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Moment Models for Radiative Transfer Equations and approaches

Radiative transfer equation

Boltzmann equation (no frequency dependence, isotropic scattering)

i(’)tu+Q.VXu:cr(fﬂ[l udQ’—u)—l— k(B(T)—u)

S—— ~~ ~~
advection scattering absorption & emission

for radiative intensity u(x,Q,t).

Key challenge

High dimensional phase space.

Popular numerical approaches
@ Monte-Carlo methods: Solve particle transport directly
o Discrete ordinates: Discretize x and Q by grid

e Moment methods: Fourier expansion in Q (spherical Harmonics)

4.

(M1

A New Perspective on Moment Closure 03/02/2009, College Park 4 /26




Moment Models for Radiative Transfer Equations and approaches

True solution Monte Carlo Discrete ordinates Sg

Figures from

Moment model P; Moment model Psg

T. A. Brunner, Forms of approximate
radiation transport, Sandia Report,

©

2002
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Moment Models for Radiative Transfer Moment models

1D slab geometry

Plate (infinite in y and z). Intensity u(x, i, t) depends only on x, the
azimuthal flight angle § = arccos(x), and time.
1

Oru + poyxu = —(k+o)u + g/ udp' +q
-1

Moment expansion

Infinite sequence of moments 4 = (up, vy, . ..)

1
) = [ ulx 0P 8

where Py Legendre polynomials.

Three term recursion for Py yields

Otuk + by k—10xUk—1 + by k+10x U1 = —Creli + g -
< .
(R[]
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Moment Models for Radiative Transfer Moment models

Moment system

Oi+B-0ki=—-C-i+g

0 1
1 9 2 K 2Kkq
3 g 8 § Ii+0' 0
5 5 —
B = s s C = s q =
7 0

Linear infinite “hyperbolic” system, equivalent to original equation.

Moment closure problem

Truncate system after N-th moment.
@ Py closure: upyy1 =0
e Diffusion correction to Py: uyny1 = —H%;\’N—%@XUN [Levermore 2005]
@ Other linear closures: simplified Py (parabolic system)

@ Nonlinear closures: minimum entropy, flux-limited diffusion
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Moment Models for Radiative Transfer Moment models
Examples of linear closures

@ Py system:
15y 8tU0 + 8xul = —RUg + qo

Oru1 + %axuo = —(k+0o)uy
@ Diffusion approximation:

Orllg = —KUg + qo + 8Xﬁﬁxuo

e Diffusion correction to P, (from P3):

Consider 0;uz3 = 0. Thus uz = —Iﬁ%%ﬁxuz.
Orug + Oxu1 = —kUg + qo
Opun + 30xuo + 50kt = —(k+0o)ur
Orup + %axul = —(k+0o)uz + 3xﬁlg?%8xu2

(] Slmp|lfled (Slmp|lfled) P3 (55P3) [Frank, Klar, Larsen, Yasuda, JCP 2007]

u\ 1 12'u0_/<cO.uo qo
(i) =5t (3 8)0<(0) -6 o2) () + (5)
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Moment Models for Radiative Transfer Moment models

Moment closure
@ Approximate infinite moment system by finitely many moments.

@ Closure problem: Model truncated moments.

Classical approach
@ Assume truncated moments close to 0 or quasi-stationary.
@ Manipulate moment equations.

e Foundations by asymptotic analysis and (formal) series expansions.

A new perspective
@ Approximate average solution w.r.t. a measure.

@ Mori-Zwanzig formalism yields exact evolution of truncated system by
memory term.

@ Approximations to memory term yield existing and new systems.

y
IMir
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Optimal Prediction

Optimal Prediction
Introduced by Chorin, Kast, Kupferman, Levy, Hald, et al.
e Underresolved computation (reduce computational effort by using
prior statistical information).
@ Sought is average solution of a system, where part of initial data is
known and the rest is sampled from an underlying measure.
@ Optimal Prediction approximates average solution by a system smaller
than the full system.

A. Chorin, R. Kupferman, D. Levy, Optimal prediction for Hamiltonian partial differential equations, J. Comp. Phys., 162,
pp. 267-297, 2000.
A. Chorin, O. Hald, R. Kupferman, Optimal prediction with memory, Physica D 166, 3—4, pp. 239-257, 2002.

