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Patlak-Keller-Segel (PKS) Model

[Patlak; 1953], [Keller, Segel; 1970, 1971]

 ρt +∇·(χρ∇c) = ∆ρ

εct = ∆c− c+ ρ
x = (x, y)T ∈ Ω, t > 0

ρ(x, y, t): cell density

c(x, y, t): chemoattractant concentration

χ: chemotactic sensitivity constant

ε = 1: parabolic case ε = 0: parabolic-elliptic case

• Solutions of this system may blow up in finite time

• This blow-up represents a mathematical description of a cell

concentration phenomenon that occur in real biological systems
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Näıve Finite-Difference Scheme

{
ρt + (χρcx)x + (χρcy)y = ρxx + ρyy

ct = cxx + cyy − c+ ρ
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Example — Blowup at the Center of a Square Domain

{
ρt + (χρcx)x + (χρcy)y = ρxx + ρyy

ct = cxx + cyy − c+ ρ

• Square domain Ω = [−1
2,

1
2]× [−1

2,
1
2]

• Initial conditions:

ρ(x, y,0) = 1000 e−100(x2+y2), c(x, y,0) = 500 e−50(x2+y2)

• Neumann boundary conditions

According to [Harrero, Velázquez; 1997], both ρ- and c-

components of the solution are expected to blow up at the origin

in finite time.
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Understanding the Nature of Instability

 ρt + (χρ cx)x + (χρ cy)y = ρxx + ρyy

ct = cxx + cyy − c+ ρ

Denote u := cx and v := cy and rewrite the PKS system
ρt + (χρu)x + (χρ v)y = ρxx + ρyy

ut − ρx = uxx + uyy − u

vt − ρy = vxx + vyy − v

This is a system of convection-diffusion-reaction equations:

Ut + f(U)x + g(U)y = ∆U + R(U)

U := (ρ, u, v)T , f(U) := (χρu,−ρ,0)T , g(U) := (χρv,0,−ρ)T ,

R(U) := (0,−u,−v)T .
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Ut + f(U)x + g(U)y = ∆U + R(U) ρ
u
v


t

+

 χρu
−ρ
0


x

+

 χρv
0
−ρ


y

=

 ∆ρ
∆u
∆v

−
 0
u
v



The Jacobians of f and g are:

∂f

∂U
=

 χu χρ 0
−1 0 0

0 0 0

 , ∂g

∂U
=

 χv 0 χρ
0 0 0
−1 0 0


Their eigenvalues are:

λf
1,2 =

χ

2

(
u±

√
u2 −

4ρ

χ

)
, λf

3 = 0

λ
g
1,2 =

χ

2

(
v ±

√
v2 −

4ρ

χ

)
, λ

g
3 = 0
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The eigenvalues are:

λf
1,2 =

χ

2

(
u±

√
u2 −

4ρ

χ

)
, λf

3 = 0

λ
g
1,2 =

χ

2

(
v ±

√
v2 −

4ρ

χ

)
, λ

g
3 = 0

The key observation: the “purely” convective system

Ut + f(U)x + g(U)y = 0

is

• hyperbolic (real e-values) if both χu2 ≥ 4ρ and χv2 ≥ 4ρ

• elliptic (complex e-values) if χmin(u2, v2) < 4ρ

Notice that the ellipticity condition is satisfied in generic

cases, for example, when u = cx = 0 and ρ > 0

The operator splitting approach may not be applicable!
9



Semi-Discrete Positivity Preserving Upwind Scheme{
ρt + (χρcx)x + (χρcy)y = ρxx + ρyy

ct = cxx + cyy − c+ ρ

Computational cells: Ij,k := [x
j−1

2
, x
j+1

2
]× [y

k−1
2
, y
k+1

2
]

The cell averages of ρ, ρ̄j,k(t) :=
1

∆x∆y

∫ ∫
Ij,k

ρ(x, y, t) dxdy,

and the point values of c, cj,k := c(xj, yk, t),

are evolved in time by solving the system of ODEs:

dρ̄j,k

dt
=−
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2,k

∆x
−
H
y

j,k+1
2
−Hy
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(∆x)2
+
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(∆y)2

dcj,k

dt
=
cj−1,k − 2cj,k + cj+1,k

(∆x)2
+
cj,k−1 − 2cj,k + cj,k+1

(∆y)2
− cj,k + ρ̄j,k
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{ρ̄j,k(t)} → ρ̃(·, t)→
{
ρ

