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Physical Context : Controled Fusion Energy

Controled fusion energy is one of the major prospects for a long term source
of energy.

Magnetic fusion

the plasma is confined in tokamaks
using a large external magnetic
field. The international project ITER
is based on this idea and aims to
build a new tokamak which could
demonstrate the feasibility of the
concept.

v

We assume that electrons are adiabatic and study the motion of electrons

Q(+v~vxf+3[E+ Vv x Be’“]v.,fzo.
ot m €

coupled with Maxwell’s or Poisson equations for electromagnetic fields.



The 2D guiding center model

It gives the 2D guiding center model in the transverse plane of a Tokamak.
% +U- Vx, p= O,
U=E",
*AxLﬁb =p-

Boundary condition :
o(x,)=0, x,€9D,

where 0D can be arbitrary boundary.

If f is smooth, we have

(1) Maximum principle : 0 < p(,X.) < maxx,p(p(0,X.)).
(2) LP norm conservation : & ( [,(p(t,x.))Pdx,) = 0.

(8) Energy conservation : & ([,|vé[dx.) =0.




Towards reduced kinetic models

We assume

@ the magnetic field is uniform B = B e, where e, stands for the unit
vector in the toroidal direction,

@ the ratio between orthogonal and longitudinal characteristic lenght is
L/l =e<«1,

@ fis vanishing at infinity of velocity field and periodic boundary condition
is taken in z direction.

@ we are interesting by the long time asymptotic

To derive the Drift-Kinetic model, we formally follow the same ideas as for the
guiding center model and split the variables as

X = (X1, X])

with xj = zand x, = (x,y).



4D drift kinetic & guiding center models

For the Poisson equation, setting that L, /L. = ¢, it leads to
A - 2020 = n(t,X,,Z) - No.
We split E into components along B.. and perpendicular to By, : it gives
E=E, + cEje;.

Assuming that B = O(1/¢) and substituting this expression in the Vlasov
equation, it yields
L

%’; VLV f 4 e Veaf (El N ‘Li)-vnf + eE,0,,f=0.

Then we integrate with respect to v, = (v, v, ), we get formally an equation

for
7‘:[2fde.



4D drift kinetic & guiding center model

It yields to the 3D x 1D drift kinetic system
g +U, - ij + V20, f + EZ(‘)Vj =0.
-Agp=[; fav, — no
with U, = (9y¢, -0x¢) and E; = —0;¢.
Remark integrating on the longitudinal direction in space and velocity, we
recover the guiding center model:

op

T + U, - Vx p=0,

-Aig=[; fav, — ng



4D Drift-Kinetic Model

Normalized Drift-Kinetic model reads (cf. Grandgirard et al.)

% +U, - VfoJr VHaszr EHaVHfI 0,

VL (2529.0) + BE5(0-6) =1

In the following simulation, we consider a cylinder domain
Q={(x,y,2)eR*: (x,y) e D,0< z < L,}.
Boundary condition :

@ ¢(x)=00n0Dx[0,L;].
@ Periodic boundary condition in z-direction.

If fis smooth, we have
Maximum principle : 0 < f(t,X, vj) < [[f(0) ] co-
LP norm conservation : & ( f; fo, (f(t,X, v|))Pdxdy) =0
Kinetic entropy conservation : & ( f;, fo, fIn|flaxdy;) = 0.
Energy conservation




Difficulty for the Numerical Simulations

High dimension of the problem. Kinetic equations are set in phase space
(x,v) e R® xR%,

Various instability occurs : microscopic phenomena (like two stream
instability), macroscopic phenomena (fluid like instability Raleight-Taylor,
Kelvin-Helmholtz instability in fluid mechanics).

Nonlinearities
Effect of collisions (not take into account here)
multi-species plasma and quasineutral with large mass ratio

Describe bounadry effects when they occur or the effect of the geometry
(tokamak in the poloidal plane).
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IMEX schemes : additive and partitioned form

Here we shall use finite difference discretization in space for simplicity, and
concentrate on time discretization, so we can see the problem as a system of
ODES:

dy 1
- - f _ 1
o = ) +-a(y), (1
Explicit .
Implicit

@ The stiffness is associated to one of the terms on the RHS. We say that
in this case the stiffness is additive.

@ In other cases the stiffness can be associated to a variable, e.g.

au av 1
E - F(U, V)v E - g G(U, V) (2)

We say that the system is partitioned.

Let us emphasize that setting y = (u,v)7, f= (F,0)7, g=(0,G)",
partitioned can be seen as a particular case of additive.

— A natural choice for all such cases is offered by IMEX methods.



General formulation

In many cases the separation of scales is not additive nor partitioned. We
may have a situation of the form

&0 =H(tu(t), u(t), iz,

U(to) = Up,

with H#: R x R” x R™ — R™ sufficiently regular
@ Dependence on the second argument of # is non stiff.
@ Dependence on the third argument is stiff.

This includes partitioned and additive as particular cases.

