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u′ = f(u, t) +G(u, t)u

u(t) ∈ RN : unknown vector function

f : RN → RN : given vector field

G : RN×N → RN×N : diagonal non-positive definite matrix representing

a (stiff) damping term

Steady States: u(t) ≡ û s.t. f(û, t) ≡ −G(û, t)û

Sign Preservation provided {u(0) ≥ 0, f ≥ 0} or {u(0) ≤ 0, f ≤ 0}
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Explicit vs. Implicit vs. Semi-Implicit Methods

For simplicity, consider a scalar ODE

u′ = f(u, t) + g(u, t)u, g(u, t) ≤ 0

Example: First-Order Explicit (Forward Euler) Method

un+1 = un + ∆t
[
f(un, tn) + g(un, tn)un

]

Example: First-Order Implicit (Backward Euler) Method

un+1 = un + ∆t
[
f(un+1, tn+1) + g(un+1, tn+1)un+1

]

Example: First-Order Semi-Implicit Method

un+1 = un + ∆t
[
f(un, tn) + g(un, tn)un+1

]
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Explicit m-stage SSP (TVD) RK Methods

[Shu; 1988] [Shu, Osher; 1988] [Gottlieb, Shu, Tadmor; 2001]

For simplicity, consider a scalar ODE

u′ = f(u, t) + g(u, t)u, g(u, t) ≤ 0

f(u, t): nonstiff term, g(u, t)u: stiff damping term

A general explicit m-stage RK method is

u(0) = un

u(i) =
i−1∑
k=0

αi,k
[
u(k) + βi,k∆t(f(k) + g(k)u(k))

]
, i = 1, . . . ,m

un+1 = u(m)

where f(k) := f(u(k), t(k)), g(k) := g(u(k), t(k)), t(k) := tn +Dk∆t,

tn+1 := tn + ∆t and Dk are given by

D0 = 0, Di =
i−1∑
k=0

αi,k(Dk + βi,k)
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The RK method is fully determined by its coefficients {αi,k, βi,k}

Consistency requirements:
i−1∑
k=0

αi,k = 1, i = 1, . . . ,m, Dm = 1

The RK method is a linear combination of the first-order FE steps:

u(i) =
i−1∑
k=0

αi,ku
FE
i,k

where

uFE
i,k := u(k) + βi,k∆t(f(k) + g(k)u(k))

According to [Gottlieb, Shu, Tadmor; 2001], the RK method is SSP

provided

αi,k ≥ 0 for all i, k

and an appropriate time step restriction is imposed.

Negative time increments are avoided if βi,k ≥ 0 for all i, k
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New Semi-Implicit Methods

We first replace the FE evolution steps by the semi-implicit (SI) ones:

uSI
i,k := u(k) + βi,k∆t(f(k) + g(k)uSI

i,k) ⇐⇒ uSI
i,k =

u(k) + βi,k∆tf(k)

1− βi,k∆tg(k)

This leads to the following SI scheme:

u(0) = un

u(i) =
i−1∑
k=0

αi,k

u(k) + βi,k∆tf(k)

1− βi,k∆tg(k)

 , i = 1, . . . ,m

un+1 = u(m)

Unfortunately, this scheme is at most first-order accurate

We, therefore, propose an order correction step:

un+1 =
u(m) − Cm(∆t)2f(m)g(m)

1 + Cm(∆tg(m))2

where

C0 = 0, Ci =
i−1∑
k=0

αi,k(Ck + β2
i,k), i = 1, . . . ,m
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New class of second-order semi-implicit Runge-Kutta (SI-RK) methods:

u(0) = un

u(i) =
i−1∑
k=0

αi,k

u(k) + βi,k∆tf(k)

1− βi,k∆tg(k)

 , i = 1, . . . ,m

un+1 =
u(m) − Cm(∆t)2f(m)g(m)

1 + Cm(∆tg(m))2

The set of coefficients {αi,k, βi,k} is taken directly from the explicit SSP-

RK method of an appropriate order.