E,W,N,S
j,k (t)

}
→


Hx
j+1

2,k
(t)

H
y

j,k+1
2
(t)

→ {ρ̄j,k(t+∆t)}

(Discontinuous) piecewise-linear reconstruction:

ρ̃(x, y, t) := ρ̄j,k + (ρx)j,k(x− xj) + (ρy)j,k(y − yk), (x, y) ∈ Ij,k
It is conservative, second-order accurate and non-oscillatory

provided the slopes are computed by a nonlinear limiter

11



Example — the Generalized Minmod Limiter

ρ̃(x, y, t) := ρ̄j,k + (ρx)j,k(x− xj) + (ρy)j,k(y − yk), (x, y) ∈ Ij,k

(ρx)j,k = minmod

(
θ
ρ̄j,k − ρ̄j−1,k

∆x
,
ρ̄j+1,k − ρ̄j−1,k

2∆x
, θ

ρ̄j+1,k − ρ̄j,k
∆x

)

(ρy)j,k = minmod

(
θ
ρ̄j,k − ρ̄j,k−1

∆y
,
ρ̄j,k+1 − ρ̄j,k−1

2∆y
, θ

ρ̄j,k+1 − ρ̄j,k
∆y

)

where θ ∈ [1,2] and

minmod(z1, z2, ...) :=


min
j
{zj}, if zj > 0 ∀j

max
j
{zj}, if zj < 0 ∀j

0, otherwise
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{ρ̄j,k(t)} → ρ̃(·, t)→
{
ρ

E,W,N,S
j,k (t)

}
→


Hx
j+1

2,k
(t)

H
y

j,k+1
2
(t)

→ {ρ̄j,k(t+∆t)}

ρ
E,W,N,S
j,k (t) are the point values of

ρ̃(x, y, t) = ρ̄j,k + (ρx)j,k(x− xj) + (ρy)j,k(y − yk), (x, y) ∈ Ij,k
at (x

j+1
2
, yk), (x

j−1
2
, yk), (xj, yk+1

2
) and (xj, yk−1

2
), respectively:

ρE
j,k := ρ̃(x

j+1
2
− 0, yk) = ρ̄j,k +

∆x

2
(ρx)j,k

ρW
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j−1
2
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∆x

2
(ρx)j,k

ρN
j,k := ρ̃(xj, yk+1

2
− 0) = ρ̄j,k +

∆y

2
(ρy)j,k

ρS
j,k := ρ̃(xj, yk−1

2
+ 0) = ρ̄j,k −

∆y

2
(ρy)j,k
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{ρ̄j,k(t)} → ρ̃(·, t)→
{
ρ

E,W,N,S
j,k (t)

}
→
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2,k
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Positivity Preserving Property

Theorem: The cell densities {ρ̄j,k(t)}, computed by the

above second-order semi-discrete upwind scheme with a

positivity preserving piecewise linear reconstruction for ρ, remain

nonnegative provided the initial cell densities are nonnegative,

the system of ODEs is discretized by a strong stability preserving

(SSP) ODE solver, and the following CFL condition is satisfied:

∆t ≤ min

{
∆x

8a
,

∆y

8b
,

(∆x)2(∆y)2

4((∆x)2 + (∆y)2)

}
where

a := χmax
j,k

{∣∣∣u
j+1

2,k

∣∣∣} , b := χmax
j,k

{∣∣∣v
j,k+1

2

∣∣∣}
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Idea of Proof:

ρ̄j,k(t+ ∆t)

=

[
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8
−
λχ
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8
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2

∣∣− vj,k−1

2
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ρS
j,k +

[
1

8
−
µχ

2

(∣∣vj,k+1

2

∣∣+ vj,k+1

2

)]
ρN
j,k

+
µχ

2

(∣∣vj,k+1

2

∣∣− vj,k+1

2

)
ρS
j,k+1 +

µχ

2

(∣∣vj,k−1

2

∣∣+ vj,k−1

2

)
ρN
j,k−1

+ρj,k

[
1

2
−∆t

(
2

(∆x)2
+

2

(∆y)2

)]
+ ∆t

[
ρj+1,k + ρj−1,k

(∆x)2
+
ρj,k+1 + ρj,k−1

(∆y)2

]
,

where λ ≡∆t/∆x and µ ≡∆t/∆y.

