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Why understanding motility is important ...

Movement is an essential component of both normal and pathogenic behavior at
the cell, organismic and population level

• Early development – we start as a single cell but ultimately have 250 cell
types correctly located in the adult and this involves movement at both the
single cell and tissue level

• The immune system – e.g., neutrophils respond to bacterial invasion

• Wound healing – some cells move into a wound to fight infection, others to
close the wound

• Angiogenesis – this is the process of forming new blood vessels

• Metastasis in cancer – invasion of new sites by active migration and passive
transport in the circulatory system

• Organism/population level – searching for food, mates, flocking for predator
avoidance or migration, avoidance of toxic substances ...
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The basic problem and terminology ........

Taxis: A behavioral response in which a motile cell or organism alters its direction
of motion in response to an external stimulus, without changing its speed or turning
rate.

Examples: Chemotaxis, geotaxis, aerotaxis, haptotaxis, ....

Kinesis: A behavioral response in which a motile cell or organism changes its rate
of locomotion or turning in response to the intensity, but not the direction, of an
external stimulus.

In many systems the external stimulus is a scalar field, but stresses can play a
role.
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The basic processes at the individual level

• A signal of some sort
• Transduction of the signal into ‘information’ that can affect movement

Outside

Inside

Signal Transduction

Internal Response 

Signal Propagation

External Signal External Signal 

Signal Detection
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• Movement – which of course involves mechanics
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The components in an integrated description

     Signal Detection 

  and Transduction

Control of Motile  

     Behavior

Population Level Behavior
     and Descriptions
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E. colias a model system

Counterclockwise rotation (CCW): ‘runs’

Clockwise rotation (CW) : ‘tumbles’

Bias: Probability of CCW i.e., probability
of running
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E. coli also adapt to constant stimuli

Clearly adaptation is essential for aggregation! This is probably also the case for
P. mirabilis , but is not the case for amoeboid cells; they can aggregate in steady
gradients without adaptation, but not in periodic waves of attractant.
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Signal transduction in E. coli
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P. Spiro, et al., A model of excitation and adaptation in bacterial chemotaxis, PNAS, 94, 7263-7268,
(1997).
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The Tar receptor
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The underlying network

There are 158 variables, but on a relevant time scale this can be reduced
to 16, and with some approximation, to 4.

Xiangrong Xin and Hans G. Othmer A ‘trimer of dimers’- based model for the chemotactic signal trans-
duction network in bacterial chemotaxis, Bull Math Biol (2012). – 10/54 –



Simple response from a complex network

Even though the network is very complicated, the input-output behavior is very
simple! This may be a common (and highly adaptive) phenomenon in signal trans-
duction networks.

The big question is how to extract this from the full model!
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A cartoon model for internal dynamics

Excitation

Change

Adaptation

Response
Signal 

dy1
dτ

=
g(S(τ))− (y1 + y2)

τE

,
dy2
dτ

=
g(S(τ))− y2

τA

, Response = h(y1)

If τE << τA, then for τ >> τE, y1 relaxes to y1 ∼ τAẏ2. In a steady linear gradient
of attractant

dS

dt
= v · ∇S,

and u ≡ ẏ2 is given by

u(T ) = e−T/τAu(0)± Ωf(T )

Ω ≡ |v|S′ f(T ) = (1− e−T/τA)
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Now we can see why adaptation is essential ..

For steps of fixed length we can write

un ≡ u(nT ) = λ0un−1 ± λ1

un = λn0u0 + λ1

[

±λn−1
0 ± λn−2

0 + · · · ± λ0

]

Consider two realizations, right-left and left-right:

u−(2T ) = e−T/τAu+(T )− Ωf(T )

= e−2T/τAu(0)− Ωf2(T )

u+(2T ) = e−T/τAu−(T ) + Ωf(T )

= e−2T/τAu(0) + Ωf2(T ).
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Pattern formation in E. coli

Basic experimental facts

• Cells are chemotactic towards aspartate; asp− cells do not aggregate
• Cells still use the ‘run-and-tumble’ strategy
• Cells can become nonmotile, which leads to stable spots
• Succinate is the primary carbon source
• Cells produce and secrete aspartate via the TCA cycle, but when starved they consume it
• Cells double every 2 hours

E. O. Budrene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria,
Nature, 376, 49–53 (1995).
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Are cell-based computational models feasible?