A. Chorin, O. Hald, Stochastic tools in mathematics and science, Springer, 2006.
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Optimal Prediction

Evolution equation
%X = R(x), x(0) =x.

Assume measure on phase space f(x).
Example: Hamiltonian system f(x) = Z~1e ") where 3 = 1/(kg T).

Splitting the variables
Split x = (%, X) into resolved variables %X, and unresolved variables X.

X0 X>o

Block system d [ﬂ B {f;(&’;{)] [;((0)] B [ ]
dt |%] — |R(x,%)] 7 [%(0)] — ‘
Averaging unresolved variables
Resolved initial conditions % are known. Yields conditioned measure for %
(%) = 27 (%, %
Average of function u(%,X) w.r.t. fz(X) is conditional expectation
Ju(x,%)f(%, %) dx
[ f(x,%)dx
Orthogonal projection w.r.t. (u, v) = E[uv]. Hence optimal prediction.

Pu = E[u|8] =

v
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Optimal Prediction Ensemble average solution in weather forecast

Example: Weather forecast

Computational weather models (Navier-Stokes + X).
o Goal: Predict temperature in Washington D.C. tomorrow 3pm.
@ Available: Temperature right now at few positions on the map.
@ Problem: Temperature in most places unknown.

o Classical approach: Interpolate unknown initial conditions from
known initial conditions. Run one simulation.

Average solution

@ New paradigm: Find average solution,
where known initial conditions are fixed,
and unknown initial conditions are
sampled from a distribution.

@ Current approach: Monte-Carlo. Run
many simulations. Costly!

Ensemble averages on
television weather forecast

Das Wetter |

[k Hachsttemperaturen Miinci viw
P \/'\/\'~ Iy
_

< s

9
6 |
3

>,

o Optimal prediction: Obtain average solution by a single simulation. J
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Optimal Prediction Ensemble average solution in weather forecast

Average solution

Nonlinear system of ODE J
X = R(x) .

Ensemble of solutions ¢(x, t) by phase flow

{atso(& t) = R(e(x, 1))
©(x,0) = x

Average solution

Po(x, t) = E[o(x, t)]

Smaller system for resolved variables

Mori-Zwanzig formalism [H. mori 1965, R. zwanzig 1980] Yields approximate evolution

for Po(t)
t
0tPp(t) = PR Pyo(t) + / K(t — s)Pp(s)ds
0
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Optimal Prediction Types and Examples

Optimal prediction
Nonlinear system of ODE: 2 x = R(x).
Conditional expectation projection: Pu = E[u|X].
Average solution is approximated by
o First order OP: J
@&x=R(%),
where R(X) = PR = E[R(%, X)|X].
o OP with memory: .
i&uy—n@u»+/mKu—sp@ws,
0
where memory kernel K(t) involves orthogonal dynamics ODE

Zx=(I-P)R(x) .

In general as costly to solve as full ODE.
But: Independent of initial conditions x. Can be pre-computed.
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A New Perspective on Moment Closure in Radiative Transfer

Moment system

Ol =R, w(0)=1i
Differential operator Rii = —B - Oxii — C - i (omit source g for now).
Solution ii(t) = etRij.
Linear ensemble average solution
o Consider Gaussian measure f(d) = m exp (—3dTALE).
i A A . |
e Decomposition i = |~| and A= |% 7| = AT (covariance matrix)
u A A
o Conditional expectation projection is matrix multiplication Pu = Ed
/ A X2 a
X5 . Meaning: Given i, ii is centered around AA™14.
AA= 0

o Average solution Pii(t) = etREii is particular solution (linearity).
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Dnearfontmallpiedichion
Linear optimal prediction
o Conditional expectation E and orthogonal projection F =/ — E.

@ Solution operator etR and orthogonal dynamics solution operator etRF

satisfy Duhamel’s principle (Dyson's formula)
etR — /t e(tfs)RFREesR ds + etRF )
0

Proof: M(t)=e'R— [ e(t=5)RF REeR ds— etRF.
0¢tM(t)=RF M(t), M(0)=0. Hence M(t)=0.