The new values {ρ̄j,k(t+ ∆t)} are linear combinations of the nonnegative
reconstructed point value {ρE

j,k, ρ
W
j,k, ρ

N
j,k, ρ

S
j,k} and cell averages {ρ̄j,k}.
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Example 1 — Blowup at the Center of a Square Domain

• Square domain Ω = [−1
2,

1
2]× [−1

2,
1
2]

• Radially symmetric bell-shaped initial data

ρ(x, y,0) = 1000 e−100(x2+y2), c(x, y,0) = 500 e−50(x2+y2)

• Neumann boundary conditions
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Or, in the logarithmic vertical scale:
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Example 2 — Blowup at the Center of a Square Domain

• Square domain Ω = [−1
2,

1
2]× [−1

2,
1
2]

• Initial conditions:

ρ(x, y,0) = 1000 e−100(x2+y2), c(x, y,0) ≡ 0

• Neumann boundary conditions

Properties:

• both ρ- and c-components of the solution are expected to
blow up at the origin in finite time;

• the blowup is expected to occur later than in Example 1;

• the diffusion initially dominates the concentration mechanism
and hence, the cells spread out and the cell density maximum
decreases at small times.
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Example 3 — Blowup at the Corner of a Square Domain

• Square domain Ω = [−1
2,

1
2]× [−1

2,
1
2]

• Initial conditions:

ρ(x, y,0) = 1000 e−100
(
(x−0.25)2+(y−0.25)2

)
, c(x, y,0) ≡ 0

• Neumann boundary conditions

The solution is expected to blow up at the corner (1
2,

1
2)
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Two-Species Chemotaxis Models


(ρ1)t + χ1∇ · (ρ1∇c) = µ1∆ρ1

(ρ2)t + χ2∇ · (ρ2∇c) = µ2∆ρ2

∆c+ γ1ρ1 + γ2ρ2 − ζc = 0

x ∈ Ω ⊂ Rd, t > 0

Assume that

χ1 < χ2

According to

[Wolansky; 2002]

[Espejo, Stevens, Velázquez; 2010]

[Conca, Espejo, Vilches; 2011]

[Espejo, Stevens, Suzuki; 2012]

[Espejo, Vilches, Conca; to appear]

the solution may either be globally regular or both ρ1 and ρ2
would blow up within a finite time
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More precisely, for the IVP for the system
(ρ1)t + χ1∇ · (ρ1∇c) = µ1∆ρ1

(ρ2)t + χ2∇ · (ρ2∇c) = ∆ρ2

∆c+ ρ1 + ρ2 − c = 0

x ∈ Ω ≡ Rd, t > 0

the behavior of the solution depends on the total masses

θ1 :=
∫
Ω

ρ1(x, t) dx =
∫
Ω

ρ0
1(x) dx, θ2 :=

∫
Ω

ρ2(x, t) dx =
∫
Ω

ρ0
2(x) dx

θ1

χ1

8πµ1

χ1

8πµ1

χ2

8π

θ2

D

A

C

B
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θ1

χ1

8πµ1

χ1

8πµ1

χ2

8π

θ2

D

A

C

B

• There is a global classical solution in Region A

• In Region C, ρ2 blows up faster than ρ1

• In Region D, ρ1 and ρ2 blow up at the same rate

The question on the solution behavior in Region B remains open
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Example 1 — Global Existence in Region A

• Square domain Ω = [−3
2,

3
2]× [−3

2,
3
2]

• Initial conditions:

ρ1(x, y,0) ≡ ρ2(x, y,0) = 50 e−100(x2+y2)

• Parameters:

χ1 = 1, χ2 = 10, µ1 = 1

• Neumann boundary conditions
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The magnitude of both ρ1 and ρ2 decays and the solution remains

smooth and bounded
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Example 2 — ρ2 Blows Up Faster than ρ1 in Region C

• Square domain Ω = [−3
2,

3
2]× [−3

2,
3
2]

• Initial conditions:

ρ1(x, y,0)) = 10 e−100(x2+y2), ρ2(x, y,0)) = 90 e−100(x2+y2)

• Parameters:

χ1 = 6, χ2 = 100, µ1 = 1

• Neumann boundary conditions

29



200× 200 vs. 400× 400

The magnitude of ρ2 increases by a factor of about 4, which

clearly indicates that by this time ρ2 has already blown up:

max
j,k

(ρ2)j,k ∼
1

h2
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200× 200 vs. 400× 400

ρ1 increases only by a factor of about 2, which means that ρ1

blows up at a lower rate (no δ-type singularity forms)

max
j,k

(ρ1)j,k ∼
1

h
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Example 3 — Different Types of Blow-Up of ρ1 and ρ2 in