• For a single bacterium certainly ! We have one ...

• What about for spatial patterns?

Consider the Budrene-Berg experiments, and suppose we innoculate with
1000 cells in a spot. Cells divide every two hours, so after 3 days we have

103 · 236 ∼ ×1015 cells

Suppose we also need 10 internal variables for each cell.

Thus .......

A Monte Carlo simulation of the stochastic process may be feasible for the
first few division cycles, but certainly not later !!

• We need a higher-level description .........
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The phenomenological approach to chemotaxis

Let Ω ⊂ Rn be compact with smooth boundary, let n be the ‘particle’ density,
and let v be the ‘attractant’ density.

nt = ∇ · (∇n− n∇Φ(v))

= ∇ · (∇n− nχ∇v)

vt = D∆v + f(n, v)

nn = vn = 0

Chemotactic Sensitivity: χ ≡ Φv(n, v, x, . . . )

Chemotactic Velocity: uc = ∇Φ = χ∇v

Fundamental question: Given a microscopic model of individual cells, how does one obtain the chemo-
tactic sensitivity ?
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The transport equation for a velocity-jump process

The transport equation in the absence of internal dynamics and signals

∂

∂t
p(x, v, t) + v · ∇p(x, v, t) = −λ0p(x, v, t) + λ0

∫

V

T (v, v′)p(x, v′, t)dv′ (1)

= −λ0p(x, v, t) + T p(x, v, t) ≡ Lp(x, v, t) (2)

G. C Papanicolaou – Asymptotic analysis of transport processes, Bull. AMS, 81,
330-392 (1975).

• Identify the correct time and space scalings for the parabolic limit so that
there are new time and space scales for which τ = ǫ2t ξ = ǫx

• Analyze the spectral properties of the turning operator L
• Construct the outer solution:

p(ξ, τ, v) =

∞
∑

k=0

ǫkpk(ξ, τ, v)

– 17/54 –



The time and space scales for bacteria

We estimate a diffusion time scale as

τDIFF ∼
L2

D
=
L2λ

s2
.

We can also define a characteristic drift time as

τDRIFT =
L

s
,

and we assume that the space scale L is such that the time scales are related as
follows:

τRUN ≡ λ
−1 ≪ τDRIFT ≪ τDIFF . (3)

For example, a characteristic speed for bacteria such as E. coli is 10 − 20µ/sec,
and λ−1 ∼ O(1) second. On a length scale of 1 mm, τDRIFT ∼ 50− 100 seconds and
τDIFF ∼ 2500 − 104 seconds. Therefore we have τRUN ∼ O(1) on the dimensional
scale, and

τDRIFT ∼ O(1/ǫ),

τDIFF ∼ O(1/ǫ2),
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Some technical hypotheses on T

(T1) T (v, v′) ≥ 0,
∫

V
T (v, v′)dv = 1, and

∫

V

∫

V
T 2(v, v′)dv′dv <∞.

(T2) There are functions u0, φ, and ψ ∈ K with the properties that u0 6≡ 0 and φ and ψ vanish at
most on a set of Lebesgue measure zero, and such that for all (v, v′) ∈ V × V

u0(v)φ(v′) ≤ T (v′, v) ≤ u0(v)ψ(v′).

(T3) ‖T ‖〈1〉⊥ < 1, where 〈1〉⊥ is the orthogonal complement in L2(V ) of the span
of 1.

(T4)
∫

V
T (v, v′)dv′ = 1

The effect of all these conditions is to make L0 a Perron-Froebenius operator, so
that we can prove the following.
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Theorem

Define µ2 ≡ λ0

(

1− ‖T ‖〈1〉⊥
)

Assume (T1)-(T4); then

1. 0 is a simple eigenvalue of L0 and the corresponding eigenfunction is φ(v) ≡ 1.