Strong relation with partitions systems: by setting y = v and z = u, system
(3) implies

ay .. _
—r (D = Hty(®0),2(1)),

dz
E(t) = H(t,y(t),z(1)),




Doubled system?

By doubling the variables, the systems takes a partitioned form.

Partitioned methods: apply two different R-K methods, i.e.

e A c| A

mF

treat y with the method on the left, and z with the one on the right.
Then one has, for the stage fluxes:

ki=H(t"+CAL Y, Z), € =H("+cALY,Z), 1<i<s,

with

S S
Yi=y"+ AtY &k, Zi=y"+ Aty apl, 1<i<s,
=1 =1

and the numerical solutions at the next time step are

R s
y"Jr1 - y" + At Zb, ki, zZ™ - yn + At Zbieh

i=1 i=1



How to avoid doubling the number of variables

Remark 1. If ¢ = c then k = ¢ = 7 has to be computed only once per stage. J

Remark 2. Furthermore,
eifb=b = y™' = 2"
e ifbxbandy”=2z"= y™ +z™" however if both schemes are

consistent to order p once can choose any one of the two, say the one to
compute y"*', and then set n< n+1, and 2" = y"

Remark 3. If ¢ = ¢ and the two schemes have different orders, then the
difference y"*' — 2! can be used to estimate the local error = time step
control.

In all such cases, no duplication of variables is needed!
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Construction of schemes

Is it possible to construct such a scheme?

@ For autonomous problems, it is all right!

@ Up to second order, two stages schemes it is easy since we can impose
that
Zé,;j + &, and Za,-,- + ¢, for 1<i<s. 5)
j j

The IMEX-SSP2(2,2,2) L-stable scheme

We choose by = 1/2, &= 1and v = 1 - 1/1/2, i.e. the corresponding Butcher
tableau is given by

0] O 0 ¥ ¥ 0
1 1 0 1-~v[1-2y v
[ 1/2 1/2 | 12 12

Solution : Replace (&i,&) = (0,1) by (61,&) = (v,1-7)



Third order conditions and scheme

The semi-implicit Runge-Kutta method is of order three, if it satisfies the
conditions
Zb,'=1, ijCj:1/2, Zb,-&,-:1/2.
i i i

and the implicit part satisfies the classical third order conditions
Sbict =1/3, Y. biajg = 1/6,
i iJj
the explicit part satisfies the classical third order conditions
Sbiel =1/3, S b =1/6,
i ij
and moreover the additional coupling conditions
Zbi&iCj:1/3, Zb,-a,-,-f:j:1/6, Zb,‘é,‘jCj=1/6.
i if ij

are satisfied.




Third order conditions and scheme

A possible choice satisfying these properties is given by the
IMEX-SSP3(4,3,3) L-stable scheme, i.e.

0olo o o o ala 0 0 0
olo o o o 0 |- a 0 0
1tlo 1 o0 o 110 1-a a 0
12|10 1/4 1/4 0 12| 8 o 12-B-n-a a

0 1/6 1/6 2/3 0 1/6 1/6 2/3

with o = 0.24169426078821, 3 = a/4 and n = 0.12915286960590.

What about fourth order schemes?



Reaction diffusion problem

We consider the reaction diffusion system w = (wy,ws) : R™ x (0,27)% - R?

05;1 = Awy — (}:1(l‘)w12 + gm + w2 + f(1),
Owo 7

—= = Aw — wo, t>0,

at 2 T e -

with o(1) = 2% and f(t) = —2e /2. Initial conditions compatible with exact
solution
wi(t, x,y) = exp(-0.5¢) (1 + cos(x)),

wo(t,x,y) = exp(-0.5t) cos(2x).

Separate explicit variable v = (uy, u>) from implicit v = (v4, v»), according to:

Avy — Oz(t)U1 Vi + % + Vo + f(t)

H(tu,v) =
7 V.
AVo + 72



Reaction-Diffusion equation: results

@ Fourth order accurate space discretization (error is mainly in time
discretization).

@ Hyperbolic CFL condition At = Ax/2.
@ Schemes SSP2 and SSP3.
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Nonlinear convection-diffusion equation

We consider the convection diffusion equation

%; + [V + uviog(w)]-Vw — pAw =0, (t,x)eR" xR,

wo(t=0) = e /2

where VV = (1,1)", ;. = 0.5. The exact solution is given by

o 2
P 7M), >0, xeR%

]
— eX 2>
Vaut+1 ( 8ut+2

We choose 7 as follows

w(t,x) =

H(t,u,v) = —(V + pvilog(u))-vv + uAv.



Nonlinear convection-diffusion equation: results

We apply the same discretization in space and time with x € (-10,10)2. Final
time T =0.5.
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Surface diffusion flow

We consider the following nonlinear fourth order differential equation

(:T”; +divS(w) = 0, xcRE t>0, (6)

where the nonlinear differential operator S is given by

. - _Vw@Vw . -
S(w):= (o(w)(/ o) )vN(w))f

where Q is the area element

Q(w) =/1+|Vw|?

and N is the mean curvature of the domain boundary I

e ( ojﬁ))‘




Surface diffusion flow

For this aplication we choose

H(u, v)::(Q(u) (/f TSZL(UT)U) VN(u, v)).