Region B

• Square domain Ω = [−3,3]× [−3,3]

• Initial conditions:

ρ1(x, y,0) ≡ ρ2(x, y,0) = 50 e−100(x2+y2)

• Parameters:

χ1 = 1, χ2 = 20, µ1 = 1

• Neumann boundary conditions
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This numerical experiment indicates that it is possible that in
Region B one of the species aggregates and its density blows
up, while the density of the second component remains bounded
with decaying magnitude...

However...
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However, this contradicts the analytical results, obtained for the

above 2-species system in R2.

We take a large square domain and use the Neumann boundary

conditions, which are typically used to represent open boundary

conditions on truncated computational domains. In none of the

numerical examples, the solution behavior was affected by the

boundary conditions, that is, all of the numerical solutions remain

flat near the boundaries. This makes us to believe that the

solution in R2 should behave similarly.

Q: How to explain the contradiction?
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A: More careful numerical experiments show that:

The magnitude of ρ2 increases by a factor of about 4, that is,

ρ2 develops a δ-type singularity:

max
j,k

(ρ2)j,k ∼
1

h2

while ρ1 blows up at a very slow rate:

max
j,k

(ρ1)j,k ∼
1

h1/4

Numerical Challenge: How to compute such solutions?
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Coupled Chemotaxis-Fluid Model



nt + u · ∇n+ χ∇ · [nr(c)∇c] = Dn∆n

ct + u · ∇c = Dc∆c− nκr(c)
ρ(ut + u · ∇u) +∇p = η∆u− n∇Φ

∇ · u = 0

n: concentration of bacteria

c: concentration of oxygen

χ: chemotactic sensitivity constant

u: fluid velocity, ρ: density, p: pressure, η: viscosity

Dn and Dc: diffusion constants
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nt + u · ∇n+ χ∇ · [nr(c)∇c] = Dn∆n

ct + u · ∇c = Dc∆c− nκr(c)
ρ(ut + u · ∇u) +∇p = η∆u− n∇Φ

∇ · u = 0

∇Φ := Vbg(ρb − ρ)z: gravitational force exerted by a bacterium

onto the fluid;

z: upwards unit vector, Vb: volume of the bacterium

g = 9.8m/s2: gravitation acceleration

ρb: density of bacteria, which are about 10% denser than water

r(c) = θ(c− c∗): dimensionless cut-off function, which models an

inactivity threshold of the bacteria due to low oxygen supply
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nt + u · ∇n+ χ∇ · [nr(c)∇c] = Dn∆n

ct + u · ∇c = Dc∆c− nκr(c)
ρ(ut + u · ∇u) +∇p = η∆u− n∇Φ

∇ · u = 0

• Bacteria and oxygen are convected with fluid and diffuse

• Oxygen is consumed

• Bacteria are directed towards high oxygen gradient
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Bioconvection

Bioconvection is the spontaneous formation of patterns in
suspensions of swimming micro-organisms

Organisms exhibiting bioconvection have two things in common:
they are denser than water; they swim upwards in still water.

Example: Complex bioconvection patterns are observed when a
(well-stirred) suspension of bacterial cells (e.g. Bacillus subtilis)
is placed in a chamber with its upper surface open to the
atmosphere.

• The cells are aerotactic

• Upswimming causes the micro-organisms to accumulate in the
upper regions of the fluid

• This distribution is unstable since the cells are denser than
water

• The instability leads to the formation of patterns in the form
of descending plumes
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The initial suspension of of

the aerobic bacteria B. subtilis

is well stirred and quasi-

homogeneous.

