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v = f(u,t) + G(u,t)u

u(t) € RY: unknown vector function
f: RN — RN: given vector field

G : RVXN _ RNXN: djagonal non-positive definite matrix representing
a (stiff) damping term

Steady States: wu(t) =u s.t. f(u,t) = -G(u,t)u

Sign Preservation provided {u(0) >0, f >0} or {u(0) <0, f<O0}



Explicit vs. Implicit vs. Semi-Implicit Methods

For simplicity, consider a scalar ODE

u' = f(u,t) + g(u,t)u, g(u,t) <0

Example: First-Order Explicit (Forward Euler) Method

N o S i At[f(un,tn) +g(un7tn)un]

Example: First-Order Implicit (Backward Euler) Method

un—l—l — un_|_ At[f(un+1,tn+1) +g(un+17tn+1)un+1]

Example: First-Order Semi-Implicit Method

u T = 4 At f (", t") + g(u” t)u T



Explicit m-stage SSP (TVD) RK Methods

[Shu; 1988] [Shu, Osher; 1988] [Gottlieb, Shu, Tadmor; 2001]

For simplicity, consider a scalar ODE
u' = f(u,t) + g(u,t)u, g(u,t) <0

f(u,t): nonstiff term, g(u,t)u: stiff damping term
A general explicit m-stage RK method is

u(0) = o
1—1

uD = 3 iy [u® + g, At(FP + g®u®)] =1, m
k=0

Tl — u(m)

where f(k) — f(u(k)7t(k))’ g(k) — g(u(k),t(k))’ t(k) = t" 4+ D, At,
tnt1l.=¢" 4+ At and D, are given by

i—1
Do=0, D;= ) o;i(Dg+B;r)
k=0



The RK method is fully determined by its coefficients {«; 1, 8; 1}
1—1

Consistency requirements: Z ar=1, +=1,....m, Dp=1
k=0

The RK method is a linear combination of the first-order FE steps:

i—1
i) FE
ul®) = Z Qg kU L
k=0
where

uf £ o= ul®) 4 8 AL 4 gy

According to [Gottlieb, Shu, Tadmor; 2001], the RK method is SSP
provided

a; >0 forall 4k

and an appropriate time step restriction is imposed.

Negative time increments are avoided if 5;, > 0 for all 4,k



New Semi-Implicit Methods

We first replace the FE evolution steps by the semi-implicit (SI) ones:

u(k) @;,kAtf(k)
1 — B pAtg(k)

qu,Ik = (k) o 5z‘,kAt(f(k) 1 g(k)uis,lk:) —_—

This leads to the following SI scheme:
4, (0) — 1

. i—1 (k) At FK)
u(Z)ZZOzi,k<u t Bik t(];) ), 1=1,...,m
— 1— Bz’,kAtg

Tl — u(m)

Unfortunately, this scheme is at most first-order accurate

We, therefore, propose an order correction step:
i uw(m) — O (A)2 £(m) g(m)
1 4+ Cm(Atg(m))2

where Fa)
COZO, C’L:Zaz,k(ck_l_ﬁz%k)a i=1,...,m
k=0
6



New class of second-order semi-implicit Runge-Kutta (SI-RK) methods:

u(0) = 4

| i—1 (k) ALK
u(Z)ZZai,k<u + Bk t(J;) ), i =1,...,m
k=0 1— 5z',l<:Atg

s w(M) — O (A)2 £(m) g(m)
14 C(Atgtm)?

The set of coefficients {«; 1, 8; 1} is taken directly from the explicit SSP-
RK method of an appropriate order.

Remark. Note that in the degenerate case of g = 0, the SI-RK methods
are identical to the corresponding explicit RK methods



Theorem (Second-Order Accuracy) If the SSP-RK method is at least
second-order accurate, then the corresponding SI-RK method with the
same set of coefficients «; , 5; . = O is second-order.

Theorem (A(«)-Stability and Stiff Decay) Let us assume that the SI-
RK methods are applied to the test equation v = \u, where X\ € C is
a constant with Re\ < 0. Then, the resulting methods, which can be
written as

u" Tl = R()u", 2 = AAt
satisfy the following two requirements:
IR(z)| <1, VzeC s.t. Rez< —|Imz| (A(a)—stability with a = %)
and

R(z) -0 as Rez —» —x

provided «; . > 0 and j; ;. > 0 for all 7, k.