Remark. Note that in the degenerate case of g ≡ 0, the SI-RK methods

are identical to the corresponding explicit RK methods
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Theorem (Second-Order Accuracy) If the SSP-RK method is at least

second-order accurate, then the corresponding SI-RK method with the

same set of coefficients αi,k, βi,k ≥ 0 is second-order.

Theorem (A(α)-Stability and Stiff Decay) Let us assume that the SI-

RK methods are applied to the test equation u′ = λu, where λ ∈ C is

a constant with Reλ < 0. Then, the resulting methods, which can be

written as

un+1 = R(z)un, z = λ∆t

satisfy the following two requirements:

|R(z)| ≤ 1, ∀z ∈ C s.t. Re z ≤ −| Im z|
(
A(α)-stability with α =

π

4

)
and

R(z)→ 0 as Re z → −∞

provided αi,k ≥ 0 and βi,k ≥ 0 for all i, k.
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Theorem (Steady State Preserving Property) Let βi,k ≥ 0 ∀i, k. Then,

if the computed solution is at a steady state at time tn, i.e., un = û

such that

f(û, t) ≡ −g(û, t)û

it will remain at the same steady state, namely,

un+1 = û

Theorem (Sign Preserving Property) Let the initial condition u0 and

function f satisfy

{u0 ≥ 0, f ≥ 0} or {u0 ≤ 0, f ≤ 0}

Then,

sgn(un) ≡ sgn(u0)

for all n provided αi,k ≥ 0 and βi,k ≥ 0 for all i, k
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Absolute Stability of Two SSP-Based SI-RK Methods

The first SI-RK2 method is based on the 2-order SSP-RK solver:

u(1) =
un + ∆tfn

1−∆tgn

u(2) =
1

2
un +

1

2
·
u(1) + ∆tf(1)

1−∆tg(1)

un+1 =
u(2) − (∆t)2f(2)g(2)

1 + (∆tg(2))2

The second SI-RK3 method is based on the 3-order SSP-RK solver:

u(1) =
un + ∆tfn

1−∆tgn

u(2) =
3

4
un +

1

4
·
u(1) + ∆tf(1)

1−∆tg(1)

u(3) =
1

3
un +

2

3
·
u(2) + ∆tf(2)

1−∆tg(2)

un+1 =
u(3) − (∆t)2f(3)g(3)

1 + (∆tg(3))2
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To analyze the absolute stability, we consider the following test problem:

u′ = λ1u+ λ2u, λ1 ∈ C, Re(λ1) ≤ 0, λ2 ∈ R, λ2 ≤ 0

λ1u: nonstiff part, λ2u: stiff part

We denote z1 := λ1∆t and z2 := λ2∆t.

We denote the stability regions of the second- and third-order SSP-RK

methods by DSSP2 and DSSP3, respectively.

We denote the corresponding time step restrictions by ∆t ≤∆tSSP2 and

∆t ≤∆tSSP3
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Theorem (Absolute Stability of the SI-RK2 Method) The region of

absolute stability of the SI-RK2 method contains DSSP2, i.e., for any

z2 ≤ 0, the solution of

u(1) =
1 + z1

1− z2
un

u(2) =
1

2
un +

1

2
·

1 + z1

1− z2
u(1)

un+1 =
1− z1z2

1 + z2
2
u(2)

satisfies |un+1| ≤ |un| provided ∆t ≤∆tSSP2
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Idea of Proof: Stability function for the second-order SSP-RK method

(applied to u′ = λ1u) is:

RSSP2(z1) =
1

2
+

1

2
(1 + z1)2

Stability function for the SI-RK2 methods (applied to u′ = λ1u + λ2u)

is:

RSI-RK2(z1, z2) =
1− z1z2

1 + z2
2
·

1

2
+

1

2

(
1 + z1

1− z2

)2


To prove the theorem, it will be enough to show that both∣∣∣∣∣∣12 +
1

2

(
1 + z1

1− z2

)2
∣∣∣∣∣∣ ≤ 1 (1)

and ∣∣∣∣∣1− z1z2

1 + z2
2

∣∣∣∣∣ ≤ 1 (2)

for all z1, z2 such that |RSSP2(z1)| ≤ 1 and z2 ≤ 0
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Proof of (1) is straightforward.