• A high concentration layer

forms near the surface as

cell swim up following the

oxygen gradient

• Instabilities form at this

layer and finger-shaped plumes

begin to sink downwards

• Turn into mushroom-shaped

plumes in the areas where

the oxygen concentration

is below the aerotaxis threshold
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Non-dimensionalization and switching to vorticity formulation:

nt + div(un) + α∇ · [r(c)n∇c] = ∆n

ct + div(uc) = δ∆c− βr(c)n
ωt + div(uω) = Sc ∆ω − γ Sc nx

∆ψ = −ω

ω := vx− uy: vorticity, ψ: stream-function, u = ψy, v = −ψx

Initial Conditions in Ω = [−a, a]× [0, d]:

n(x, y,0) = n0(x, y), c(x, y,0) = c0(x, y), u(x, y,0) = u0(x, y)

Boundary Conditions in Ω = [−a, a]× [0, d]:

αr(c)ncy − ny = 0, c = 1, v = 0, uy = 0, ∀(x, y) : y = d

ny = cy = 0, u = v = 0, ∀(x, y) : y = 0

At the sides of Ω (x = ±a) the boundary conditions are periodic
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Hybrid Finite-Volume Finite-Difference Scheme



nt + [(u+ αr(c)cx)n]x + [(v + αr(c)cy)n]y = nxx + nyy,

ct + (uc)x + (vc)y = δ(cxx + cyy)− βr(c)n
ωt + uωx + vωy = Sc(ωxx + ωyy)− γ Sc nx,

ψxx + ψyy = −ω.

• n and c are evolved in time by solving the chemotaxis equations

using the second-order finite-volume upwind method

• ω is evolved on a staggered grid by applying the second-order

centered-difference scheme to the vorticity equation

• u and v are recovered from the stream-function ψ by

solving the elliptic equation followed by the centered-difference

approximations of the velocities in u = ψy and v = −ψx

IMPORTANT: The scheme must be positivity preserving!
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Finite-Volume Upwind Scheme

j+1/2j−1/2
j

k

k−1/2

k+1/2

We denote the cell averages of
q := (n, c)T by

qj,k(t) :=
1

∆x∆y

∫∫
Cj,k

q(x, y, t) dx dy

∫∫
Cj,k

nt +
∫∫
Cj,k

[(u+ αr(c)cx)n]x +
∫∫
Cj,k

[(v + αr(c)cy)n]y =
∫∫
Cj,k

(nxx + nyy)

∫∫
Cj,k

ct +
∫∫
Cj,k

(uc)x +
∫∫
Cj,k

(vc)y =
∫∫
Cj,k

δ(cxx + cyy)−
∫∫
Cj,k

βr(c)n
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d

dt
nj,k ≈ −

(u+ αr(c)cx)n
∣∣∣∣
(x
j+1

2
,yk)
− (u+ αr(c)cx)n

∣∣∣∣
(x
j−1

2
,yk)

∆x

−

(v + αr(c)cy)n
∣∣∣∣
(xj,yk+1

2
)
− (v + αr(c)cy)n

∣∣∣∣
(xj,yk−1

2
)

∆y

+

nx

∣∣∣∣
(x
j+1

2
,yk)
− nx

∣∣∣∣
(x
j−1

2
,yk)

∆x
+

ny

∣∣∣∣
(xj,yk+1

2
)
− ny

∣∣∣∣
(xj,yk−1

2
)

∆y

d

dt
cj,k ≈ −

u c

∣∣∣∣
(x
j+1

2
,yk)
− u c

∣∣∣∣
(x
j−1

2
,yk)

∆x
−

v c

∣∣∣∣
(xj,yk+1

2
)
− v c

∣∣∣∣
(xj,yk−1

2
)

∆y

+ δ

cx

∣∣∣∣
(x
j+1

2
,yk)
− cx

∣∣∣∣
(x
j−1

2
,yk)

∆x
+ δ

cy

∣∣∣∣
(xj,yk+1

2
)
− cy

∣∣∣∣
(xj,yk−1

2
)

∆y
+ βr(cj,k)nj,k
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Semi-Discrete Finite-Volume Upwind Scheme

d

dt
qj,k =−

Hx
j+1

2,k
−Hx

j−1
2,k

∆x
−

Hy

j,k+1
2
−Hy

j,k−1
2

∆y

+
Px
j+1

2,k
−Px

j−1
2,k

∆x
+

Py
j,k+1

2
−Py

j,k−1
2

∆y
+ Rj,k,

Hx
j±1

2,k
≈
(

(u+ αr(c)cx)n
∣∣∣∣
(x
j±1

2
,yk)

, u c

∣∣∣∣
(x
j±1

2
,yk)

)T

Hy

j,k±1
2
≈

(
(v + αr(c)cy)n

∣∣∣∣
(xj,yk±1

2
)
, v c

∣∣∣∣
(xj,yk±1

2
)

)T

Px
j±1

2,k
≈
(
nx

∣∣∣∣
(x
j±1

2
,yk)

, δcx

∣∣∣∣
(x
j±1

2
,yk)