Theorem (Steady State Preserving Property) Let Bir = 0 Vi k. Then,
if the computed solution is at a steady state at time t", i.e., u"™ = u
such that

it will remain at the same steady state, namely,

Wl =g

Theorem (Sign Preserving Property) Let the initial condition 1«9 and
function f satisfy

{u?>0, f>0} or {u’<0, f<0}
Then,
sgn(u™) = sgn(u?)

for all n provided «; ;. > 0 and j; ;, > 0 for all 4, k



Absolute Stability of Two SSP-Based SI-RK Methods

The first SI-RK2 method is based on the 2-order SSP-RK solver:
(1) u + At f"
Uu p

1 — Atg"
(1) (1)
@ 1 n, 1 v+ Atf
Y S T At

w1 _u® — (A2 Dy@)
YT I (ag®@)2

The second SI-RK3 method is based on the 3-order SSP-RK solver:
(1) u + At
Uu =

1 — Atg"
(1) (1)
@) 3y 1 W+ Ao
S T Y T Ag@
u(2) + Atf(2)

@_1n, 2
W =R 3 T T At ®

w1 _u® — (AD27E3)
YT (ag®)2 0




To analyze the absolute stability, we consider the following test problem:

W =XMu+dou, I €C, Re(A\1) <0, MER, \r <0
A1u: nonstiff part, Aowu: stiff part

We denote z1 := A{ At and zo := A\ At.

We denote the stability regions of the second- and third-order SSP-RK
methods by Dggpo and Dggp3, respectively.

We denote the corresponding time step restrictions by At < Atggpo and
At < Atssps

11



Theorem (Absolute Stability of the SI-RK2 Method) The region of
absolute stability of the SI-RK2 method contains Dggpo, i.e., for any
zo> < 0, the solution of

1
WD =221
1 — 2o

@_1n, 1 1Tz @
W =jut o s

un+1 1— Z]_ZQ (2)
1+ 22

satisfies |u"T1| < |u™| provided At < Atsgps

12



Idea of Proof: Stability function for the second-order SSP-RK method
(applied to v/ = \ju) is:

1 1
Rsspo(z1) = 5 - > (14 21)?

Stability function for the SI-RK2 methods (applied to v/ = Aju + Xou)

is:
2
l—27120 |1 1 [(142
R - 214 % = N —
si-rk2(21,22) 1+ 22 {2-#2(1_22)]

To prove the theorem, it will be enough to show that both

2
1 1(14 2
— 4+ — <1 1
2+2<1—z2> = (1)
and
]__
12<1 (2)
1+ 25

for all zq, 2> such that |RSSP2(Z1)| <1and 2 <0

13



Proof of (1) is straightforward.

For fixed 25 < 0, (2) is equivalent to

1 1
2+ — e
|22 22|

Denoting z7 ;= x + 1y, we can write this domain as

1)2 1)\2
C(ZQ)ZZ{:C—I—inyS(ZQ—F) —(CE——) }, Vzo <O

< |z2| +

<2 <2

We thus need to show that Dggpy C C:= () C(z2)
20<0

We compute intersection of C(z5)'s:
C = {az—l—yi ‘ y2 < 2—|—3:132/3—:E2, x € [—2\6,0}}

which clearly shows that Dggpy C C

14



— 0C

- - - 0Dggp9
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Conjecture (Absolute Stability of the SI-RK3 Method) The region of
absolute stability of the SI-RK3 method contains Dggp3z, i.e., for any
zo> < 0, the solution of

1
WD =1 T2
1 — 2o

)

(2)_ +4 l1—=z2
— <2

4"

E) N e a2 O )
3 3 1—2o
1

%122 1 (3)
1 —|-22

satisfies [u"T1| < |u"| provided At < Atggps

un—l—l
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Idea of “Proof”: Stability function for the third-order SSP-RK method
(applied to v/ = \ju) is:

1 1 1
Rssps(z1) = = + > (14 21) + - (1+21)°

Stability function for the SI-RK3 methods (applied to v/ = Aju + \ou)
IS:

3
l—27120 |1  1(142 1 /142
Rer- o) — N L
si-rk3(21,22) 1+ 22 L)-I—2<1_22>—|—6<1_Z2

The statement of the conjecture would be true if one could show that

[Rsi-rk3(z1,22)| <1 Vz1 such that [Rssp3(z1)[ <1 and Vzp <0

17



It is quite straightforward to show that

|Rs1-rk3(21,22)| £ 1 Vz1 such that [Rgsp3(z1)| <1 and Vz < -3

To study the case 2z, € (—3,0), we introduce a polynomial

P(x,y) := |Rssp3(z + iy)|* — 1

and a rational function

Q(z,y, 22) ‘= |Rsr-ri3(x + iy, 20)|% — 1

For fixed 2o, the curves P(x,y) =0 and Q(x,y,22) = 0 are boundaries
of the domains Dggp3 and Dgi-rk3(z2), respectively

Ds1-rk3(2z2): stability domain for the SI-RK3 method for fixed z;

To determine whether Dggps C Dsi-rk3(22), we only need to verify that
0Dssp3 is enclosed by 0Ds1-rk3(22)

18



To this end, we consider P(x,y) and Q(x,vy, zo) as polynomials of a single
variable x and compute their resultant

K(y, 22)
6140942214464815497216(2 — 1)36(23 + 1)12

K(y,z0) :=res(P,Q) =

K(y, z5) is explicitly given. log1g(K (y, z2) + 1) is visualized in

which indicates that K(y,z>) > 0 for all (y,zo) € [-2.4,2.4] x (—=3,0)



This implies that 0Dggp3 and 0Dg-rk3(z2) have no intersections when
zo € (—3,0).

We take zo = —1 and illustrate that Dggps3 C Dgl-rk3(—1):
)
——0Dssp3
—O0Dgs1_rr3(—1)
2.51
> 0
2.5+
-5 .
-5 2.5 0 2.9 )
X

Since K (y, zo) is continuous, we conclude that Dggps C Dg1-rk3(z2) for

all zo0 € (—3,0) 0



Numerical Examples

We test the second-order SI-RK3 method and compare the results with
the ones obtained using the second-order IMEX-SSP3(3,3,2) method
of Pareschi and Russo.

The obtained results clearly demonstrate that the new SI-RK3 method
outperforms the IMEX-SSP3(3,3,2) when a large time step and/or
coarse grid are used.

Example — Scalar ODE
v =1 —klulu, k>0

It has one equilibrium point v* = 1/Vk
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Steady State Preserving Test

We take &k = 10000 with the corresponding equilibrium point «* = 0.01.
We consider three different initial values:

(a) u(0) =0.9u", (b) u(0) =u", (c) u(0)=1.1u"

22



3 (a) SI-RK3
102X 10
10
9.87
9.67
9.4+
9.2+ - --At=1/200
== At=1/400
9 —At=1/800
Equilibrium
8.8 ‘ ‘ ‘ ‘ ‘
0 0.01 0.02 0.03 0.04 0.05
(b) SI-RK3
0.0104
---At=1/200
== At=1/400
0.01027 — A t=1/800
Equilibrium
0.01
0.0098f
0.0096 : : ‘ : ‘
0 0.01 0.02 0.03 0.04 0.05
(c) SI-RK3
---At=1/200
== At=1/400
0.011 — A t=1/800
Equilibrium

0.0105¢

0.01

0 0.01 0.02 0.03 0.04 0.05

10.27

10

9.8r
9.61
9.4r

9.2+

0.0104

0.0102¢

0.01

0.0098(

P
-

---At=1/200

=='A1=1/400

—At=1/800
Equilibrium

0 0.01 0.02 0.03 0.04 0.05

(b) IMEX-SSP3(3,3,2)

---At=1/200

== At=1/400

— A t=1/800
Equilibrium

0.0096 ‘ ‘ ; : ‘
0 0.01 0.02 0.03 0.04 0.05
(c) IMEX-SSP3(3,3,2)
---At=1/200
== At=1/400
0.011 — A t=1/800
Equilibrium

0.0105¢

0.01

&

e e e i T T g pp—
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Sign Preserving Test