2. All nonzero eigenvalues satisfy −2λ0 < Re µ ≤ −µ2 < 0, and to within scalar
multiples there is no other positive eigenfunction.

3. There is a decomposition L2(V ) = 〈1〉 ⊕ 〈1〉⊥.

4. ‖L0‖L(L2(V ),L2(V )) ≤ 2λ0.

5. L0 restricted to 〈1〉⊥ ⊂ L2(V ) has an inverse F0 with norm

‖F0‖L(〈1〉⊥,〈1〉⊥) ≤
1

µ2
.
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The rest is easy!

∂p(x, v, t)

∂t
+ v · ∇p(x, v, t) = −λ0p(x, v, t) + λ0

∫

V

T (v, v′)p(t, x, v′)dv′

τ = ǫ2t ξ = ǫx, p = p0 + ǫp1 + ǫ2p2 + ǫn · · ·

ǫ0 : L0p0 ≡ −λ0p0 + λ0

∫

V

T (v,v′)p0dv
′ = 0

ǫ1 : L0p1 = v · ∇p0

ǫ2 : L0p2 =
∂p0

∂τ
+ v · ∇p1

L0p1 = v · ∇p0 :

∫

V

(v · ∇p0)dv = 0,

p1 = F0 (v · ∇p0)
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L0p2 =
∂p0

∂τ
+ v · ∇p1 :

∫

V

[

∂p0

∂τ
+ v · ∇ (F0 (v · ∇p0))

]

dv = 0

∂n0

∂τ
= ∇ ·

(

D∇n0

)

Diffusion tensor:

D ≡
1

ω

∫

V

vF0vdv

If T (v,v′) = 1/ω, ω = |V | i.e. the redistribution is uniform, then

D =
1

ω

∫

V

vv

λ0
dv =

s2

λ0n
I
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General results

One can

• prove in general that the diffusion tensor is positive definite

• derive necessary and sufficient conditions for D = δI

• derive error estimates for the diffusion approximation

• add bias in the turning kernel to obtain the classical chemotaxis equation

1. Thomas Hillen and H. G. Othmer, SIAM JAM, 61, 751-775, (2000).

2. H. G. Othmer and T. Hillen, SIAM JAM, 62, 1222-1250, (2002).
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The jump process with internal states and forces

Suppose that the internal variables y ⊂ Rm involved in signal transduction evolve
according the equations

dy

dt
= f(y, S)

where S is the external signal. Inclusion of internal state variables y and external
forces F in the jump process leads to the following transport equation.

∂

∂t
p(x, v, y, t) + v · ∇xp(x, v, y, t) + ∇v · (Fp(x, v, y, t))

+∇y · (fi(y, S)p(x, v, y, t)) = −λ(y)p(x, v, y, t) + λ(y)

∫

V

T0(v, v
′, y)p(x, v′, y2, t)dv′
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The micro to macro step via moments

Assumptions

• Assume that excitation is fast, and define z2 = y2 − S(x).

• Scale time and space as before

Then we have to solve

ǫ2
∂p

∂t
+ ǫ∇x · (vp) +

∂

∂z2

(

−
z2
ta
−G′(S)

(

ǫ∇S · v + ǫ2
∂S

∂t

)

p

)

= (λ0 + a1z2 + a2z
2
2 + · · · )

(

−p+

∫

V

T (v, v′)p(v′) dv′
)
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Moments

Define internal state moments as follows.

Mj =

∫

zj2 p dz2 ∀ j = 0, 1, 2, 3, . . . , M = (M0,M1,M2, . . .)
t.

ǫ2
∂

∂t
ΛM + ǫv · ∇xΛM = ǫ2BM + ǫCM + DM.

