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Patlak-Keller-Segel (PKS) Model

[Patlak; 1953], [Keller, Segel; 1970, 1971]

V-(xpVe) = A
{Pt‘|‘ (xpVe) p x= (N e, t>0

ect = Ac—c—+p

p(x,y,t): cell density
c(x,y,t): chemoattractant concentration
x. chemotactic sensitivity constant

e = 1: parabolic case e = 0: parabolic-elliptic case

e Solutions of this system may blow up in finite time

e [ his blow-up represents a mathematical description of a cell
concentration phenomenon that occur in real biological systems
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Naive Finite-Difference Scheme

{ pt + (xpcz)z + (Xpcy)y = pzz + pyy
Ct:Ca:w+ny—C+P

¢ Hz _ =T Hy _ Hy
dpj,k B j—l—%,k j_%’k . j’k—i_% j’k_% + D2p°
! dt Ax Ay OFk
dc.; k 2
== Dgcjk = ¢k + pjk
| dt
where
HT | = PItLE T Pjk Gk~ Cik
HY = PRk PiE Gkttt = Cjk

D2y, = Pitlk =~ 2Pk T Pj—1k 4 Pikt1” 2p5 Kk + Pjk—1
o (Ar)? ()2




Example — Blowup at the Center of a Square Domain

{ pt + (xpcz)z + (X,OCy)y = pxz T+ Pyy
Ct = Cxz + Ccyy —Cc+p

e Square domain 2 = [—%,%] X [—%,%]

e Initial conditions:

p(x,y,0) = 1000 6_100(x2+y2), c(x,y,0) = 500 e—50(@*+y°)
e Neumann boundary conditions
According to [Harrero, Velazquez; 1997], both p- and c-

components of the solution are expected to blow up at the origin
in finite time.
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Understanding the Nature of Instability

{ pt + (xpcz)z + (xp Cy)y = pxz T Pyy

Ct = Cxz +Cyy —C+p
Denote u := ¢y and v := ¢y and rewrite the PKS system

( pt+ (xpwa + (xpv)y = paa + pyy

9 ut_P:B:U:Ux'I‘Uyy—U

| Ut = Py = Vzz + Vyy — U
This is a system of convection-diffusion-reaction equations:

U, + £(U); + g(U)y = AU + R(U)

U = (p,u,v)!, £(U) := (xpu, —p,0)1, g(U) := (xpv, 0, —p)*,

R(U) := (0, —u, —v)’.



Ui +£(U)z + g(U)y = AU + R(U)

p XPU X PV Ap 0
U -+ —p -+ 0 = | Au | — | u
v/, O . —p /, Av v

The Jacobians of £ and g are:

of xu xp O 9 xv 0 xp
S 21 0 o], 9% _| 00 0
ouU 0 0 O 0 10 0

T heir eigenvalues are:

/\12__< i
-




The eigenvalues are:

The key observation: the “purely” convective system
Ui+ 1£(U)z +g(U)y =0
IS
e hyperbolic (real e-values) if both yu? > 4p and yv?2 > 4p
e clliptic (complex e-values) if xmin(u?,v2) < 4p

Notice that the ellipticity condition is satisfied in generic
cases, for example, when u =c; =0 and p > 0

T he operator splitting approach may not be applicable!
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Semi-Discrete Positivity Preserving Upwind Scheme

{ pt + (xpcz)e + (Xpcy)y = paz + pyy
Ct:szc+ny—C+/0
Computational cells: I} 1= [xj

_%7 xj—|—%] X [yk_%a yk—|—%]

1
AxAy

The cell averages of p, p; (1) :=

// p(x,y,t) dzdy,
[j,k:

and the point values of ¢, ¢, = c(xj,yg, 1),

are evolved in time by solving the system of ODEs:

,
_ H? — H” HY — HY
dpje _ “gtzk i3k gk+ts k3
dt Ax Ay
Pi—1k — 2Pjk T Pj+1k | Pjk—1— 2Pjk T Pjk+1

_I_

| + (D)2 (By)?