We take £ = 10000 with the corresponding equilibrium point «* = 0.01.
We consider large initial value:

u(0) =1
SI-RK3 IMEX-SSP3(3,3,2)
- =-=A1=1/200 ’ - ==-A1=1/200
‘‘‘‘‘ A t=1/400 == At=1/400
—— A1=1/800 08l —— At=1/800
Equilibrium ' Equilibrium

0.6 |

0.4

0.2¢

0* ...... | P gt v e s e et e e, R )
P

0.01 0.015 0 0.005 0.01 0.015
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Shallow Water Equations

wW=Z+h

/\/\/

h(Xx,t)

Z(X) -

25




1-D Saint-VVenant System

ht+qg: =20

qt + (hu2 + %h2)x = —ghZy

This is a system of hyperbolic balance laws
U+ FU,Z),=8SU,Z), U :=/(h,q)
h: depth
u. velocity
q .= hu. discharge
Z. bottom topography

g. gravitational constant

26



Finite-VVolume Methods

1-D System: U:+FU);, =0

1
U;(t) ~ o C/U(a;,t) dx : cell averages over C; := (a:j_%,a:j+%)

J

This solution is approximated by a piecewise polynomial (conservative,
high-order accurate, non-oscillatory) reconstruction:

U(z) = P;(z) for xz e C;
Second-order schemes employ piecewise linear reconstructions:

U(z) =U; + (Uy);j(z —x;) forzcC,

27



For example,

Uj—Uj-1 Uj41-Uj—1 Ujt1 -U;
Ax ’ 2Ax ’ Ax

(Uz); = minmod (6

where the minmod function is defined as:

mln]{zj}, it Zj >0 Vj,
minmod(z1, 22, ...) := ymax;{z;}, if z; <0 Vjy,
0, otherwise.

The reconstructed point values at cell interfaces are:

_ = Az
Uj—|—% = Pj(xj—l—%) =U; + 7(Ux)j

Ax
7(Um)j—|—1

+ — p —U. .. —
Uj_|_% . J+1(xj—|-%) _UJ+1

0c[1,2]

28



The discontinuities appearing at the reconstruction step at the interface
points {xj+l} propagate at finite speeds estimated by:
2

a;_l = max{AN(A(U_ %)> >\N<A(U+ 1)) }
aj‘+% ‘= min {Al(A(U_ 1 ) (A(U"' 1)) }

OF

A < Xo < ...< An: N eigenvalues of the Jacobian A(U) := o



Central-Upwind Schemes

Godunov-type central schemes with a built-in upwind nature
[Kurganov, Tadmor; 2000]

[Kurganov, Petrova; 2000, 2001]

[Kurganov, Noelle, Petrova; 2001]

[Kurganov, Lin; 2007]
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1-D Semi-Discrete Central-Upwind Scheme

d . Hj @ —H; 1()
—Uj(t) = —
dt Ax
The central-upwind numerical flux is:
+ — - + Fasn —
a F(U —a F(U U —U
_j+3 ( j+%) i+3 ( j+%) _ i+3 i+
J‘|‘§ J+§ ]+§ ]+§
The built-in “anti-diffusion” term is:
Ut ., _-uU* , U* ,—-U"
o i+3 ity iy T
d. 1 = minmod :
T*3 a+1—a_1 a+1—a_1
j‘|‘§ j+§ j+§ ]+§
The intermediate values U* ; are:
]‘l‘j
+ + — — + —
a' U —a U — {F U — F(U }
Ut — j+5 it+3  it3 its ( J+%) ( +%)
It2 al 1 —a. 1
]+§ ]+§

31




Remarks

1. d. O corresponds to the central-upwind scheme from [Kurganov,

]+§ =
Noelle, Petrova; 2001]

2. For the system of balance laws
U+ FU)y =S

the central-upwind scheme is:

H 1(t) — H 1(t)
d — +5 =3 =
—U:(t) = — Z S.(t
Ui (t) o + 155 (®)
where
. “i+3
S;(t) = ~a / S(xz,t) dx

32



Saint-Venant System — Numerical Challenges

ht +q =0
qt + (hu2 + %hz)m = —ghZy

e Steady-state solutions:

2
q = Const, % + g(h+ Z) = Const

e 'ake at rest” steady-state solutions:

u=0, h+ Z = Const

e Dry (h =0) or near dry (h ~ 0) states

33



Well-Balanced Positivity Preserving
Central-Upwind Scheme

[Kurganov, Petrova; 2007]

e w= h+4 Z:. water surface=—=“Lake at rest” states: |q =0, w = Const

—— Reconstruct the equilibrium variables w and ¢ rather than A and g

e Use the well-balanced quadrature

Tit3 Z(z. 1)+ Z(z. 1)
/ hZydx = (wj— i+ : / )-(Z(a;j_l_%)—Z(xj

€T .
j_

N|—

)

N|—=
N

e Make positivity preserving correction of the reconstruction of w

e Desingularize the computation of u = for small h

SR
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Shallow Water System with Friction Terms

[Chertock, Cui, Kurganov, Wu; 2015]
ht +qx =0
 + (hu? + 842)

n. Manning coefficient

2
= —ghZy — gm|u|u

T

Special Steady-State Solutions
q = Const, h= Const, Z;= Const

correspond to the situation when the water flows over a slanted infinitely
long surface with a constant slope.

A straightforward midpoint discretization of the friction term leads
to the well-balanced positivity preserving semi-discrete central-upwind

scheme
35



Example — Small Perturbation of a Steady Flow Over a Slanted
Surface

0.15}

0.1

0.05f

0 05 1

0.06

0.05;
0.04;
0.03;
0.02;
0.01;

t=0

—_— W]

—

15 2 25

t=0

t=1
0.15¢ —w]
—B
0.05/
0 05 1 15 2 25

0.06

0.05;
0.04;
0.03;
0.02;
0.01;

X

Supercritical case

t=0.5

Subcritical case

t=100
0.15} | | —w
—B
O.l\
0.05|
0 05 1 15 2 25
X
t=100
0.06 ‘ ‘
0.05}
0.04/
0.03|
0.02/
0.01]
0 05 1 15 2 25



Example — Infinite Slanted Surface with a Periodic Flow

We take Z; = —0.2, n = 0.09 and the following initial conditions:

0.02, x <50 0, x <50

h(x,0) =
( ) {0.0l, x > 50 0.04, x> 50

q(x,0) = {

We restrict the computational domain to [0, 100], which is divided into
N uniform cells, and impose the periodic boundary conditions.

In this example, the friction term is very stiff and we compare the results
obtained by the proposed second-order SI-RK3 method with the ones
obtained using the second-order IMEX-SSP3(3,3,2) method.
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Time Steps Restricted by the CFL Condition (the CFL number is 0.3)

0.012 2‘0 40 . 6‘0 8‘0 160
(c)
0.4;
= 0.2 |
S
0
%)
O,
N =100
- | | | N = 1000/
0 200 400 ; 600 800 1000

(b)
0.41 N =100
---N =1000
80.3/\/
o U
(-}
—
&
= 0.2
0.1 * * * * J
0 20 40 60 80 100
(d)
0.8/
0.6
=
= 0.4
0.2
0 | | ~ [=N=100]
0 200 400 600 800 1000

t



0.4 B ]
0.2 o o
0,
N =100
0.2 | | | -N = 1000/
) 200 400 , 600 800 1000

0.4r

0.10 20 40 . 60 80 100
(d)

0.8r

0.6- /
S
= 0.4f
<

0.2}

0 ‘ ‘ ~ [=N=100]

0 200 400 600 800 1000
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Fixed Time Step Restriction (At = min{AtcgL, Atmax})

(b)
(a) 0.4
=0.3 \
S
—
=
= 0.2
. ‘ ‘ ‘ ‘ ‘ 0.1 ‘ ‘ ‘ ‘ ‘
0.01% 20 40 60 80 100 0 20 40 60 80 100

" Almax = 0.01, N = 100
— Atpa = 0.15. N = 100
— Abpax = 0.3, N = 100

— N = 1000
c (d)
( ) 0.8r
0.4
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S I —
=) 0.2 \E/ 0.4
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(b)
0.4:

- ‘ ‘ ‘ 0.1 ‘ ‘ ‘ ‘ ‘
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