Steady State and Sign Preserving
 Semi-Implicit Runge-Kutta Methods for Differential Equations with Stiff Damping

Term

Alexander Kurganov Tulane University
Mathematics Department
www.math.tulane.edu/~kurganov

Alina Chertock, North Carolina State University, USA
Shumo Cui, Tulane University, USA
Tong Wu, Tulane University, USA

$$
\boldsymbol{u}^{\prime}=\boldsymbol{f}(\boldsymbol{u}, t)+G(\boldsymbol{u}, t) \boldsymbol{u}
$$

$\boldsymbol{u}(t) \in \mathbb{R}^{N}$: unknown vector function
$f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$: given vector field
$G: \mathbb{R}^{N \times N} \rightarrow \mathbb{R}^{N \times N}$: diagonal non-positive definite matrix representing a (stiff) damping term

Steady States: $\boldsymbol{u}(t) \equiv \widehat{\boldsymbol{u}} \quad$ s.t. $\quad \boldsymbol{f}(\widehat{\boldsymbol{u}}, t) \equiv-G(\widehat{\boldsymbol{u}}, t) \widehat{\boldsymbol{u}}$
Sign Preservation provided $\{\boldsymbol{u}(0) \geq 0, \boldsymbol{f} \geq 0\}$ or $\{\boldsymbol{u}(0) \leq 0, \quad \boldsymbol{f} \leq 0\}$

Explicit vs. Implicit vs. Semi-Implicit Methods

For simplicity, consider a scalar ODE

$$
u^{\prime}=f(u, t)+g(u, t) u, \quad g(u, t) \leq 0
$$

Example: First-Order Explicit (Forward Euler) Method

$$
u^{n+1}=u^{n}+\Delta t\left[f\left(u^{n}, t^{n}\right)+g\left(u^{n}, t^{n}\right) u^{n}\right]
$$

Example: First-Order Implicit (Backward Euler) Method

$$
u^{n+1}=u^{n}+\Delta t\left[f\left(u^{n+1}, t^{n+1}\right)+g\left(u^{n+1}, t^{n+1}\right) u^{n+1}\right]
$$

Example: First-Order Semi-Implicit Method

$$
u^{n+1}=u^{n}+\Delta t\left[f\left(u^{n}, t^{n}\right)+g\left(u^{n}, t^{n}\right) u^{n+1}\right]
$$

Explicit m-stage SSP (TVD) RK Methods

[Shu; 1988] [Shu, Osher; 1988] [Gottlieb, Shu, Tadmor; 2001] For simplicity, consider a scalar ODE

$$
u^{\prime}=f(u, t)+g(u, t) u, \quad g(u, t) \leq 0
$$

$f(u, t)$: nonstiff term, $g(u, t) u$: stiff damping term
A general explicit m-stage RK method is

$$
\begin{aligned}
& u^{(0)}=u^{n} \\
& u^{(i)}=\sum_{k=0}^{i-1} \alpha_{i, k}\left[u^{(k)}+\beta_{i, k} \Delta t\left(f^{(k)}+g^{(k)} u^{(k)}\right)\right], \quad i=1, \ldots, m \\
& u^{n+1}=u^{(m)}
\end{aligned}
$$

where $f^{(k)}:=f\left(u^{(k)}, t^{(k)}\right), g^{(k)}:=g\left(u^{(k)}, t^{(k)}\right), t^{(k)}:=t^{n}+D_{k} \Delta t$, $t^{n+1}:=t^{n}+\Delta t$ and D_{k} are given by

$$
D_{0}=0, \quad D_{i}=\sum_{k=0}^{i-1} \alpha_{i, k}\left(D_{k}+\beta_{i, k}\right)
$$

The RK method is fully determined by its coefficients $\left\{\alpha_{i, k}, \beta_{i, k}\right\}$
Consistency requirements: $\sum_{k=0}^{i-1} \alpha_{i, k}=1, \quad i=1, \ldots, m, \quad D_{m}=1$
The RK method is a linear combination of the first-order FE steps:

$$
u^{(i)}=\sum_{k=0}^{i-1} \alpha_{i, k} u_{i, k}^{\mathrm{FE}}
$$

where

$$
u_{i, k}^{\mathrm{FE}}:=u^{(k)}+\beta_{i, k} \Delta t\left(f^{(k)}+g^{(k)} u^{(k)}\right)
$$

