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Schrödinger equation

The time-dependent one-body Schrödinger equation:

iε
∂Ψε

∂t
+

ε2

2
∆Ψε − V (x)Ψε = 0, x ∈ Rn ,

Ψε(t , x) = A(t , x)eiS(t ,x)/ε

It models: single electron in atoms, KS density functional
theory, Molecule Orbital theory ...

Numerical difficulties:
Ψε(t , x) is oscillatory of wave length O(ε).

Methods Mesh size Time step
Finite difference 1 o(ε) o(ε)
Time splitting spectral2 O(ε) ε-indep.

1
Markowich, Pietra, Pohl and Stimming

2
Bao, Jin and Markowich



Gaussian
beam

method

Xu Yang

Schrödinger
equation

Gaussian
beam
method -
Lagrangian
formulation

Gaussian
beam
method -
Eulerian
formulation

Numerical
results

Applications
in quantum
mechanics

Geometric optics - WKB analysis

WKB ansatz Ψε(t , x) = A(t , x)eiS(t ,x)/ε,

eikonal St +
1
2
|∇S|2 + V (x) = 0,

transport ρt +∇ · (ρ∇S) = 0, ρ(t , x) = |A(t , x)|2 .

Eikonal (Hamilton-Jacobi type) ⇒ singularity (caustics)
Figures from the review paper of Engquist and Runborg:

Caustics NOT physical Semiclassical limit
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Semiclassical limit + phase correction

Theorem 1. If V (x) is constant, by the stationary phase
method we have, away from caustics,

Ψε(x, t) ∼
K∑

k=1

A0(yk )√∣∣1 + tD2S0(yk )
∣∣ exp

(
i
ε

S(ξk , yk ) +
iπ
4

µk

)

where the phase

S(ξ, y) = ξ · x− ξ · y− (1/2) |ξ|2 t + S0(y),

has finitely many (K < ∞) stationary phases ξk and yk :

ξk = ∇S0(yk ), yk = x− t∇S0(yk ) ,

D2S0 is the Hessian matrix, and µk = sgn(D2S(ξk , yk )) is the
Keller-Maslov index of the k th branch.
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Gaussian beam method - motivation

Problems of the semiclassical limit: invalid at caustics

1 the density ρ(t , x) →∞ in the transport equation,
2 1 + tD2S0(yk ) is singular in the stationary phase method.

Computation around caustics is important in many applica
-tions, for example:

Seismic imaging Single-slit diffraction

Gaussian beam method, developed by Popov, allows
accurate computation around caustics.
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Beam-shaped ansatz

ϕε
la(t , x , y0) = A(t , y)eiT (t ,x ,y)/ε,

T (t , x , y) = S(t , y)+p(t , y)·(x−y)+
1
2
(x−y)>M(t , y)(x−y),

beam center:
dy
dt

= p(t , y), y(0) = y0.

Here S ∈ R, p ∈ Rn, A ∈ C, M ∈ Cn×n. The imaginary part of
M will be chosen so that ϕε

la has a Gaussian beam profile.
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Lagrangian formulation

Apply the beam-shaped ansatz to the Schrödinger equation:

center:
dy
dt

= p,

velocity:
dp
dt

= −∇yV ,

Hessian:
dM
dt

= −M2 −∇2
yV ,

phase:
dS
dt

=
1
2
|p|2 − V ,

amplitude:
dA
dt

= −1
2
(
Tr(M)

)
A.

The first two ODEs are called ray tracing equations, and the
Hessian M satisfies the Riccati equation.
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Validity at caustics and beam summation

M, A could be solved via the dynamic ray tracing equations:

dP
dt

= R,
dR
dt

= −(∇2
yV )P,

M = RP−1, A =
(
(det P)−1A2

0

)1/2
,

R(0) = M(0) = ∇2
yS0(y) + iI, P(0) = I.

Ralston (82, wave-type eqn), Hagedorn (80, Schrödinger)
proved the validity of the Gaussian beam solution at caustics:
P complexified =⇒ P never singular =⇒ A always finite.

The Gaussian beam summation solution (Hill, Tanushev):

Φε
la(t , x) =

∫
Rn

(
1

2πε

) n
2

rθ(x − y(t , y0))ϕ
ε
la(t , x , y0)dy0.
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Level set method

The level set method has been developed to compute the
semiclassical limit of the Schrödinger equation. (Jin-Liu-Osher-Tsai)

The idea is to build the velocity u = ∇yS into the intersection
of zero level sets of phase-space functions φj(t , y , ξ), i.e.

