

KI-Net: Kinetic description of emerging challenges in multiscale problems of natural sciences

An NSF Research Network in Mathematical Sciences

Workshop Announcement

Kinetic Description of Social Dynamics: From Consensus to Flocking November 5-9, 2012

Center for Scientific Computation And Mathematical Modeling (CSCAMM) University of Maryland, College Park

celona

Organizers

Irene Gamba	University of Texas at Austin
Pierre-Emmanuel Jabin	University of Maryland
Shi Jin	University of Wisconsin-Madison
Christian Ringhofer	Arizona State University
Eitan Tadmor	University of Maryland

Confirmed Participants

il Ariel	Bar Ilan University
ieter Armbruster	Arizona State University
shel Ben-Jacob	Tel Aviv University
li Ben-Naim	Los Alamos National Laboratory
osé Carrillo de la Plata	Universitat Autònoma de Barcelo
ain Couzin	Princeton University
abio Fagnani	Politecnico di Torino
mic Frouvelle	University of Crete
rene Gamba	University of Texas at Austin
ierre-Emmanuel Jabin	University of Maryland
hi Jin	University of Wisconsin-Madison
rygve Karper	University of Maryland
aomi Leonard	Princeton University
ébastien Motsch	University of Maryland
erek Paley	University of Maryland
enedetto Piccoli	University of Rutgers-Camden
homas Dav	Université Claude Pernard Lyon

Image courtesy of Sébastien Motso

Scientific Background

The dynamics of many social and economic networks are described by multi-agent models, in which each participant interacts with the others according to certain deterministic or stochastic rules. The underlying topology of those interactions is not necessarily Euclidean, but governed by a graph, reflecting the fact that agents react to local gradients around them rather than to a given state. Continuum approaches based on kinetic description and coupled with fluid theory provide new insights by bypassing the difficulties related to the discrete nature of such networks.

Christian Ringhofer Eitan Tadmor

Arizona State University University of Maryland

> A limited number of openings are available. To apply, complete the application before August 31, 2012

For more information and to apply: www.ki-net.umd.edu

Center for Scientific Computation And Mathematical Modeling (CSCAMM) CSIC Building #406, Paint Branch Drive, University of Maryland, College Park CSCAMM is a part of the College of Computer, Mathematical and Natural Sciences