According to [Gottlieb, Shu, Tadmor; 2001], the RK method is SSP provided

$$
\alpha_{i, k} \geq 0 \quad \text { for all } \quad i, k
$$

and an appropriate time step restriction is imposed.
Negative time increments are avoided if $\beta_{i, k} \geq 0$ for all i, k

New Semi-Implicit Methods

We first replace the FE evolution steps by the semi-implicit (SI) ones:

$$
u_{i, k}^{\mathrm{SI}}:=u^{(k)}+\beta_{i, k} \Delta t\left(f^{(k)}+g^{(k)} u_{i, k}^{\mathrm{SI}}\right) \quad \Longleftrightarrow \quad u_{i, k}^{\mathrm{SI}}=\frac{u^{(k)}+\beta_{i, k} \Delta t f^{(k)}}{1-\beta_{i, k} \Delta t g^{(k)}}
$$

This leads to the following SI scheme:

$$
\begin{aligned}
& u^{(0)}=u^{n} \\
& u^{(i)}=\sum_{k=0}^{i-1} \alpha_{i, k}\left(\frac{u^{(k)}+\beta_{i, k} \Delta t f^{(k)}}{1-\beta_{i, k} \Delta t g^{(k)}}\right), \quad i=1, \ldots, m \\
& u^{n+1}=u^{(m)}
\end{aligned}
$$

Unfortunately, this scheme is at most first-order accurate
We, therefore, propose an order correction step:

$$
u^{n+1}=\frac{u^{(m)}-C_{m}(\Delta t)^{2} f^{(m)} g^{(m)}}{1+C_{m}\left(\Delta t g^{(m)}\right)^{2}}
$$

where

$$
C_{0}=0, \quad C_{i}=\sum_{k=0}^{i-1} \alpha_{i, k}\left(C_{k}+\beta_{i, k}^{2}\right), \quad i=1, \ldots, m
$$

New class of second-order semi-implicit Runge-Kutta (SI-RK) methods:

$$
\begin{aligned}
& u^{(0)}=u^{n} \\
& u^{(i)}=\sum_{k=0}^{i-1} \alpha_{i, k}\left(\frac{u^{(k)}+\beta_{i, k} \Delta t f^{(k)}}{1-\beta_{i, k} \Delta t g^{(k)}}\right), \quad i=1, \ldots, m \\
& u^{n+1}=\frac{u^{(m)}-C_{m}(\Delta t)^{2} f^{(m)} g^{(m)}}{1+C_{m}\left(\Delta t g^{(m)}\right)^{2}}
\end{aligned}
$$

The set of coefficients $\left\{\alpha_{i, k}, \beta_{i, k}\right\}$ is taken directly from the explicit SSPRK method of an appropriate order.

Remark. Note that in the degenerate case of $g \equiv 0$, the SI-RK methods are identical to the corresponding explicit RK methods

Theorem (Second-Order Accuracy) If the SSP-RK method is at least second-order accurate, then the corresponding SI-RK method with the same set of coefficients $\alpha_{i, k}, \beta_{i, k} \geq 0$ is second-order.

Theorem ($A(\alpha)$-Stability and Stiff Decay) Let us assume that the SIRK methods are applied to the test equation $u^{\prime}=\lambda u$, where $\lambda \in \mathbb{C}$ is a constant with $\operatorname{Re} \lambda<0$. Then, the resulting methods, which can be written as

$$
u^{n+1}=R(z) u^{n}, \quad z=\lambda \Delta t
$$

satisfy the following two requirements:

$$
|R(z)| \leq 1, \forall z \in \mathbb{C} \text { s.t. } \operatorname{Re} z \leq-|\operatorname{Im} z| \quad\left(A(\alpha) \text {-stability with } \alpha=\frac{\pi}{4}\right)
$$

and

$$
R(z) \rightarrow 0 \text { as } \operatorname{Re} z \rightarrow-\infty
$$

provided $\alpha_{i, k} \geq 0$ and $\beta_{i, k} \geq 0$ for all i, k.