)T

Py
j,k±1

2
≈
(
ny

∣∣∣∣
(xj,yk±1

2
)
, cy

∣∣∣∣
(xj,yk±1

2
)

)T
, Rj,k = (0, βr(cj,k)nj,k)T
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Hyperbolic Fluxes

Hx
j±1

2,k
≈
(

(u+ αr(c)cx)n
∣∣∣∣
(x
j±1

2
,yk)

, u c

∣∣∣∣
(x
j±1

2
,yk)

)T

Hy

j,k±1
2
≈

(
(v + αr(c)cy)n

∣∣∣∣
(xj,yk±1

2
)
, v c

∣∣∣∣
(xj,yk±1

2
)

)T

Hx,(i)

j+1
2,k

=


a

(i)

j+1
2,k

qE,(i)
j,k , if a

(i)

j+1
2,k

> 0,

a
(i)

j+1
2,k

qW,(i)
j+1,k , if a

(i)

j+1
2,k

< 0,
i = 1,2

Hy,(i)

j,k+1
2

=


b
(i)

j,k+1
2
qN,(i)
j,k , if b

(i)

j,k+1
2
> 0,

b
(i)

j,k+1
2
qS,(i)
j,k+1 , if b

(i)

j,k+1
2
< 0,

i = 1,2

Local speeds:

a
(1)

j+1
2,k

= u
j+1

2,k
+ αr(c

j+1
2,k

)(cx)
j+1

2,k
, a

(2)

j+1
2,k

= u
j+1

2,k

b
(1)

j,k+1
2

= v
j,k+1

2
+ αr(c

j,k+1
2
)(cy)

j,k+1
2
, b

(2)

j,k+1
2

= v
j,k+1

2
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Parabolic Fluxes

j+1/2j−1/2
j

k

k−1/2

k+1/2
Px
j±1

2,k
≈
(
nx

∣∣∣∣
(x
j±1

2
,yk)

, δcx

∣∣∣∣
(x
j±1

2
,yk)

)T

Py
j,k±1

2
≈
(
ny

∣∣∣∣
(xj,yk±1

2
)
, δcy

∣∣∣∣
(xj,yk±1

2
)

)T

Px
j+1

2,k
=
(nj+1,k − nj,k

∆x
, δ

cj+1,k − cj,k
∆x

)T

Py
j,k+1

2
=

(
nj,k+1 − nj,k

∆y
, δ

cj,k+1 − cj,k
∆y

)T
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Centered-Difference Scheme for the Vorticity Equation

ωt + uωx + vωy = Sc(ωxx + ωyy)− γ Sc nx,

ψxx + ψyy = −ω.

Evolve the point values of ω at the corners of the finite-volume
cells:

d

dt
ω
j+1

2,k+1
2

= −u
j+1

2,k+1
2

ω
j+3

2,k+1
2
− ω

j−1
2,k+1

2

2∆x
− v

j+1
2,k+1

2

ω
j+1

2,k+3
2
− ω

j+1
2,k−

1
2

2∆y

+ Sc

[ω
j+3

2,k+1
2
− 2ω

j+1
2,k+1

2
+ ω

j−1
2,k+1

2

(∆x)2
+
ω
j+1

2,k+3
2
− 2ω

j+1
2,k+1

2
+ ω

j+1
2,k−

1
2

(∆y)2

]

− γ Sc(nx)
j+1

2,k+1
2

(nx)
j+1

2,k+1
2

is computed by the centered-difference formula

(nx)
j+1

2,k+1
2

=
(nN
j+1,k + nS

j+1,k+1)− (nN
j,k + nS

j,k+1)

2∆x
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Velocities

Once the point values of the vorticity {ω
j+1

2,k+1
2
} are evolved

• Solve the elliptic equation

ψxx + ψyy = −ω

• Obtain the point values of the stream-function at the same

set of points: {ψ
j+1

2,k+1
2
}

• Compute the velocities u and v:

u
j+1

2,k+1
2

=
ψ
j+1

2,k+3
2
− ψ

j+1
2,k−

1
2

2∆y
, v

j+1
2,k+1

2
= −

ψ
j+3

2,k+1
2
− ψ

j−1
2,k+1

2

2∆x

u
j+1

2,k
=
ψ
j+1

2,k+1
2
− ψ

j+1
2,k−

1
2

∆y
, v

j,k+1
2

= −
ψ
j+1

2,k+1
2
− ψ

j−1
2,k+1

2

∆x
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Boundary Conditions

Computational domain: Ω = [−a, a]× [0, d]

• The top part ∂Ωtop models a fluid-air surface preventing cell-
flux and providing full oxygen saturation:

αr(c)ncy−ny = 0, c = 1, ω = 0, ψ = 0, ∀(x, y) : y = d

• The bottom part ∂Ωbot model a solid bottom preventing cell-
and oxygen-flux:

ny = cy = 0, ψy = 0, ω = −ψyy, ∀(x, y) : y = 0

• At the sides of Ωside (x = ±a) the boundary conditions are
periodic.

