existing and new systems.
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Optimal Prediction

Optimal Prediction

Introduced by Chorin, Kast, Kupferman, Levy, Hald, et al.

Underresolved computation (reduce computational effort by using
prior statistical information).

Sought is average solution of a system, where part of initial data is
known and the rest is sampled from an underlying measure.

Optimal Prediction approximates average solution by a system smaller
than the full system.

A. Chorin, R. Kupferman, D. Levy, Optimal prediction for Hamiltonian partial differential equations, J. Comp. Phys., 162,
pp. 267–297, 2000.
A. Chorin, O. Hald, R. Kupferman, Optimal prediction with memory, Physica D 166, 3–4, pp. 239–257, 2002.

A. Chorin, O. Hald, Stochastic tools in mathematics and science, Springer, 2006.
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Optimal Prediction

Evolution equation
d
dt x = R(x) , x(0) = x̊ .

Assume measure on phase space f (x).
Example: Hamiltonian system f (x) = Z−1e−βH(x), where β = 1/(kBT ).

Splitting the variables

Split x = (x̂ , x̃) into resolved variables x̂ , and unresolved variables x̃ .
Block system d

dt

[
x̂
x̃

]
=

[
R̂(x̂ , x̃)

R̃(x̂ , x̃)

]
,

[
x̂(0)
x̃(0)

]
=

[
˚̂x
˚̃x

]
.

Averaging unresolved variables

Resolved initial conditions ˚̂x are known. Yields conditioned measure for x̃

f̊x̂ (x̃) = Z̃−1f (˚̂x , x̃)

Average of function u(x̂ , x̃) w.r.t. fx̂ (x̃) is conditional expectation

Pu = E[u|x̂ ] =

∫
u(x̂ , x̃)f (x̂ , x̃) dx̃∫

f (x̂ , x̃) dx̃
.

Orthogonal projection w.r.t. (u, v) = E[uv ]. Hence optimal prediction.
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Optimal Prediction Ensemble average solution in weather forecast

Example: Weather forecast

Computational weather models (Navier-Stokes + X).

Goal: Predict temperature in Washington D.C. tomorrow 3pm.

Available: Temperature right now at few positions on the map.

Problem: Temperature in most places unknown.

Classical approach: Interpolate unknown initial conditions from
known initial conditions. Run one simulation.

Average solution

New paradigm: Find average solution,
where known initial conditions are fixed,
and unknown initial conditions are
sampled from a distribution.

Current approach: Monte-Carlo. Run
many simulations. Costly!

Ensemble averages on
television weather forecast

Optimal prediction: Obtain average solution by a single simulation.

Benjamin Seibold (MIT) A New Perspective on Moment Closure 03/02/2009, College Park 13 / 26



Optimal Prediction Ensemble average solution in weather forecast

Average solution

Nonlinear system of ODE
d
dt x = R(x) .

Ensemble of solutions ϕ(x , t) by phase flow{
∂tϕ(x , t) = R(ϕ(x , t))

ϕ(x , 0) = x

Average solution

Pϕ(x , t) = E[ϕ(x , t)|x̂ ] =

∫
ϕ((x̂ , x̃), t)f (x̂ , x̃) dx̃∫

f (x̂ , x̃) dx̃
.

Smaller system for resolved variables

Mori-Zwanzig formalism [H. Mori 1965, R. Zwanzig 1980] yields approximate evolution
for P̂ϕ(t)

∂t P̂ϕ(t) = PR P̂ϕ(t) +

∫ t

0
K (t − s)P̂ϕ(s) ds .
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Optimal Prediction Types and Examples

Optimal prediction

Nonlinear system of ODE: d
dt x = R(x).

Conditional expectation projection: Pu = E[u|x̂ ].

Average solution is approximated by

First order OP:
d
dt x̂ = R(x̂) ,

where R(x̂) = PR = E[R(x̂ , x̃)|x̂ ].

OP with memory:

d
dt x̂(t) = R(x̂(t)) +

∫ t

0
K (t − s)x̂(s) ds ,

where memory kernel K (t) involves orthogonal dynamics ODE

d
dt x = (I − P)R(x) .

In general as costly to solve as full ODE.
But: Independent of initial conditions ˚̂x . Can be pre-computed.
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A New Perspective on Moment Closure in Radiative Transfer

Moment system

∂t~u = R~u , ~u(0) = ~̊u

Differential operator R~u = −B · ∂x~u − C · ~u (omit source q for now).

Solution ~u(t) = etR~̊u.

Linear ensemble average solution

Consider Gaussian measure f (~u) = 1√
(2π)n det(A)

exp
(
−1

2~u
T A−1~u

)
.

Decomposition ~u =

[
~̂u

~̃u

]
and A =

[
ˆ̂A ˆ̃A
˜̂A ˜̃A

]
= AT (covariance matrix)

Conditional expectation projection is matrix multiplication P~u = E~u

E =

[
I 0

˜̂A ˆ̂A−1 0

]
. Meaning: Given ~̂u, ~̃u is centered around ˜̂A ˆ̂A−1~̂u.