Theorem (Steady State Preserving Property) Let $\beta_{i, k} \geq 0 \forall i, k$. Then, if the computed solution is at a steady state at time t^{n}, i.e., $u^{n}=\widehat{u}$ such that

$$
f(\widehat{u}, t) \equiv-g(\widehat{u}, t) \widehat{u}
$$

it will remain at the same steady state, namely,

$$
u^{n+1}=\widehat{u}
$$

Theorem (Sign Preserving Property) Let the initial condition u^{0} and function f satisfy

$$
\left\{u^{0} \geq 0, \quad f \geq 0\right\} \quad \text { or } \quad\left\{u^{0} \leq 0, \quad f \leq 0\right\}
$$

Then,

$$
\operatorname{sgn}\left(u^{n}\right) \equiv \operatorname{sgn}\left(u^{0}\right)
$$

for all n provided $\alpha_{i, k} \geq 0$ and $\beta_{i, k} \geq 0$ for all i, k

Absolute Stability of Two SSP-Based SI-RK Methods

The first SI-RK2 method is based on the 2-order SSP-RK solver:

$$
\begin{aligned}
u^{(1)} & =\frac{u^{n}+\Delta t f^{n}}{1-\Delta t g^{n}} \\
u^{(2)} & =\frac{1}{2} u^{n}+\frac{1}{2} \cdot \frac{u^{(1)}+\Delta t f^{(1)}}{1-\Delta t g^{(1)}} \\
u^{n+1} & =\frac{u^{(2)}-(\Delta t)^{2} f^{(2)} g^{(2)}}{1+\left(\Delta t g^{(2)}\right)^{2}}
\end{aligned}
$$

The second SI-RK3 method is based on the 3-order SSP-RK solver:

$$
\begin{aligned}
u^{(1)} & =\frac{u^{n}+\Delta t f^{n}}{1-\Delta t g^{n}} \\
u^{(2)} & =\frac{3}{4} u^{n}+\frac{1}{4} \cdot \frac{u^{(1)}+\Delta t f^{(1)}}{1-\Delta t g^{(1)}} \\
u^{(3)} & =\frac{1}{3} u^{n}+\frac{2}{3} \cdot \frac{u^{(2)}+\Delta t f^{(2)}}{1-\Delta t g^{(2)}} \\
u^{n+1} & =\frac{u^{(3)}-(\Delta t)^{2} f^{(3)} g^{(3)}}{1+\left(\Delta t g^{(3)}\right)^{2}}
\end{aligned}
$$

To analyze the absolute stability, we consider the following test problem:

$$
u^{\prime}=\lambda_{1} u+\lambda_{2} u, \quad \lambda_{1} \in \mathbb{C}, \quad \operatorname{Re}\left(\lambda_{1}\right) \leq 0, \quad \lambda_{2} \in \mathbb{R}, \quad \lambda_{2} \leq 0
$$

$\lambda_{1} u$: nonstiff part, $\lambda_{2} u$: stiff part
We denote $z_{1}:=\lambda_{1} \Delta t$ and $z_{2}:=\lambda_{2} \Delta t$.
We denote the stability regions of the second- and third-order SSP-RK methods by $\mathcal{D}_{\mathrm{SSP} 2}$ and $\mathcal{D}_{\mathrm{SSP} 3}$, respectively.

We denote the corresponding time step restrictions by $\Delta t \leq \Delta t_{\mathrm{SSP} 2}$ and $\Delta t \leq \Delta t_{\mathrm{SSP}} 3$

Theorem (Absolute Stability of the SI-RK2 Method) The region of absolute stability of the SI-RK2 method contains $\mathcal{D}_{\text {SSP2 }}$, i.e., for any $z_{2} \leq 0$, the solution of

$$
\begin{aligned}
u^{(1)} & =\frac{1+z_{1}}{1-z_{2}} u^{n} \\
u^{(2)} & =\frac{1}{2} u^{n}+\frac{1}{2} \cdot \frac{1+z_{1}}{1-z_{2}} u^{(1)} \\
u^{n+1} & =\frac{1-z_{1} z_{2}}{1+z_{2}^{2}} u^{(2)}
\end{aligned}
$$

satisfies $\left|u^{n+1}\right| \leq\left|u^{n}\right|$ provided $\Delta t \leq \Delta t_{\mathrm{SSP}}$