Here

B = −G′(S)
∂S

∂t
J
t, C = −G′(S)(∇S · v)Jt,

and

D = −
1

ta
diag {0, 1, 1, . . .}+ LΛ(λ0I + a1J + a2J

2 + · · · ),

where L is the turning operator, Λ : l∞(L2(V )) → l∞(L2(V )) is a diagonal scaling
operator Λ = diag

{

1, 1, 1
2 ,

1
3 , · · ·

}

, and J : l∞(L2(V )) → l∞(L2(V )) is the shift
operator.
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The asymptotic analysis

Write M as an expansion in powers of ǫ as

M = M
0 + ǫM1 + ǫ2M2 + · · ·

Define:

Dn = −
1

|V |λ0

∫

V

v ⊗ Bv dv

and

χ(S) = −
a1ta
|V |λ0

G′(S)

∫

V

v ⊗ (taλ0L − 1)−1vdv,

For unbiased re-orientation

T (v, v′) =
1

|V |
.

and

Dn =
s2

Nλ0
I, χ(S) = G′(S)

a1s
2ta

Nλ0(1 + taλ0)
.
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The classical chemotaxis equation

∂n

∂t
= ∇x ·

(

s2

Nλ0
∇xn−G

′(S)
a1s

2ta
Nλ0(1 + taλ0)

n∇xS

)

.

If we include finite excitation time and directional persistence we obtain

χ(S) =
a1ta
|V |λ0

G′(S)

∫

V

v ⊗ (teλ0A− 1)−1(taλ0A− 1)−1vdv,

and this reduces to

χ(S) =
a1s

2taG
′(S)

Nλ0(1 + (1− ψd)taλ0)(1 + (1− ψd)teλ0)
.

Thus

∂

∂t
n = ∇ ·

(

s2

N(1− ψd)λ0
∇n−

a1s
2taG

′(S)

Nλ0(1 + (1− ψd)taλ0)(1 + (1− ψd)teλ0)
n∇S

)

C. Xue and H. G. Othmer Multiscale models of taxis-driven patterning in bacterial populations, SIAM JAM,
70, 1, 133-167, (2009). – 28/54 –



Numerical results
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black: stochastic simulation of the velocity jump process

red: macroscopic moment equations (and hyperbolic chemotaxis equation)

blue: classical chemotaxis equation

R. Erban and H. G. Othmer, SIAM JAM, 65, 361-391 , (2004).
R. Erban and H. G. Othmer, Multiscale Modeling and Simulation, 3, 362-394, (2005).
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Basic facts about Proteus mirabilis

• In liquid medium, P. mirabilis cells are predominantly swimmers.
• When inoculated on hard surfaces, swimmers differentiate into swarmers.

1−2 micrometers long
1−10 flagella
swimming, chemotaxis

500−5000 flagella
swarming, cell−cell interaction

10−80 micrometers long

run−and tumble 
no attractant

up attractant gradient
covered with slime
moving in rafts

Agar, viscosity 
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New experimental results on patterning in the core

Photos courtesy of Elena Budrene
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The hybrid cell-based model

• The movement of each cell is modeled by a velocity jump process.
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• The turning rate is determined by a simplified single cell signal transduction
model.

S

S

S

excitation

adaptation
phosphorelay

of P

CW
bias

signal
detection

signal 
transduction

motor
rotation dy1

dt
=

G(c(x, t)) − (y1 + y2)

te
(4)

dy2

dt
=

G(c(x, t)) − y2

ta

λ = λ0(1−
y1

γ0 + |y1|
) (5)
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• A cell divides into two daughter cells every 2 hours.
• The attractant and nutrient concentrations are governed by

∂c

∂t
= Dc△c + secretion by cells − degradation

∂f

∂t
= Df△c − uptake by cells

If we assume constant rates,

∂c

∂t
= Dc△c + γ

N
X

n=1

δ(x − x
i) − µc in D2

× R
+

∂f

∂t
= Df△c − k

N
X

n=1

δ(x − x
i)) in D2

× R
+

+ Neumann BC:
∂c

∂n
=

∂f

∂n
= 0 in ∂D2

× R
+

• The model was originally developed for E. coli, where it predicts very well the
network and ring formation.
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Cell tracks: the effect of the boundary

A track far from the surface A track near the surface

Frymier et. al., Three-dimensional tracking of motile bacteria near a solid planar surface, PNAS, 92, 1995
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The physical picture