ek _Ci—1k = 2%k T Cit1k | Cik=1 7 26k ¥ k1
| dt (Az)? (Ay)?2

— Cj kT Pjk
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{

b= () — (oSNNS} - TR G A}

(Discontinuous) piecewise-linear reconstruction:

plx,y,t) = pjr+ (pz) iz —z;) + (oy) iy —yr),  (x,y) € L}

It is conservative, second-order accurate and non-oscillatory
provided the slopes are computed by a nonlinear limiter
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Example — the Generalized Minmod Limiter

plx,y,t) i = pig+ (pz)j (e —2x;) + (py) iy —y), (z,y) € 1

(pz): 1 = minmod (0 Pik — Pi=1k Pi+1lk = Pj=1k ,Pj+1k ~ ﬁj,k>
J> : ’

Ax 2Ax Ax

Pik — Pjk—1 Pjk+1— Pjk—1 9 Pjk+1 — 5j,k>

. = minmod | 0
(Py)g,k ( Ay 2y Ay

where 0 € [1,2] and
(min{z;}, if 2, >0 Vj
J

minmod(zq, 22, ...) =

7\

max{z;}, if z; <0 Vj
J

0, otherwise

\
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E,W,N,S qu—l—l (D |
SR o N OF R A B G YD)
pi,;W’N’S(t) are the point values of

: , (x4, and (x, , respectively:
% yk) ( 9 yk—l—l> ( J ykz—%) P \%

E . ~

W . ~ ) A
N _ A

ST = X, —0) = p;

s . _ Ay
p7E = ,o(wj,yk_% +0) =pj— > (Py)g k
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u . =
j+5.k

Y

Hy

» — {pj k(t+AL)}

= . V.
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vj,k+% o Ay

if u. 1 >0

j+§7k
T, 11, <0
T 41>0

o 41 <0

14



Positivity Preserving Property

Theorem: The cell densities {p;;(t)}, computed by the
above second-order semi-discrete upwind scheme with a
positivity preserving piecewise linear reconstruction for p, remain
nonnegative provided the initial cell densities are nonnegative,
the system of ODEs is discretized by a strong stability preserving
(SSP) ODE solver, and the following CFL condition is satisfied:

At < min{

Az Ay (Aaz)z(Ay)z
8a’ 8b’ 4((A:p)2+(Ay)2)}

where

o= xma gl b= Xy
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Idea of Proof:

pik(t + At)
1 A

= ———X(”U,j_lk‘ —’U/j_lk;)
g 2 > >

A
+— X (‘u3+ k| — Uj4l k) pJ+1k+ (}uj—-k‘—I_uJ—-k) p] 1,k

1 px
S
100 yk)] Pjk [g Y Q’%kﬁ} + ”j,k+§)

pjk+ ll_A_XOu—F k‘+u3+ k)

E
Pj.k

N
Pj.k

5%
T (""j,k# - ’Uj,k:+§) P + o (‘% 2|+, k:——) Pjk-1
|1 2 2 Piv1k T Pj—1k | Pjkt+1 T Pjk—1
o= = At At | == I L — :
TPin [2 <<Aa:>2 + <Ay>2)] * (a2 T (ag)y

where A = At/Az and p = At/Ay.

The new values {p;;(t+ At)} are linear combinations of the nonnegative
reconstructed point value {p=,, p¥y, p",, 0>} and cell averages {p;}.
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Example 1 — Blowup at the Center of a Square Domain
e Square domain Q = [—%,%] X [—%,%]
e Radially symmetric bell-shaped initial data

p(z,y,0) = 1000 100G +v) (5 y 0) = 500 ¢~ 0@+v)

e Neumann boundary conditions
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Or, in the logarithmic vertical scale:
t=5- 10°°

t=10°
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Example 2 — Blowup at the Center of a Square Domain

e Square domain Q = [-3,3] x [~3, 3]

e Initial conditions:
p(z,y,0) = 1000 e~ 100@*+9) (5 4 0) =0

e Neumann boundary conditions

Properties:

e both p- and c-components of the solution are expected to
blow up at the origin in finite time;

e the blowup is expected to occur later than in Example 1;

e the diffusion initially dominates the concentration mechanism
and hence, the cells spread out and the cell density maximum

decreases at small times.
20
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Example 3 — Blowup at the Corner of a Square Domain

e Square domain Q = [-3,1] x [-3, 3]

e Initial conditions:

p(z,y,0) = 1000 ¢~ 100((@=028)*+(y=0.25)%) = (5. 4 0) =0

e Neumann boundary conditions

T he solution is expected to blow up at the corner (2, 2)
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Two-Species Chemotaxis Models