Idea of Proof: Stability function for the second-order SSP-RK method (applied to $u^{\prime}=\lambda_{1} u$) is:

$$
R_{\mathrm{SSP} 2}\left(z_{1}\right)=\frac{1}{2}+\frac{1}{2}\left(1+z_{1}\right)^{2}
$$

Stability function for the SI-RK2 methods (applied to $u^{\prime}=\lambda_{1} u+\lambda_{2} u$) is:

$$
R_{\mathrm{SI}-\mathrm{RK} 2}\left(z_{1}, z_{2}\right)=\frac{1-z_{1} z_{2}}{1+z_{2}^{2}} \cdot\left[\frac{1}{2}+\frac{1}{2}\left(\frac{1+z_{1}}{1-z_{2}}\right)^{2}\right]
$$

To prove the theorem, it will be enough to show that both

$$
\begin{equation*}
\left|\frac{1}{2}+\frac{1}{2}\left(\frac{1+z_{1}}{1-z_{2}}\right)^{2}\right| \leq 1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{1-z_{1} z_{2}}{1+z_{2}^{2}}\right| \leq 1 \tag{2}
\end{equation*}
$$

for all z_{1}, z_{2} such that $\left|R_{\mathrm{SSP} 2}\left(z_{1}\right)\right| \leq 1$ and $z_{2} \leq 0$

Proof of (1) is straightforward.

For fixed $z_{2}<0$, (2) is equivalent to

$$
\left|z_{1}+\frac{1}{\left|z_{2}\right|}\right| \leq\left|z_{2}\right|+\frac{1}{\left|z_{2}\right|}
$$

Denoting $z_{1}:=x+i y$, we can write this domain as

$$
\mathcal{C}\left(z_{2}\right):=\left\{x+i y \left\lvert\, y^{2} \leq\left(z_{2}+\frac{1}{z_{2}}\right)^{2}-\left(x-\frac{1}{z_{2}}\right)^{2}\right.\right\}, \quad \forall z_{2}<0
$$

We thus need to show that $\mathcal{D}_{\mathrm{SSP} 2} \subset \mathcal{C}:=\bigcap_{z_{2}<0} \mathcal{C}\left(z_{2}\right)$
We compute intersection of $\mathcal{C}\left(z_{2}\right)$'s:

$$
\mathcal{C}=\left\{x+y i \mid y^{2} \leq 2+3 x^{2 / 3}-x^{2}, x \in[-2 \sqrt{2}, 0]\right\}
$$

which clearly shows that $\mathcal{D}_{\mathrm{SSP} 2} \subset \mathcal{C}$

Conjecture (Absolute Stability of the SI-RK3 Method) The region of absolute stability of the SI-RK3 method contains $\mathcal{D}_{\mathrm{SSP}}$, i.e., for any $z_{2} \leq 0$, the solution of

$$
\begin{aligned}
u^{(1)} & =\frac{1+z_{1}}{1-z_{2}} u^{n} \\
u^{(2)} & =\frac{3}{4} u^{n}+\frac{1}{4} \cdot \frac{1+z_{1}}{1-z_{2}} u^{(1)} \\
u^{(3)} & =\frac{1}{3} u^{n}+\frac{2}{3} \cdot \frac{1+z_{1}}{1-z_{2}} u^{(2)} \\
u^{n+1} & =\frac{1-z_{1} z_{2}}{1+z_{2}^{2}} u^{(3)}
\end{aligned}
$$

satisfies $\left|u^{n+1}\right| \leq\left|u^{n}\right|$ provided $\Delta t \leq \Delta t_{\text {SSP3 }}$

Idea of "Proof": Stability function for the third-order SSP-RK method (applied to $u^{\prime}=\lambda_{1} u$) is:

$$
R_{\mathrm{SSP} 3}\left(z_{1}\right)=\frac{1}{3}+\frac{1}{2}\left(1+z_{1}\right)+\frac{1}{6}\left(1+z_{1}\right)^{3}
$$