φj(t , y , ξ) = 0, at ξ = u(t , y), j = 1, · · · , n.

φ = (φ1, · · · , φn) satisfies the Liouville equation:

∂tφ + ξ · ∇yφ−∇yV · ∇ξφ = 0.
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Eulerian formulation I - semiclassical limit

Lagragian formulation =⇒ Eulerian formulation
� �

ODEs =⇒ PDEs
� �
d
dt

=⇒ L = ∂t + ξ · ∇y −∇yV · ∇ξ

As shown by Jin, Liu, Osher and Tsai,

velocity: Lφ = 0,

phase: LS =
1
2
|ξ|2 − V ,

amplitude: LA =
1
2

Tr
(
(∇ξφ)−1∇yφ

)
A.
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Eulerian formulation II - semiclassical limit

If one introduces the new quantity

f (t , y , ξ) = A2(t , y , ξ)det(∇ξφ),

then f (t , y , ξ) satisfies the Liouville equation

Lf = 0.

The level set method for the semiclassical limit still suffers
caustics where det(∇ξφ) = 0.

Motivated by the Gaussian beam method, we need to
complexify the Liouville equation for φ.
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Construct the Hessian function

∂

∂y
φ(t , y , u(t , y)) = 0 ⇒ ∇2

yS = ∇yu = −∇yφ(∇ξφ)−1

� � �

Recall the Lagrangian formulation: M = R P−1

Conjecture: R = −∇yφ, P = ∇ξφ.

Complex R and P =⇒ complex φ
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Conjecture verification

The first two lines are equivalent to each other once they
have the same initial conditions:

φ0(y , ξ) = −iy + (ξ −∇yS0)

R(0) = ∇2
yS0(y) + iI, P(0) = I.
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Eulerian formulation - Gaussian beam

Step 1: Lφ = 0, φ0(y , ξ) = −iy + (ξ −∇yS0).

Step 2: compute ∇yφ and ∇ξφ M = −∇yφ(∇ξφ)−1.

Step 3: solve S either by LS =
1
2
|ξ|2 − V or

path integral S(t , x) =

∫ x

a
u(t , s)ds + Constant.

Step 4: Lf = 0, f0(t , y , ξ) = A0(y)2,

Step 5: A = (det(∇ξφ)−1f )1/2.

Parallel to Ralston’s proofs,
φ complexified ⇒ ∇ξφ non-degenerate ⇒ A never blows up



Gaussian
beam

method

Xu Yang

Schrödinger
equation

Gaussian
beam
method -
Lagrangian
formulation

Gaussian
beam
method -
Eulerian
formulation

Numerical
results

Applications
in quantum
mechanics

Eulerian Gaussian beam summation

Define

ϕε
eu(t , x , y , ξ) = A(t , y , ξ)eiT (t ,x ,y ,ξ)/ε,

where

T = S + ξ · (x − y) +
1
2
(x − y)>M(x − y),

Eulerian Gaussian beam summation formula:

Φε
eu(t , x) =

∫
Rn

∫
Rn

(
1

2πε

) n
2

rθ(x − y)ϕε
euΠn

j=1δ(Re[φj ])dξdy ,

rθ is a truncation function with rθ ≡ 1 in a ball of radius θ > 0
about the origin.
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Computing the summation integral

Method 1: Discretized delta function integral (Wen, in 1D).

Method 2: Integrate ξ out first:

Φε
eu(t , x) =

∫
Rn

(
1

2πε

) n
2

rθ(x − y)
∑

k

ϕε
eu(t , x , y , uk )

|det(Re[∇ξφ]ξ=uk )|
dy ,

where uk , k = 1, · · · , K are the velocity branches.
Problem: det

(
Re[∇ξφ]

)
= 0 at caustics.

Solution: Split the integral into two parts:

L1 =
{

y
∣∣∣∣∣ det(Re[∇pφ](t , y , pj))

∣∣ ≥ τ
}

L2 =
{

y
∣∣∣∣∣ det(Re[∇pφ](t , y , pj))

∣∣ < τ
}

The integration on L1 is regular; the integration on L2 could
be solved by the semi-Lagrangian method (Leung-Qian-Osher).
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Efficiency and accuracy

Efficiency:

Methods Mesh size Time step
Finite difference o(ε) o(ε)
Time splitting spectral O(ε) ε-indep.