[ (p1)t+x1V - (p1Ve) = u1Apy
(p2)t + x2V - (p2Ve) = uaApy x€QCRY t>0

| Ac+v1p1 +72p2 —Cc =0
Assume that

N\

X1 < X2
According to
'Wolansky; 2002]
[Espejo, Stevens, Velazquez; 2010]
[Conca, Espejo, Vilches; 2011]
[Espejo, Stevens, Suzuki; 2012]

[Espejo, Vilches, Conca; to appear]

the solution may either be globally regular or both p; and p»

would blow up within a finite time s



More precisely, for the IVP for the system

(Pt +x1V - (p1Ve) = p1Dpy

(p2)t + x2V - (p2Ve) = Apo x€Q=RY t>0
| Ac+p1+p2p—c=0

the behavior of the solution depends on the total masses

01:= [ (x ) dx = [ 00 dx,  05:= [ pa(x,tydx = [ p§(x) dx
Q Q Q Q

N\

B2
A
8Ty
X1
D
C
81 B
Xo A
> 91

8Ty
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A
8Ty
X1
D
C
81 B
X
’ A
8y o1
X1

e [ here is a global classical solution in Region A

e In Region C, p> blows up faster than pq

e In Region D, p; and po> blow up at the same rate

The question on the solution behavior in Region B remains open

26



Example 1 — Global Existence in Region A

e Square domain Q = [-3,3] x [-3,3]

e Initial conditions:

p1(z,9,0) = pa(z,y,0) = 50 e~ 100" +y)

e Parameters:

x1=1 x2=10, pu; =1

e Neumann boundary conditions
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The magnitude of both p1 and p, decays and the solution remains
smooth and bounded
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Example 2 — p> Blows Up Faster than p; in Region C

e Square domain = [-3,3] x [-3, 3]

e Initial conditions:

p1(,9,0)) = 10100 +¥) - oo (2, y,0)) = 90 100G +47)

e Parameters:

X1 =6, x2=100, p3 =1

e Neumann boundary conditions
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The magnitude of p> increases by a factor of about 4, which
clearly indicates that by this time p> has already blown up:

1
h2

Max L N
i (pQ)j,k
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200 x 200 vs. 400 x 400
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p1 increases only by a factor of about 2, which means that p;

blows up at a lower rate (no é-type singularity forms)
1

MaxXx e Y
o (pl)],k h
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Example 3 — Different Types of Blow-Up of p; and p»> in
Region B

e Square domain Q = [-3,3] x [-3, 3]

e Initial conditions:

p1(z,9,0) = po(z,y,0) = 50 ¢~ 100" +y?)

e Parameters:

x1=1 x2=20, pu3 =1

e Neumann boundary conditions
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This numerical experiment indicates that it is possible that in
Region B one of the species aggregates and its density blows
up, while the density of the second component remains bounded
with decaying magnitude...

However...
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However, this contradicts the analytical results, obtained for the
above 2-species system in R2.

We take a large square domain and use the Neumann boundary
conditions, which are typically used to represent open boundary
conditions on truncated computational domains. In none of the
numerical examples, the solution behavior was affected by the
boundary conditions, that is, all of the numerical solutions remain
flat near the boundaries. This makes us to believe that the
solution in R2 should behave similarly.

Q: How to explain the contradiction?
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A: More careful numerical experiments show that:

The magnitude of p, increases by a factor of about 4, that is,
po develops a i-type singularity:
1

Max LY
o (pQ)%k h2

while p1 blows up at a very slow rate:

1

max o~ ——
o (p1>%k h1/4

Numerical Challenge: How to compute such solutions?
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Coupled Chemotaxis-Fluid Model

(ny+u-Vn+ xV - [nr(c)Ve] = DpAn
¢t +u-Ve= Dc.Ac— nkr(c)