Stability function for the SI-RK3 methods (applied to $u^{\prime}=\lambda_{1} u+\lambda_{2} u$) is:

$$
R_{\mathrm{SI}-\mathrm{RK} 3}\left(z_{1}, z_{2}\right)=\frac{1-z_{1} z_{2}}{1+z_{2}^{2}} \cdot\left[\frac{1}{3}+\frac{1}{2}\left(\frac{1+z_{1}}{1-z_{2}}\right)+\frac{1}{6}\left(\frac{1+z_{1}}{1-z_{2}}\right)^{3}\right]
$$

The statement of the conjecture would be true if one could show that

$$
\left|R_{\mathrm{SI}-\mathrm{RK} 3}\left(z_{1}, z_{2}\right)\right| \leq 1 \quad \forall z_{1} \text { such that }\left|R_{\mathrm{SSP} 3}\left(z_{1}\right)\right| \leq 1 \quad \text { and } \quad \forall z_{2} \leq 0
$$

It is quite straightforward to show that

$$
\left|R_{\mathrm{SI}-\mathrm{RK} 3}\left(z_{1}, z_{2}\right)\right| \leq 1 \quad \forall z_{1} \text { such that }\left|R_{\mathrm{SSP3}}\left(z_{1}\right)\right| \leq 1 \text { and } \forall z_{2} \leq-3
$$

To study the case $z_{2} \in(-3,0)$, we introduce a polynomial

$$
P(x, y):=\left|R_{\mathrm{SSP} 3}(x+i y)\right|^{2}-1
$$

and a rational function

$$
Q\left(x, y, z_{2}\right):=\left|R_{\mathrm{SI}-\mathrm{RK} 3}\left(x+i y, z_{2}\right)\right|^{2}-1
$$

For fixed z_{2}, the curves $P(x, y)=0$ and $Q\left(x, y, z_{2}\right)=0$ are boundaries of the domains $\mathcal{D}_{\text {SSP3 }}$ and $\mathcal{D}_{\text {SI-RK3 }}\left(z_{2}\right)$, respectively
$\mathcal{D}_{\text {SI-RK3 }}\left(z_{2}\right)$: stability domain for the SI-RK3 method for fixed z_{2}
To determine whether $\mathcal{D}_{\text {SSP3 }} \subset \mathcal{D}_{\text {SI-RK3 }}\left(z_{2}\right)$, we only need to verify that $\partial \mathcal{D}_{\mathrm{SSP} 3}$ is enclosed by $\partial \mathcal{D}_{\mathrm{SI}-\mathrm{RK} 3}\left(z_{2}\right)$

To this end, we consider $P(x, y)$ and $Q\left(x, y, z_{2}\right)$ as polynomials of a single variable x and compute their resultant

$$
K\left(y, z_{2}\right):=\operatorname{res}(P, Q)=\frac{\widetilde{K}\left(y, z_{2}\right)}{6140942214464815497216\left(z_{2}-1\right)^{36}\left(z_{2}^{2}+1\right)^{12}}
$$

$\widetilde{K}\left(y, z_{2}\right)$ is explicitly given. $\log _{10}\left(\widetilde{K}\left(y, z_{2}\right)+1\right)$ is visualized in

which indicates that $K\left(y, z_{2}\right)>0$ for all $\left(y, z_{2}\right) \in[-2.4,2.4] \times(-3,0)$

This implies that $\partial \mathcal{D}_{\mathrm{SSP} 3}$ and $\partial \mathcal{D}_{\text {SI-RK3 }}\left(z_{2}\right)$ have no intersections when $z_{2} \in(-3,0)$.

We take $z_{2}=-1$ and illustrate that $\mathcal{D}_{\mathrm{SSP} 3} \subset \mathcal{D}_{\mathrm{SI}-\mathrm{RK} 3}(-1)$:

Since $K\left(y, z_{2}\right)$ is continuous, we conclude that $\mathcal{D}_{\mathrm{SSP} 3} \subset \mathcal{D}_{\mathrm{SI}-\mathrm{RK} 3}\left(z_{2}\right)$ for all $z_{2} \in(-3,0)$

Numerical Examples

We test the second-order SI-RK3 method and compare the results with the ones obtained using the second-order IMEX-SSP3(3,3,2) method of Pareschi and Russo.