Gaussian beam O(
√

ε) O(ε
2
p )

p: numerical orders of accuracy in time.

Accuracy: O(
√

ε) in caustic case, O(ε) in no caustic case.

It could be easily generalized to higher order Gaussian beam
methods by including more terms in the asymptotic ansatz.
Tanushev-Runborg-Motamed
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1D example

Free motion particles with zero potential V (x) = 0. The initial
conditions for the Schrödinger equation are given by

A0(x) = e−25x2
, S0(x) = −1

5
log(2 cosh(5x)).

which implies that the initial density and velocity are

ρ0(x) = |A0(x)|2 = exp(−50x2),

u0(x) = ∂xS0(x) = − tanh(5x).

This allows for the appearance of cusp caustics.
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Velocity contour



Gaussian
beam

method

Xu Yang

Schrödinger
equation

Gaussian
beam
method -
Lagrangian
formulation

Gaussian
beam
method -
Eulerian
formulation

Numerical
results

Applications
in quantum
mechanics

circle: Schrödinger square: Geometric optics cross: Phase correction star: Gaussian beam


GBmovie.mpeg
Media File (video/mpeg)
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Convergence rate and mesh size

Convergence orders: 0.9082 in `1 norm, 0.8799 in `2 norm and
0.7654 in `∞ norm.

Mesh size: ∆y ∼ O(
√

ε)
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2D example

Take the potential V (x1, x2) = 10 and the initial conditions of
the Schrödinger equation as

A0(x1, x2) = e−25(x2
1 +x2

2 ),

S0(x1, x2) = −1
5
(log(2 cosh(5x1)) + log(2 cosh(5x2))).

then the initial density and two components of the velocity are

ρ0(x1, x2) = exp(−50(x2
1 + x2

2 )),

u0(x1, x2) = − tanh (5x1)

v0(x1, x2) = − tanh (5x2).
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Amplitude at ε = 0.001 and Tfinal = 0.5
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Schrödinger equation with periodic structure

iε
∂Ψε

∂t
= −ε2

2
∂2

∂x2 Ψε + VΓ(
x
ε
)Ψε + U(x)Ψε, x ∈ R ,

It models: electrons in the perfect crystals
Bloch band decomposition:

H(k , z) :=
1
2
(−i∂z + k)2 + VΓ(z), z =

x
ε

H(k , z)χm(k , z) = Em(k)χm(k , z),

χm(k , z + 2π) = χm(k , z), z ∈ R, k ∈ (−1/2, 1/2).

Modified WKB ansatz:

Ψε(t , x) =
∞∑

m=1

am(t , x)χm(∂xSm,
x
ε
)eiSm(t ,x)/ε.
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Equations in the m-th band

Eikonal-transport equations:

∂tSm + Em(∂xSm) + U(x) = 0 ,

∂tam + E ′m(∂xSm)∂xam +
1
2

am∂x
(
E ′m(∂xSm)

)
+ βmam = 0.

Liouville-type equations:

Lm = ∂t + E ′m(ξ) · ∂y − U ′(y)∂ξ,

Lmφm = 0,

LmSm = E ′m(ξ)ξ − Em(ξ)− U(y),

Lmam =
1
2

∂yφm

∂ξφm
am − γmam.

βm, γm are constants related to χm.
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Band structure for VΓ(z) = cos(z)
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Numerical simulation for ε = 1/512

Initial conditions:

A0(x , z) = e−50(x+0.5)2
cos z, S0(x) = 0.3x + 0.1 sin x .

External potential: U(x) = 0
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Schrödinger-Poisson equations


iεΨε

t = −ε2

2
Ψε

xx + V ε(x)Ψε,

∂xxV ε = K
(√

2π
10 − |Ψε(x , t)|2

)
, Eε =

∂V ε

∂x
.

A simple model of the radiation-matter interaction system, for
example, in nano-optics, mean field theory...

K = +1 Focusing potential
K = −1 Defocusing potential

Initialization:

A0(x) = e−25x2
, S0(x) =

1
π

cos(πx).
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Convergence results
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Numerical simulation ε = 1/4096
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Thank You!

Questions?


	Schrödinger equation and its semiclassical limit
	Gaussian beam method - Lagrangian formulation
	Gaussian beam method - Eulerian formulation
	Numerical results
	Applications in quantum mechanics