< p(uy+u-Vu) 4+ Vp =nAu —nVoe
 V-u=20

n. concentration of bacteria

c. concentration of oxygen

X. chemotactic sensitivity constant

u: fluid velocity, p: density, p: pressure, n:. Viscosity
Dy and D.: diffusion constants
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(ny+u-Vn+ xV - [nr(c)Ve] = DpAn
¢t +u-Ve= D.Ac— nkr(c)

< p(ug+u-Vu) + Vp =nlAu —nVo
 V-u=20

V& = Vig(pp, — p)z: gravitational force exerted by a bacterium
onto the fluid;

z: upwards unit vector, V,: volume of the bacterium
g = 9.8m/s?: gravitation acceleration
pp. density of bacteria, which are about 10% denser than water

r(c) = 0(c — c*): dimensionless cut-off function, which models an
inactivity threshold of the bacteria due to low oxygen supply
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(ny+u-Vn+ xV - [nr(c)Ve] = DpAn
¢t +u-Ve= D.Ac— nkr(c)

< p(ug+u-Vu) + Vp =nlAu —nVo
 V-u=20

e Bacteria and oxygen are convected with fluid and diffuse

e Oxygen is consumed

e Bacteria are directed towards high oxygen gradient

38



Bioconvection

Bioconvection is the spontaneous formation of patterns in
suspensions of swimming micro-organisms

Organisms exhibiting bioconvection have two things in common:
they are denser than water; they swim upwards in still water.

Example: Complex bioconvection patterns are observed when a
(well-stirred) suspension of bacterial cells (e.g. Bacillus subtilis)
IS placed in a chamber with its upper surface open to the
atmosphere.

e | he cells are aerotactic

e Upswimming causes the micro-organisms to accumulate in the
upper regions of the fluid

e [ his distribution is unstable since the cells are denser than
water

e [ he instability leads to the formation of patterns in the form

of descending plumes -



The initial suspension of of
the aerobic bacteria B. subtilis
is  well stirred and quasi-
homogeneous.

e A high concentration layer
forms near the surface as
cell swim up following the
oxygen gradient

e Instabilities form at this
layer and finger-shaped plumes
begin to sink downwards

e Turninto mushroom-shaped
plumes in the areas where
the oxygen concentration
is below the aerotaxis threshold

40



Non-dimensionalization and switching to vorticity formulation:

(nt + div(un) + aV - [r(c)nVc] = An
ct + div(uc) = §Ac — Br(c)n
wt + div(uw) = Sc Aw — v Sc ny

| AY = —w

w = vy —uy. Vorticity, : stream-function, u =1y, v = —Yy

Initial Conditions in Q2 = [—a, a] x [0, d]:

n(z,y,0) = no(z,y), c(z,y,0) = co(z,y), ulz,y,0) = up(z,y)
Boundary Conditions in Q2 = [—a,a] X [0, d]:

ar(c)ncy —ny =0, c=1, v=0, wuy=0, V(z,y): y=d
ny = cy = 0, u=1v =0, V(z,y) :y=20

At the sides of Q (x = +a) the boundary conditions are periodic

41



Hybrid Finite-VVolume Finite-Difference Scheme

(g + [(u 4+ ar(c)ez)n]e + [(v 4+ ar(c)ey)nly = nex + nyy,
< ct + (uc)z + (ve)y = 6(caa + cyy) — Br(c)n

wt + uwr + vwy = SC(wrx + wyy) — v SC Ny,

| Yoz T Yyy = —w.

e n and c are evolved in time by solving the chemotaxis equations
using the second-order finite-volume upwind method

e w IS evolved on a staggered grid by applying the second-order
centered-difference scheme to the vorticity equation

e u and wv are recovered from the stream-function i by
solving the elliptic equation followed by the centered-difference
approximations of the velocities in ©u = ¥y and v = —

IMPORTANT: The scheme must be positivity preserving!
42



Finite-VVolume Upwind Scheme

k+]/24
We denote the cell averages of
k q.= (n7C)T by

q;i(t) = / / q(z,y,t) dr dy

AAy

k—1/2 _
-2 e

/ [+ / 1+ ar(e)ernle + / 1w+ ar(@enly = / (na + nyy)