For fixed z2 < 0, (2) is equivalent to∣∣∣∣∣z1 +
1

|z2|

∣∣∣∣∣ ≤ |z2|+
1

|z2|
Denoting z1 := x+ iy, we can write this domain as

C(z2) :=

x+ iy
∣∣∣ y2 ≤

(
z2 +

1

z2

)2

−
(
x−

1

z2

)2
 , ∀z2 < 0

We thus need to show that DSSP2 ⊂ C :=
⋂
z2<0

C(z2)

We compute intersection of C(z2)’s:

C =
{
x+ yi

∣∣∣ y2 ≤ 2 + 3x2/3 − x2, x ∈
[
−2
√

2,0
]}

which clearly shows that DSSP2 ⊂ C
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Conjecture (Absolute Stability of the SI-RK3 Method) The region of

absolute stability of the SI-RK3 method contains DSSP3, i.e., for any

z2 ≤ 0, the solution of

u(1) =
1 + z1

1− z2
un

u(2) =
3

4
un +

1

4
·

1 + z1

1− z2
u(1)

u(3) =
1

3
un +

2

3
·

1 + z1

1− z2
u(2)

un+1 =
1− z1z2

1 + z2
2
u(3)

satisfies |un+1| ≤ |un| provided ∆t ≤∆tSSP3
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Idea of “Proof”: Stability function for the third-order SSP-RK method

(applied to u′ = λ1u) is:

RSSP3(z1) =
1

3
+

1

2
(1 + z1) +

1

6
(1 + z1)3

Stability function for the SI-RK3 methods (applied to u′ = λ1u + λ2u)

is:

RSI-RK3(z1, z2) =
1− z1z2

1 + z2
2
·

1

3
+

1

2

(
1 + z1

1− z2

)
+

1

6

(
1 + z1

1− z2

)3


The statement of the conjecture would be true if one could show that

|RSI-RK3(z1, z2)| ≤ 1 ∀z1 such that |RSSP3(z1)| ≤ 1 and ∀z2 ≤ 0
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It is quite straightforward to show that

|RSI-RK3(z1, z2)| ≤ 1 ∀z1 such that |RSSP3(z1)| ≤ 1 and ∀ z2 ≤ −3

To study the case z2 ∈ (−3,0), we introduce a polynomial

P (x, y) := |RSSP3(x+ iy)|2 − 1

and a rational function

Q(x, y, z2) := |RSI-RK3(x+ iy, z2)|2 − 1

For fixed z2, the curves P (x, y) = 0 and Q(x, y, z2) = 0 are boundaries

of the domains DSSP3 and DSI-RK3(z2), respectively

DSI-RK3(z2): stability domain for the SI-RK3 method for fixed z2

To determine whether DSSP3 ⊂ DSI-RK3(z2), we only need to verify that

∂DSSP3 is enclosed by ∂DSI-RK3(z2)
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To this end, we consider P (x, y) and Q(x, y, z2) as polynomials of a single
variable x and compute their resultant

K(y, z2) := res(P,Q) =
K̃(y, z2)

6140942214464815497216(z2 − 1)36(z2
2 + 1)12

K̃(y, z2) is explicitly given. log10(K̃(y, z2) + 1) is visualized in
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which indicates that K(y, z2) > 0 for all (y, z2) ∈ [−2.4,2.4]× (−3,0)



This implies that ∂DSSP3 and ∂DSI-RK3(z2) have no intersections when
z2 ∈ (−3,0).