The obtained results clearly demonstrate that the new SI-RK3 method outperforms the IMEX-SSP3(3,3,2) when a large time step and/or coarse grid are used.

Example - Scalar ODE

$$
u^{\prime}=1-k|u| u, \quad k>0
$$

It has one equilibrium point $u^{*}=1 / \sqrt{k}$

Steady State Preserving Test

We take $k=10000$ with the corresponding equilibrium point $u^{*}=0.01$. We consider three different initial values:
(a) $u(0)=0.9 u^{*}$,
(b) $u(0)=u^{*}$,
(c) $u(0)=1.1 u^{*}$

Sign Preserving Test

We take $k=10000$ with the corresponding equilibrium point $u^{*}=0.01$. We consider large initial value:

$$
u(0)=1
$$

IMEX-SSP3(3,3,2)

Shallow Water Equations

1-D Saint-Venant System

$$
\left\{\begin{array}{l}
h_{t}+q_{x}=0 \\
q_{t}+\left(h u^{2}+\frac{g}{2} h^{2}\right)_{x}=-g h Z_{x}
\end{array}\right.
$$

This is a system of hyperbolic balance laws

$$
\boldsymbol{U}_{t}+\boldsymbol{F}(\boldsymbol{U}, Z)_{x}=\boldsymbol{S}(\boldsymbol{U}, Z), \quad \boldsymbol{U}:=(h, q)
$$

h : depth
u : velocity
$q:=h u:$ discharge
Z : bottom topography
g : gravitational constant

Finite-Volume Methods

1-D System:

$$
\boldsymbol{U}_{t}+\boldsymbol{F}(\boldsymbol{U})_{x}=\mathbf{0}
$$

$\overline{\boldsymbol{U}}_{j}(t) \approx \frac{1}{\Delta x} \int_{C_{j}} \boldsymbol{U}(x, t) d x:$ cell averages over $C_{j}:=\left(x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right)$
This solution is approximated by a piecewise polynomial (conservative, high-order accurate, non-oscillatory) reconstruction:
$\widetilde{U}(x)=P_{j}(x) \quad$ for $x \in C_{j}$
Second-order schemes employ piecewise linear reconstructions:
$\widetilde{\boldsymbol{U}}(x)=\overline{\boldsymbol{U}}_{j}+\left(\boldsymbol{U}_{x}\right)_{j}\left(x-x_{j}\right) \quad$ for $x \in C_{j}$

For example,

$$
\left(\boldsymbol{U}_{x}\right)_{j}=\operatorname{minmod}\left(\theta \frac{\overline{\boldsymbol{U}}_{j}-\overline{\boldsymbol{U}}_{j-1}}{\Delta x}, \frac{\overline{\boldsymbol{U}}_{j+1}-\overline{\boldsymbol{U}}_{j-1}}{2 \Delta x}, \theta \frac{\overline{\boldsymbol{U}}_{j+1}-\overline{\boldsymbol{U}}_{j}}{\Delta x}\right) \quad \theta \in[1,2]
$$

where the minmod function is defined as:

$$
\operatorname{minmod}\left(z_{1}, z_{2}, \ldots\right):= \begin{cases}\min _{j}\left\{z_{j}\right\}, & \text { if } z_{j}>0 \forall j \\ \max _{j}\left\{z_{j}\right\}, & \text { if } z_{j}<0 \forall j \\ 0, & \text { otherwise }\end{cases}
$$

The reconstructed point values at cell interfaces are:

$$
\begin{aligned}
\boldsymbol{U}_{j+\frac{1}{2}}^{-} & :=\boldsymbol{P}_{j}\left(x_{j+\frac{1}{2}}\right)=\overline{\boldsymbol{U}}_{j}+\frac{\Delta x}{2}\left(\boldsymbol{U}_{x}\right)_{j} \\
\boldsymbol{U}_{j+\frac{1}{2}}^{+} & :=\boldsymbol{P}_{j+1}\left(x_{j+\frac{1}{2}}\right)=\overline{\boldsymbol{U}}_{j+1}-\frac{\Delta x}{2}\left(\boldsymbol{U}_{x}\right)_{j+1}
\end{aligned}
$$