E. Lauga et. al., Swimming in circles: Motion of bacteria near solid boundaries, Biophy. J., 2006
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The mechanics

• Cell body length 1− 2µm ≈ 10−6m

Cell “run” speed 10 ∼ 30µm/s ≈ 10−5m/s

If we use viscosity of water ν ≈ 10−6m2/s at 20o C

Re =
UL

ν
≈ 10−5 = 0.00001

and so one can use the Stokes approximation .
• Theoretically, one can solve for the velocity field and calculate the torque and

force acting on each cell, but the system is complicated to solve.

• We simplify all this by assuming cells are well separated, and incorporate a
constant bias to the right in the cell velocity:

dvi
dt

= εb
vi

|vi|
× n

where is the upward normal to the plane.
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Comparison with experimental results
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Swimming near a surface leads to ..

If the torque on a cell is given by F = ω0v × ν, then

∂

∂t
n = Dn∆n−∇ ·

[

G′(S)n
(

χ0∇S + β0(∇S)⊥
)]

,

where
Dn =

s2

2λ0(1− ψd) +
2ω2

0

λ0(1−ψd)

,

χ0 =
a1s

2(1− ψd)[λ0(1− ψd)(λ0(1− ψd) + 1
ta

)− ω2
0 ]

2((λ0(1− ψd) + 1
ta

)2 + ω2
0)(λ

2
0(1− ψd)

2 + ω2
0)

,

β0 =
ω0a1s

2(1− ψd)(2λ0(1− ψd) + 1
ta

)

2((λ0(1− ψd) + 1
ta

)2 + ω2
0)(λ2

0(1− ψd)
2 + ω2

0)
,

and

∇S =





∂S
∂x1

∂S
∂x2



 , (∇S)⊥ =

[

0 1

−1 0

]

∇S.
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Problems with large gradients
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C. Xue, E. Budrene and H. G. Othmer, Radial and spiral stream formation in Proteus mirabilis colonies,
PLoS Comp Biol, 7, 1-11, (2011).
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Some insight into why it doesn’t work ..

Recall the internal dynamics

dz1
dt

=
−z1 − z2

te

dz2
dt

= −
z2
ta
−G′(S(x(t), t))

(

∇S · v +
∂S

∂t

)

and the chemotactic velocity

[

a1s

Nλ0(1 + (1− ψd)taλ0)(1 + (1− ψd)teλ0)

]

staG
′(S)∇S

Thus if the Lagrangian derivative of the signal is too large the internal state cannot
adapt rapidly enough. In principal one simply has to retain higher moments, as the

following show.

But there is a phenomenological ‘solution’ to this ..
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A phenomenological fix ..

S +R
k+

−→
←−
k−

SR

The evolution equation for the bound receptor density is

d

dt
SR = k+S ·R0 − (k+S + k−)SR (6)

The input G can be taken as proportional to the fraction of receptors occupied

G(S) = G0(
S

KD + S
) (7)

where KD = k−/k+. We have to compare the time scales

τsig ≡
S

s|∇S|
τrec ≡

1

k+S + k−

and if τsig < τrec then the equilibration assumption is not valid since the receptors
cannot process the signal. – 41/54 –



A phenomenological fix ..

Define the rates of change
δS

δt (sig)
=≡

s|∇S|

S

and
δS

δt (rec)
≡

S

k+S + k−

A more ‘correct ’ Lagrangian derivative of the signal, which appears in the analysis
using the cartoon model, is

min{s∇S, (k+S + k−)S} (8)

Of course the min function in (??) is difficult to handle analytically, so an alternate
form that captures the essential properties is

1
1

Ω
+

1

s∇S

=
sΩ∇S

Ω + s∇S

wherein
Ω ≡ (k+S + k−)S.
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The amoeboid problem –

– crawling is harder than swimming!
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The life cycle of Dictyostelium discoideum
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Aggregation patterns
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How do we model and analyze these behaviors, and
what do we learn from that process?