@ Differentiating Dyson's formula:

t
9.eth = REet™R + / e(t=5)RF RFREe*R ds + eRF RF .
0

o Adding E from right yields evolution for average solution operator

t
0reRE = Re™RE + / K(t —s)e’REds
0

where R = RE and K(t) = e!fF RFRE memory kernel.

v
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A New Perspective on Moment Closure in Radiative Transfer Linear optimal prediction

Evolution for average solution
t
0,5 () = RT™(¢) +/ K(t— s)d™(s)ds ,
0

where R = RE and K(t) = et"F RFRE.

Approximations
e First order OP: 0;i(t) = Ru(t)
o Piecewise constant quadrature for memory:
Or(t) = Ru(t) + 7K(0)d(t) ,
where T characteristic time scale.
o Better approximation for short times:
Orti(t) = Ru(t) + min{7, t} K(0)d(t) .

Crescendo memory
(Explicit time dependence models loss of information.)
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A New Perspective on Moment Closure in Radiative Transfer Linear optimal prediction

Linear optimal prediction for the radiative transfer equations
Here consider uncorrelated measure, i.e. covariance matrix A diagonal.

—
—

R=RE=FR=-Bd,—C , K(0)=RFRE =Rk =BBo,

(N+.1)2
@N+1)(2N+3)

v
o>
I
//
o -+ ©
o

Approximations
o First order OP: 0,ii(t) = Rii(t) yields Py closure.
o Piecewise constant quadratures for memory (with 7 = Wla)

B:6i(t) = Rii(t) + rBBOw (1)
yields classical diffusion correction closure, and
D,li(t) = Rii(t) + min{r, t} BB ii(t)

yields new crescendo diffusion correction closure (no extra cost!).

v
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A New Perspective on Moment Closure in Radiative Transfer

Various Py moment closures

Numerical results

uy(x) att=0.1 true solution| 0.5r uy(x)att=02 true solution
1r P, Closure P, closure
0.8t diffusion L T T [P diffusion
' cresc. diff. ol Ll cresc. diff.
0.6 ’
0.4t 0.2r
0.2} 0.1+ _",_‘
B~ Prig
e : N\, ~...... ----- ___,--' o’
0 i ‘ . ; 0 .
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0.3r uy(x)att=03 true solution|  0.2F uy(x)att=0.4
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0.25) N
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0.2t = : [m==-cresc. diff.
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A New Perspective on Moment Closure in Radiative Transfer

Various P3 moment closures

Numerical results

uy(x) att=0.1 true solution 0.5 uyx)att=0.2 true solution
r «P,, closure PN closure
ost | diffusion corr. 04r e diffusion corr.
R cresc. diff. corr. ====cresc. diff. corr.
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v
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A New Perspective on Moment Closure in Radiative Transfer Numerical results

Geometry P7 solution

7 0
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5 2
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A New Perspective on Moment Closure in Radiative Transfer Reordered Py equations

Reordered Py equations

Even-odd ordering of moments:
n T ond 5 — T
U= (ug,up,...,upn)" and 4= (u1,u3,...,UdN+1, UdNS2y---)
Reordered advection matrix (here N = 2):
i 1
2/5 3/5

4/9 5/9

_ 3/7  4/7
5/11 6/11

o v

] 1/3 2/3

1
o> T

6/13

Optimal prediction approximation
Parabolic system
DOy ii(t)

Dpii(t) = —Cii(t) + =L

Diffusion matrix D = éé is positive definite.
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A New Perspective on Moment Closure in Radiative Transfer

Various parabolic moment closures

uo(x) att=0.1 true solution
e diffusion = RP

Reordered Py equations

0.5 yxatt=02
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0.3f
0.2

0.1}

true solution
diffusion = RPo

o . e 0
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0.15}f
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Reardeted]fnjeqtations
Conclusions
@ Optimal Prediction yields a new perspective on moment closure.
@ A wide variety of new closures can be derived by different
approximations of the memory convolution.

@ Crescendo diffusion is a very simple modification to diffusion, that
increases accuracy.

Future research directions
@ Solution and storage of the orthogonal dynamics.
@ Nonlinear measures = nonlinear closures?

@ More complex applications, application to kinetic gas dynamics.

M. Frank, B. S., Optimal prediction for radiative transfer: A new perspective on moment closure, arXiv:0806.4707 [math-ph]
B. S., M. Frank, Optimal prediction for moment models: Crescendo diffusion and reordered equations, arXiv:0902.0076

http://www-math.mit.edu/"seibold/research/truncation

v
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