We take z2 = −1 and illustrate that DSSP3 ⊂ DSI-RK3(−1):

x
-5 -2.5 0 2.5 5

y

-5

-2.5

0

2.5

5
∂DSSP3

∂DSI−RK3(−1)

Since K(y, z2) is continuous, we conclude that DSSP3 ⊂ DSI-RK3(z2) for
all z2 ∈ (−3,0)
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Numerical Examples

We test the second-order SI-RK3 method and compare the results with

the ones obtained using the second-order IMEX-SSP3(3,3,2) method

of Pareschi and Russo.

The obtained results clearly demonstrate that the new SI-RK3 method

outperforms the IMEX-SSP3(3,3,2) when a large time step and/or

coarse grid are used.

Example — Scalar ODE

u′ = 1− k|u|u, k > 0

It has one equilibrium point u∗ = 1/
√
k
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Steady State Preserving Test

We take k = 10000 with the corresponding equilibrium point u∗ = 0.01.

We consider three different initial values:

(a) u(0) = 0.9u∗, (b) u(0) = u∗, (c) u(0) = 1.1u∗
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Sign Preserving Test

We take k = 10000 with the corresponding equilibrium point u∗ = 0.01.

We consider large initial value:

u(0) = 1
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Shallow Water Equations

w=Z+h

Z(x)

z

h(x,t)
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1-D Saint-Venant System


ht + qx = 0

qt +
(
hu2 + g

2h
2
)
x

= −ghZx

This is a system of hyperbolic balance laws

Ut + F (U , Z)x = S(U , Z), U := (h, q)

h: depth

u: velocity

q := hu: discharge

Z: bottom topography

g: gravitational constant
26



Finite-Volume Methods

1-D System: Ut + F (U)x = 0

U j(t) ≈
1

∆x

∫
Cj

U(x, t) dx : cell averages over Cj := (x
j−1

2
, x
j+1

2
)

This solution is approximated by a piecewise polynomial (conservative,

high-order accurate, non-oscillatory) reconstruction:

Ũ(x) = Pj(x) for x ∈ Cj

Second-order schemes employ piecewise linear reconstructions:

Ũ(x) =U j + (Ux)j(x− xj) for x ∈ Cj
27



For example,

(Ux)j = minmod

θU j −U j−1

∆x
,
U j+1 −U j−1

2∆x
, θ

U j+1 −U j

∆x

 θ ∈ [1,2]

where the minmod function is defined as:

minmod(z1, z2, ...) :=


minj{zj}, if zj > 0 ∀j,
maxj{zj}, if zj < 0 ∀j,
0, otherwise.

The reconstructed point values at cell interfaces are:

U−
j+1

2
:= Pj(xj+1

2
) =U j +

∆x

2
(Ux)j

U+
j+1

2
:= Pj+1(x

j+1
2
) =U j+1 −

∆x

2
(Ux)j+1

28



xjxj−1 xj+1 xj+2

The discontinuities appearing at the reconstruction step at the interface

points {x
j+1

2
} propagate at finite speeds estimated by:

a+
j+1

2
:= max

{
λN

(
A(U−

j+1
2
)
)
, λN

(
A(U+

j+1
2
)
)
,0
}

a−
j+1

2
:= min

{
λ1

(
A(U−

j+1
2
)
)
, λ1

(
A(U+

j+1
2
)
)
,0
}

λ1 < λ2 < . . . < λN : N eigenvalues of the Jacobian A(U) :=
∂F

∂U



Central-Upwind Schemes

Godunov-type central schemes with a built-in upwind nature

[Kurganov, Tadmor; 2000]

[Kurganov, Petrova; 2000, 2001]

[Kurganov, Noelle, Petrova; 2001]

[Kurganov, Lin; 2007]
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1-D Semi-Discrete Central-Upwind Scheme

d

dt
U j(t) = −

H
j+1

2
(t)−H

j−1
2
(t)

∆x

The central-upwind numerical flux is:

H
j+1

2
=
a+
j+1

2
F (U−

j+1
2
)− a−

j+1
2
F (U+

j+1
2
)

a+
j+1

2
− a−

j+1
2

+ a+
j+1

2
a−
j+1

2

U
+
j+1

2
−U−

j+1
2

a+
j+1

2
− a−

j+1
2

− d
j+1

2


The built-in “anti-diffusion” term is:

d
j+1

2
= minmod

U
+
j+1

2
−U∗

j+1
2

a+
j+1

2
− a−

j+1
2

,

U∗
j+1

2
−U−

j+1
2

a+
j+1

2
− a−

j+1
2


The intermediate values U∗

j+1
2

are:

U∗
j+1

2
=
a+
j+1

2
U+
j+1

2
− a−

j+1
2
U−
j+1

2
−
{
F (U+

j+1
2
)− F (U−

j+1
2
)
}

a+
j+1

2
− a−

j+1
2

31



Remarks

1. d
j+1

2
≡ 0 corresponds to the central-upwind scheme from [Kurganov,

Noelle, Petrova; 2001]

2. For the system of balance laws

Ut + F (U)x = S

the central-upwind scheme is:

d

dt
Ūj(t) = −

H
j+1

2
(t)−H

j−1
2
(t)

∆x
+ S̄j(t)

where

S̄j(t) ≈
1

∆x

x
j+1

2∫
x
j−1

2

S(x, t) dx

32



Saint-Venant System — Numerical Challenges

 ht + qx = 0

qt +
(
hu2 + g

2h
2
)
x

= −ghZx

• Steady-state solutions:

q = Const,
u2

2
+ g(h+ Z) = Const

• “Lake at rest” steady-state solutions:

u = 0, h+ Z = Const

• Dry (h = 0) or near dry (h ∼ 0) states
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Well-Balanced Positivity Preserving
Central-Upwind Scheme

[Kurganov, Petrova; 2007]

• w = h+ Z: water surface=⇒“Lake at rest” states: q ≡ 0, w ≡ Const

=⇒ Reconstruct the equilibrium variables w and q rather than h and q

• Use the well-balanced quadrature

x
j+1

2∫
x
j−1

2

hZx dx =

wj − Z(x
j+1

2
) + Z(x

j−1
2
)

2

 · (Z(x
j+1

2
)− Z(x

j−1
2
)
)

• Make positivity preserving correction of the reconstruction of w

• Desingularize the computation of u =
q

h
for small h
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Shallow Water System with Friction Terms

[Chertock, Cui, Kurganov, Wu; 2015]
ht + qx = 0

qt +
(
hu2 + g

2h
2
)
x

= −ghZx − g n2

h1/3|u|u

n: Manning coefficient

Special Steady-State Solutions

q ≡ Const, h ≡ Const, Zx ≡ Const

correspond to the situation when the water flows over a slanted infinitely

long surface with a constant slope.

A straightforward midpoint discretization of the friction term leads

to the well-balanced positivity preserving semi-discrete central-upwind

scheme
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Example — Small Perturbation of a Steady Flow Over a Slanted

Surface
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Example — Infinite Slanted Surface with a Periodic Flow

We take Zx ≡ −0.2, n = 0.09 and the following initial conditions:

h(x,0) =

{
0.02, x < 50

0.01, x > 50
q(x,0) =

{
0, x < 50

0.04, x > 50

We restrict the computational domain to [0,100], which is divided into

N uniform cells, and impose the periodic boundary conditions.

In this example, the friction term is very stiff and we compare the results

obtained by the proposed second-order SI-RK3 method with the ones

obtained using the second-order IMEX-SSP3(3,3,2) method.

37



Time Steps Restricted by the CFL Condition (the CFL number is 0.3)
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Fixed Time Step Restriction (∆t = min{∆tCFL,∆tmax})
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∆tmax = 0.01, N = 100
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∆tmax = 0.3, N = 100
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