// ct + //(uc)x - //(vc)y = //5(cxx + cyy) — // ﬁ’r(c)n
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(u + ar(c)ez)n — (u+ ar(c)ez)n
dt 7 Az
(v + ar(c)ey)n — (v 4+ ar(c)cy)n
(xj’yk—l—%) (xjvyk %)
Ay
Ny — Ny Ny — Ny
(aiﬁ_%,yk) (wj_%,yk) (aij,yk+%) (25,9, 1)
+ Ax + Ay
uc —uc ve —vc
ia o (z +%,yk) (3?]_%,%) B (ivj,yk+%) (xj,yk_%)
dt 7 Az Ay
Cr — Cx Cy — Cy
(z +%,yk) («Tj_%,yk:) (wj,yk+%) (l‘j,yk,_%)
+ 6 N + 6 Ay + B7(Cj k)7 k
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Semi-Discrete Finite-VVolume Upwind Scheme

T I & Y _ Y
d_ B e i, Mg~
dt Ax Ay
T Dz Y _ PpY
n Pj-l—%,k Pj—%,k n Pj,k+% Pj,k—% IR
Ao Ay 7,k
T
H* | = ((u—l— ar(c)cz)n ,UC )
J£5k (wj:t%ﬂk) (wji%,yk)
T
HY |~ ((v + ar(c)ey)n , U C )
Jik+5 (fcj,yki%) (wj,yki%)
T
J+2 (ivji%,yk) (fb‘ji%,yk)
Py ~ g E _(O (_' )_' )T
k‘:l:l ~ ny 7Cy ' j,k‘ - 7/8T C],k‘ n],k
LR (xj,yki%) (xj,yki%)
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Hyperbolic Fluxes

T
H? | =~ ((u—l— ar(c)cz)n , U C )
jE£5.k (xji%,yk) (a:ji%,yk)
T
HY |~ <(v + ar(c)cy) n U C )
]7k:|:§ (x]’yk:tl) (x]7yk:|:l)
2 2
( (z) E,(7) : (Z)
: it > 0,
x (Z) — j—I_Q?k q‘yk ]+%’k 1 =1.2
LHrT) o wo (8) |
| ey T aly, <0
@ gD i @D S,
HY’ (1) 4 Jik+3 ik jik+3 1 =1,2
s B O RN O N T A OB |
j,k:—l—l g,k+1" j,k—l—% ;
lLLocal speeds:
MO (2
e = e T 0D e =
(1) (2) _
b] k‘|‘2 ] k—|—1 + OéT(C k_|_1)(cy) k+17 k‘l‘z ],k—|—%
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Parabolic Fluxes

T o
p 5 N
41\ ) 0Cx p
I3 (T, 1,9%) (T.. 1,Y%) 000000
]:l: ]:t ////////// 7
2 2 T &
000000
ks \ @y 0 e, 1) k=172 -
I+ Ikt J
=172 j+1/2
pr | — (ﬁj+1,k ~ ik Gtk —Ej,k)T
]+§7k A.’,U ’ AZE
_ _ _ _N\T
Py — nj7k+1 B n]ak 5 c.77k+1 B Cjak
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Centered-Difference Scheme for the Vorticity Equation

wt + uwz + vwy = SC(wer + wyy) — v SC Ny,

¢:c:13 + ¢yy — W

Evolve the point values of w at the corners of the finite-volume
cells:

W . — W. W . — W.
d Jt3kt+s T Cigkts jtzkts T Citgk—s

—W. = —Uu. — V.
dt it+3k+3 it5.k+5 DA it3k+3 2Ay

4 ose| gtk R e i e R e R S R W

(Ax)? (Ay)?