The discontinuities appearing at the reconstruction step at the interface points $\left\{x_{j+\frac{1}{2}}\right\}$ propagate at finite speeds estimated by:

$$
\begin{aligned}
a_{j+\frac{1}{2}}^{+} & :=\max \left\{\lambda_{N}\left(A\left(\boldsymbol{U}_{j+\frac{1}{2}}^{-}\right)\right), \lambda_{N}\left(A\left(\boldsymbol{U}_{j+\frac{1}{2}}^{+}\right)\right), 0\right\} \\
a_{j+\frac{1}{2}}^{-} & =\min \left\{\lambda_{1}\left(A\left(\boldsymbol{U}_{j+\frac{1}{2}}^{-}\right)\right), \lambda_{1}\left(A\left(\boldsymbol{U}_{j+\frac{1}{2}}^{+}\right)\right), 0\right\}
\end{aligned}
$$

$\lambda_{1}<\lambda_{2}<\ldots<\lambda_{N}: N$ eigenvalues of the Jacobian $A(\boldsymbol{U}):=\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{U}}$

Central-Upwind Schemes

Godunov-type central schemes with a built-in upwind nature
[Kurganov, Tadmor; 2000]
[Kurganov, Petrova; 2000, 2001]
[Kurganov, Noelle, Petrova; 2001]
[Kurganov, Lin; 2007]

1-D Semi-Discrete Central-Upwind Scheme

$$
\frac{d}{d t} \overline{\boldsymbol{U}}_{j}(t)=-\frac{\boldsymbol{H}_{j+\frac{1}{2}}(t)-\boldsymbol{H}_{j-\frac{1}{2}}(t)}{\Delta x}
$$

The central-upwind numerical flux is:

$$
\boldsymbol{H}_{j+\frac{1}{2}}=\frac{a_{j+\frac{1}{2}}^{+} \boldsymbol{F}\left(\boldsymbol{U}_{j+\frac{1}{2}}^{-}\right)-a_{j+\frac{1}{2}}^{-} \boldsymbol{F}\left(\boldsymbol{U}_{j+\frac{1}{2}}^{+}\right)}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}+a_{j+\frac{1}{2}}^{+} a_{j+\frac{1}{2}}^{-}\left[\frac{\boldsymbol{U}_{j+\frac{1}{2}}^{+}-\boldsymbol{U}_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}-\sqrt{\boldsymbol{d}_{j+\frac{1}{2}}}\right]
$$

The built-in "anti-diffusion" term is:

$$
\boldsymbol{d}_{j+\frac{1}{2}}=\operatorname{minmod}\left(\frac{\boldsymbol{U}_{j+\frac{1}{2}}^{+}-\boldsymbol{U}_{j+\frac{1}{2}}^{*}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}, \frac{\boldsymbol{U}_{j+\frac{1}{2}}^{*}-\boldsymbol{U}_{j+\frac{1}{2}}^{-}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}\right)
$$

The intermediate values $\boldsymbol{U}_{j+\frac{1}{2}}^{*}$ are:

$$
\boldsymbol{U}_{j+\frac{1}{2}}^{*}=\frac{a_{j+\frac{1}{2}}^{+} \boldsymbol{U}_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-} \boldsymbol{U}_{j+\frac{1}{2}}^{-}-\left\{\boldsymbol{F}\left(\boldsymbol{U}_{j+\frac{1}{2}}^{+}\right)-\boldsymbol{F}\left(\boldsymbol{U}_{j+\frac{1}{2}}^{-}\right)\right\}}{a_{j+\frac{1}{2}}^{+}-a_{j+\frac{1}{2}}^{-}}
$$

Remarks

1. $\boldsymbol{d}_{j+\frac{1}{2}} \equiv 0$ corresponds to the central-upwind scheme from [Kurganov, Noelle, Petrova; 2001]
2. For the system of balance laws

$$
\boldsymbol{U}_{t}+\boldsymbol{F}(\boldsymbol{U})_{x}=\boldsymbol{S}
$$

the central-upwind scheme is:

$$
\frac{d}{d t} \overline{\boldsymbol{U}}_{j}(t)=-\frac{\boldsymbol{H}_{j+\frac{1}{2}}(t)-\boldsymbol{H}_{j-\frac{1}{2}}(t)}{\Delta x}+\overline{\boldsymbol{S}_{j}(t)}
$$

where

$$
\bar{S}_{j}(t) \approx \frac{1}{\Delta x} \int_{x-\frac{1}{2}}^{x_{j+\frac{1}{2}}} \boldsymbol{S}(x, t) d x
$$