Average solution P~u(t) = etRE~̊u is particular solution (linearity).
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A New Perspective on Moment Closure in Radiative Transfer Linear optimal prediction

Linear optimal prediction

Conditional expectation E and orthogonal projection F = I − E .

Solution operator etR and orthogonal dynamics solution operator etRF

satisfy Duhamel’s principle (Dyson’s formula)

etR =

∫ t

0
e(t−s)RF REesR ds + etRF .

Proof: M(t)=etR−
∫ t

0 e(t−s)RF REesR ds−etRF .
∂tM(t)=RF M(t) ,M(0)=0. Hence M(t)=0.

Differentiating Dyson’s formula:

∂te
tR = REetR +

∫ t

0
e(t−s)RF RFREesR ds + etRF RF .

Adding E from right yields evolution for average solution operator

∂te
tRE = RetRE +

∫ t

0
K (t − s)esRE ds ,

where R = RE and K (t) = etRF RFRE memory kernel.
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A New Perspective on Moment Closure in Radiative Transfer Linear optimal prediction

Evolution for average solution

∂t~u
m(t) = R~um(t) +

∫ t

0
K (t − s)~um(s) ds ,

where R = RE and K (t) = etRF RFRE .

Approximations

First order OP: ∂t~u(t) = R~u(t)

Piecewise constant quadrature for memory:

∂t~u(t) = R~u(t) + τK (0)~u(t) ,

where τ characteristic time scale.

Better approximation for short times:

∂t~u(t) = R~u(t) + min{τ, t}K (0)~u(t) .

Crescendo memory
(Explicit time dependence models loss of information.)
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A New Perspective on Moment Closure in Radiative Transfer Linear optimal prediction

Linear optimal prediction for the radiative transfer equations

Here consider uncorrelated measure, i.e. covariance matrix A diagonal.

ˆ̂R =
̂̂
RE = ˆ̂R = − ˆ̂B∂x − ˆ̂C , ˆ̂K (0) =

̂̂
RFRE = ˆ̃R ˜̂R = ˆ̃B ˜̂B∂xx

ˆ̃B ˜̂B =

0 . . . 0
...

. . .
...

0 . . .
(N+1)2

(2N+1)(2N+3)


Approximations

First order OP: ∂t~̂u(t) = ˆ̂R~̂u(t) yields PN closure.

Piecewise constant quadratures for memory (with τ = 1
κ+σ )

∂t~̂u(t) = ˆ̂R~̂u(t) + τ ˆ̃B ˜̂B∂xx~̂u(t)

yields classical diffusion correction closure, and

∂t~̂u(t) = ˆ̂R~̂u(t) + min{τ, t} ˆ̃B ˜̂B∂xx~̂u(t)

yields new crescendo diffusion correction closure (no extra cost!).
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A New Perspective on Moment Closure in Radiative Transfer Numerical results

Various P0 moment closures
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A New Perspective on Moment Closure in Radiative Transfer Numerical results

Various P3 moment closures
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A New Perspective on Moment Closure in Radiative Transfer Numerical results

Geometry

1cm 1cm1cm1cm1cm1cm 1cm

1
c
m

1
c
m

1
c
m

1
c
m

1
c
m

1
c
m

1
c
m

P7 solution

Diffusion closure Crescendo diffusion

Benjamin Seibold (MIT) A New Perspective on Moment Closure 03/02/2009, College Park 23 / 26



A New Perspective on Moment Closure in Radiative Transfer Reordered PN equations

Reordered PN equations

Even-odd ordering of moments:
~̂u = (u0, u2, . . . , u2N)T and ~̃u = (u1, u3, . . . , u2N+1, u2N+2, . . . )

T .
Reordered advection matrix (here N = 2):

[
ˆ̂B ˆ̃B
˜̂B ˜̃B

]
=



1
2/5 3/5

4/9 5/9
1/3 2/3

3/7 4/7
5/11 6/11

6/13
. . .

. . .


Optimal prediction approximation

Parabolic system

∂t~̂u(t) = − ˆ̂C~̂u(t) + 1
κ+σD∂xx~̂u(t)

Diffusion matrix D = ˆ̃B ˜̂B is positive definite.
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A New Perspective on Moment Closure in Radiative Transfer Reordered PN equations

Various parabolic moment closures
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A New Perspective on Moment Closure in Radiative Transfer Reordered PN equations

Conclusions

Optimal Prediction yields a new perspective on moment closure.

A wide variety of new closures can be derived by different
approximations of the memory convolution.

Crescendo diffusion is a very simple modification to diffusion, that
increases accuracy.

Future research directions

Solution and storage of the orthogonal dynamics.

Nonlinear measures ⇒ nonlinear closures?

More complex applications, application to kinetic gas dynamics.

M. Frank, B. S., Optimal prediction for radiative transfer: A new perspective on moment closure, arXiv:0806.4707 [math-ph]
B. S., M. Frank, Optimal prediction for moment models: Crescendo diffusion and reordered equations, arXiv:0902.0076

http://www-math.mit.edu/~seibold/research/truncation

Thank you.
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