—75¢na);t eyl

(ng) . irl k+1 is computed by the centered-difference formula
>

N S N S
(ne) 01 gyt = (e + 771 k1) — (e + 15 k41)
i 2Azx

I\)I»—\
I\)I»—\
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Velocities

Once the point values of the vorticity {wj 1} are evolved

+5.k+3

e Solve the elliptic equation

¢xm + 7#yy — —Ww

e Obtain the point values of the stream-function at the same

set of points: {¢, 1,1}
2N T3

e Compute the velocities v and v:

oo Ve Vit Videtd ~ Yiche
j+§’k—|—§ 2Ay ’ j‘|‘§7k‘|‘§ 2Ax
TS S Rl U R TR W R N
u., 1, = , (o = —
j+35.k Ay Jrk+3 Ax

49



Boundary Conditions

Computational domain: Q2 = [—a,a] x [0, d]

e The top part 0€2:,, models a fluid-air surface preventing cell-
flux and providing full oxygen saturation:

ar(c)ncy—ny =0, c=1, w=0, =0, V(r,y):y=d

e The bottom part 9€2;,,; model a solid bottom preventing cell-
and oxygen-flux:

ny:Cyzoa %JZO, w=—¢yya V(CE,:g) y:O

e At the sides of Qgqe (x = £a) the boundary conditions are
periodic.

Note that the Poisson equation implies ¥, = 0 at the lower
boundary y = 0, which together with the periodicity and
continuity gives ¢y = Const at y = 0. Thus, v =0 at y = 0

follows. 50



Numerical Boundary Conditions

e The top part 0€2p:

— o aA(1-C; kmax) . —
T kmax+1 -— "5 kmax® PEMAXZ, €l kmax+1 = 1

wj+%,k?max+% — ¢j+%,kmax—|—§ =0

where the boundary condition for n is obtained by taking into
account the fact that at the top ¢~ 1 and thus r(¢) = 1 and by

integrating (Inn)y = acy with respect to y from vy, 1O Y . +1
e T he bottom part 9€2,;:
75,0 = 151, G0 = Gl

. _2¢j+%,% ~ ¥+l

i+t3:% (a2 0 Yithet T Vi3

N

e The two sides 0€2jqe are connected with periodic boundary
conditions
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Numerical Experiments

ny + div(un) + aV - [r(c)nVc] = An
ct + div(uc) = §Ac — Br(e)n

wt + div(uw) = Sc Aw — v Scnyg

AY = —w

Computational domain: 2 = [-3,3] x [0, 1]
Parameters set by the model: a=10, o6=5, Sc=500

Cutoff function r(¢), which modulates the oxygen consumption

rate:
r(c) = 1, if ¢ > 0.3,
1 0, ife<0.3.

The numerical examples will vary the initial data and the two

remaining parameters [ and ~ ,
5



Steady-States Solutions

0.15

ahalytical solution

bt humerical solution

The constant initial data are

70

no(z,y) = 20 co(z,y) =1, ug(x,y) =0
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Plume Formation and Merging Plumes:
Randomly Perturbed Homogeneous Initial Data

ny + div(un) + aV - [r(c)nVe] = An
ct + div(uc) = §Ac — Br(c)n

wt + div(uw) = Sc Aw — v Sc ng,
AY = —w.

e J = 20 and v = 2 - 103, which corresponds to a doubled
reference density compared to the homogeneous stationary
state

e Initial data:

no(z,y) = 0.8 4 0.2¢, coz,y) =1, ug(z,y) =0

where £ is a random variable uniformly distributed in the
interval [0, 1]

54
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Numerically Nonlinearly Stable Stationary Plumes
for Low Density Initial Data

e Same parameters 3 = 10,~ = 103 as for the homogeneous
stationary state

e Deterministic initial data (small, sinusoidal modulations
of the lower edge of an upper layer with a higher cell
concentration than at the bottom):

[ 1, if y>0.499 —0.01sin((z — 1.5)7)
no(,y) = { 0.5, otherwise

co(z,y) =1, ug(x,y)=0

We study the time evolution of solutions from purely
deterministic initial data towards a stationary state of plumes
in the absence of oxygen cut-off (this case is referred to as the

shallow-chamber case).
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Switching-off Aerotaxis
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Depletion of the high cell-concentration layer near the surface
and diffusion of the plumes.
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Stationary Plumes in the Presence of the
Oxygen Cut-Off for Large Density Data

e Parameters 3 = 102,y = 10% correspond to a 10-times higher
reference cell-density

e Same deterministic initial data:

[ 1, if y>0.499 —0.01sin((x — 1.5)7)
no(,y) = { 0.5, otherwise

co(z,y) =1, ug(x,y)=0

We study the effects of the oxygen cut-off on the formation and
stability of plumes by simply increasing the amount of cells.
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