What cellular-level processes are involved in producing the population-level aggre-
gation patterns, or in other words, what must a cell do to have a chance of passing
on its genes?

• Some cells (or small groups of cells) must become pacemakers
• A cell must detect the external signal cyclic adenosine 3’,5’-monophospahte

(cAMP)
• It must choose a direction in which to move
• Cells must amplify and relay the signal, and adapt to the ambient signal
• They must move for an appropriate length of time
• Eventually a cell interacts with its neighbors and moves collectively, first in

pairs, then in streams, ..
• Slightly later it has to ‘decide’ what type of cell to become in the final fruiting

body. This is a collective decision reached by the community (absent
cheaters!).

• The entire aggregate has to stop migrating and erect the fruiting body

– 46/54 –



Orientation and movement in a wave
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CellSignal

Direction of movement

In an aggregation wave ...

AND ... A cell also stimulates itself when it signals! – 47/54 –



Some basic questions concerning direction sensing
and polarization

• What is the source of the sensitivity and amplification (cells can respond to
differences as small as 2% front-to-back and produce a much larger
–estimated to be six-fold– intracellular gradient)?

• What is the role of actin polymerization in the amplification and the
‘imprinting’ of directionality?

• What are the long-term morphological changes that characterize
polarization?

• How do we model these processes at a microscopic level? Are stochastic
effects negligible, important, dominant ..? Note that forces and the motile
machinery that generates them are crucial here.

• Can we embed the microscopic processes/models in useful macroscopic
equations?
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A spatially-distributed cartoon model
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, yy1 2 live on the 
boundary

U lives in the 
interior

They ‘talk’ by 
binding of u to 
y1

Signal (cAMP)

y u1u + y1

dy1
dτ

=
S(τ)− (y1 + y2)

τe
− k+y1u+ k− ¯y1u

dy2
dτ

=
S(τ)− y2

τa

∂u

∂τ
= ∆u in Ω

−D
∂u

∂n
= k+y1u− k

− ¯y1u on ∂Ω

How does one define a transport equation when the internal state lives in a Banach
space?
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Signal transduction for orientation ..

∂y1
∂t

(θ, t) =
S(θ, t)− y1(θ, t)− y2(θ, t)

te

∂y2
∂t

(θ, t) =
S(θ, t)− y2(θ, t)

ta

Let x = (x1, x2) be the centroid position and write

S(θ, t) = S
(

x1 +R0 cos θ, x2 +R0 sin θ, t
)

S(θ, t) ∼ S(x) +R0 cos θ
∂S

∂x1
(x) +R0 sin θ

∂S

∂x2
(x)











p0(x, t)

q0(x, t)

q1(x, t)

q2(x, t)











=

∫ 2π

0











y1

y2

y2cosθ

y2sinθ











dθ
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Moving cells ..

dq0
dt

=
2πS(x)− q0

ta

dq1
dt

=
R0π

∂S

∂x1
(x)− q1

ta

dq2
dt

=
R0π

∂S

∂x2
(x)− q2

ta
dp0

dt
= 2π

∂S

∂x1
(x)v1 + 2π

∂S

∂x2
(x)v2 + 2π

∂S

∂t
(x)−

p0

ta

Newton’s Law

dx1

dt
= v1

dx2

dt
= v2.

dv1
dt

=
γq1 − v1

td

dv2
dt

=
γq2 − v2

td

This suffices for a steady gradient, but doesn’t solve the back-of-the-wave problem.
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For that we introduce resting states...
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This solves the back of the wave problem.
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Comparison of predictions
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Radek Erban and Hans G. Othmer Taxis equations for amoeboid cells, J. Math.
Biol., 54, 847-885, (2007).
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Conclusions ..

• For simple systems such as bacteria one can derive PKS equations from the
transport equation with internal state variables, and thereby derive the
chemotactic sensitivity in terms of characteristics of the microscopic motion.

• For amoeboid cells such as Dd, its harder to obtain reduced equations, but
the moment equations reflect the population-level behavior well.

• Whether PKS can be obtained from the transport equations is still open ...
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