Saint-Venant System - Numerical Challenges

$$
\left\{\begin{array}{l}
h_{t}+q_{x}=0 \\
q_{t}+\left(h u^{2}+\frac{g}{2} h^{2}\right)_{x}=-g h Z_{x}
\end{array}\right.
$$

- Steady-state solutions:

$$
q=\text { Const, } \quad \frac{u^{2}}{2}+g(h+Z)=\text { Const }
$$

- "Lake at rest" steady-state solutions:

$$
u=0, \quad h+Z=\text { Const }
$$

- Dry $(h=0)$ or near dry ($h \sim 0$) states

Well-Balanced Positivity Preserving Central-Upwind Scheme

[Kurganov, Petrova; 2007]

- $w=h+Z$: water surface \Longrightarrow "Lake at rest" states: $q \equiv 0, w \equiv$ Const
\Longrightarrow Reconstruct the equilibrium variables w and q rather than h and q
- Use the well-balanced quadrature

$$
\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} h Z_{x} d x=\left(\bar{w}_{j}-\frac{Z\left(x_{j+\frac{1}{2}}\right)+Z\left(x_{j-\frac{1}{2}}\right)}{2}\right) \cdot\left(Z\left(x_{j+\frac{1}{2}}\right)-Z\left(x_{j-\frac{1}{2}}\right)\right)
$$

- Make positivity preserving correction of the reconstruction of w
- Desingularize the computation of $u=\frac{q}{h}$ for small h

Shallow Water System with Friction Terms

[Chertock, Cui, Kurganov, Wu; 2015]

$$
\left\{\begin{array}{l}
h_{t}+q_{x}=0 \\
q_{t}+\left(h u^{2}+\frac{g}{2} h^{2}\right)_{x}=-g h Z_{x}-g \frac{n^{2}}{h^{1 / 3}}|u| u
\end{array}\right.
$$

n : Manning coefficient

Special Steady-State Solutions

$$
q \equiv \text { Const }, \quad h \equiv \text { Const }, \quad Z_{x} \equiv \text { Const }
$$

correspond to the situation when the water flows over a slanted infinitely long surface with a constant slope.

A straightforward midpoint discretization of the friction term leads to the well-balanced positivity preserving semi-discrete central-upwind scheme

Example - Small Perturbation of a Steady Flow Over a Slanted Surface

Supercritical case

Subcritical case

Example - Infinite Slanted Surface with a Periodic Flow

We take $Z_{x} \equiv-0.2, n=0.09$ and the following initial conditions:

$$
h(x, 0)=\left\{\begin{array}{ll}
0.02, & x<50 \\
0.01, & x>50
\end{array} \quad q(x, 0)=\left\{\begin{aligned}
0, & x<50 \\
0.04, & x>50
\end{aligned}\right.\right.
$$

We restrict the computational domain to [0, 100], which is divided into N uniform cells, and impose the periodic boundary conditions.

In this example, the friction term is very stiff and we compare the results obtained by the proposed second-order SI-RK3 method with the ones obtained using the second-order IMEX-SSP3(3,3,2) method.

Time Steps Restricted by the CFL Condition (the CFL number is 0.3)

Fixed Time Step Restriction $\left(\Delta t=\min \left\{\Delta t_{\text {CFL }}, \Delta t_{\text {max }}\right\}\right)$

(a)

(b)

$$
\begin{aligned}
\cdot \Delta t_{\max } & =0.01, N=100 \\
-\Delta t_{\max } & =0.15, N=100 \\
\Delta t_{\max } & =0.3, N=100
\end{aligned}
$$

(c)

(d)

(b)

$$
\begin{aligned}
& \cdot \Delta t_{\max }=0.01, N=100 \\
& -\Delta t_{\max }=0.15, N=100 \\
& -\Delta t_{\max }=0.3, N=100 \\
& -N=1000
\end{aligned}
$$

(c)