Note that the Poisson equation implies ψxx = 0 at the lower
boundary y = 0, which together with the periodicity and
continuity gives ψ = Const at y = 0. Thus, v = 0 at y = 0
follows.
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Numerical Boundary Conditions

• The top part ∂Ωtop:

nj,kmax+1 := nj,kmaxe
α(1−cj,kmax), cj,kmax+1 = 1

ω
j+1

2,kmax+1
2

= ψ
j+1

2,kmax+1
2

= 0

where the boundary condition for n is obtained by taking into
account the fact that at the top c ∼ 1 and thus r(c) = 1 and by
integrating (lnn)y = αcy with respect to y from ykmax to ykmax+1

• The bottom part ∂Ωbot:

nj,0 := nj,1, cj,0 = cj,1

ω
j+1

2,
1
2

= −2
ψ
j+1

2,
3
2
− ψ

j+1
2,

1
2

(∆y)2
, ψ

j+1
2,−

1
2

= ψ
j+1

2,
3
2

• The two sides ∂Ωside are connected with periodic boundary
conditions
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Numerical Experiments

nt + div(un) + α∇ · [r(c)n∇c] = ∆n

ct + div(uc) = δ∆c− βr(c)n
ωt + div(uω) = Sc ∆ω − γ Sc nx

∆ψ = −ω

Computational domain: Ω = [−3,3]× [0,1]

Parameters set by the model: α = 10, δ = 5, Sc = 500

Cutoff function r(c), which modulates the oxygen consumption
rate:

r(c) =

{
1, if c ≥ 0.3,
0, if c < 0.3.

The numerical examples will vary the initial data and the two
remaining parameters β and γ
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Steady-States Solutions

β = 10, γ = 103

The constant initial data are

n0(x, y) ≡
π

40
, c0(x, y) ≡ 1, u0(x, y) ≡ 0
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Plume Formation and Merging Plumes:
Randomly Perturbed Homogeneous Initial Data

nt + div(un) + α∇ · [r(c)n∇c] = ∆n

ct + div(uc) = δ∆c− βr(c)n
ωt + div(uω) = Sc ∆ω − γ Sc nx,

∆ψ = −ω.

• β = 20 and γ = 2 · 103, which corresponds to a doubled

reference density compared to the homogeneous stationary

state

• Initial data:

n0(x, y) = 0.8 + 0.2ξ, c0(x, y) ≡ 1, u0(x, y) ≡ 0

where ξ is a random variable uniformly distributed in the

interval [0,1]
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Numerically Nonlinearly Stable Stationary Plumes
for Low Density Initial Data

• Same parameters β = 10, γ = 103 as for the homogeneous
stationary state

• Deterministic initial data (small, sinusoidal modulations
of the lower edge of an upper layer with a higher cell
concentration than at the bottom):

n0(x, y) =

{
1, if y > 0.499− 0.01 sin((x− 1.5)π)

0.5, otherwise

c0(x, y) ≡ 1, u0(x, y) ≡ 0

We study the time evolution of solutions from purely
deterministic initial data towards a stationary state of plumes
in the absence of oxygen cut-off (this case is referred to as the
shallow-chamber case).
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Switching-off Aerotaxis

Depletion of the high cell-concentration layer near the surface

and diffusion of the plumes.
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Stationary Plumes in the Presence of the
Oxygen Cut-Off for Large Density Data

• Parameters β = 102, γ = 104 correspond to a 10-times higher

reference cell-density

• Same deterministic initial data:

n0(x, y) =

{
1, if y > 0.499− 0.01 sin((x− 1.5)π)

0.5, otherwise

c0(x, y) ≡ 1, u0(x, y) ≡ 0

We study the effects of the oxygen cut-off on the formation and

stability of plumes by simply increasing the amount of cells.
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