Hyperbolic CFL condition is used on the time step.

H-LDIRKp(2,2,2), dt=0.001 - " H-LDIRKp(2,2,2), dt=0.
H-LDIRKp(2,2,2), dt=0.010 & 10 H-LDIRKp(2,2,2), dt=0.
H-LDIRKp(2,2 2) dt=0.100 H-LDIRKp(2,2 2) dt=0.
1 Splitting, dt=0.010 Splitting, dt=0.010
Splitting, dt=0.100 Splitting, dt=0.100
01 % ]
':. 1F
&
.
5 §
S
BB 0.1 ¢
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Towards plasma physics : one single particle motion

Let us conside X (1) = (x (1), y(1)) and V(1) = (vi(1), v, (1)) with

ax 1
Ay
at e
av 1

VL
s (E(X) + B(X)?)

with B(X) = (1 +0.1y) and

E(X) = ~0.1 (X+( ;zgg ))



Towards plasma physics : one single particle motion

reference solution

-8
F 4 -6
L 4 -4
| et P 1
UL KA
| A "’"'ﬁ- 1.
8

8 6 4 -2 0 2 4 6 8

reference solution 8 reference solution 8

4 -6 + 4 -6

4 -4 = 4 -4

4 2 + 4 2

4 0 + 4 0

4 2 o 4 2

4 4 + 4 4

4 6 + 4 6

8 8




Comparison with semi-implicit schemes with large time steps At = 0.01

reference solution

® o »2 DO N A S &
®» o & v O b b S b

® o &2 N O N A S b
®» o & v O b A S




Comparison with semi-implicit schemes with large time steps At = 0.01

reference solution

reference solution 8 dt=0.01 ——




Comparison with semi-implicit schemes with large time steps At = 0.01

reference solution dt=0.01 ——

T
!
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T
7

®» o & v O b b S b
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T
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Part Il : Treatment of boundary conditions

Solve numerically kinetic type equation on complex geometry.
Some algorithms based on Cartesian meshes
+ Immersed boundary method (IBM) of Peskin, Lai and etc
@ popular in fluid mechanics applications,
e add a singular source term to fluid mechanics equations to take into account
boundary effects
@ poor accuracy
+ Cartesian cut-cell method (D. Ingram, D. Causon and C. Mingham)
@ reconstruct the domain around the boundary
e apply a finite volume scheme on the new control volume
+ Inverse Lax-Wendroff (ILW) procedure (finite difference method or
whatever)

@ S. TAN AND C.-W. SHU, Inverse Lax-Wendroff procedure for numerical
boundary conditions of conservation laws, Journal of Computational
Physics, 229 (2010), 8144—8166.



ILW Procedure in 2D Case

Y & We consider 2D model
iy +2 of of of 1
! v — =—-9(f),
ot ax T Way T 220
iy +1 Compute f at ghost point xg:

@ Extrapolation of f for the outflow

» compute f(Xp,V-n <0) and
f(Xg,Vv-n < 0) by WENO type
»  E. extrapolation

Ly 51

iy — 1

iy =2 ~> T

ip—2 iy =1 iy ip+ 1 g +2

Figure: Spatially 2D Cartesian mesh. e is
interior point, = is ghost point, @ is the point
at the boundary, O is the point for
extrapolation, the dashed line is the
boundary.



ILW Procedure in 2D Case

y n
/ We consider 2D model

of of of 1

3 + X + vy@ = gQ(f),

iy +2

iy +1

. Compute f at ghost point xg:
i u @ Extrapolation of f for the outflow
Tl @ Compute B.C. at the boundary

T * R[f(Xp,V)] =

Xy f(Xp,v—2(v-n)n), v-n>0
« interpolate f on

iy -2 g (xpav_z("'n)n)

' = © M[F(xp,V)] =

1(Xp) exp (—%), v-n>0

iy — 1

ip—2 iy =1 iy ip+ 1 g +2

Figure: Spatially 2D Cartesian mesh. e is
interior point, = is ghost point, @ is the point
at the boundary, O is the point for
extrapolation, the dashed line is the
boundary.



ILW Procedure in 2D Case

y n
/
fy+2 We consider 2D model
of of of 1
. T vl Lo lo,
i+l at " aox tWay 5Q()

R N Compute f at ghost point Xg:

! e @ Extrapolation of f for the outflow
. PR © Compute B.C. at the boundary
! % NG © Approximation of f for inflow

* local coordinate system x — X
=2 o * %(ﬁpv)’)= )
S (2,00 1o
RS T O T R AR R x (ar oy e ())|*:*P
* f(Xg,V) &
Figure: Spatially 2D Cartesian mesh. e is 7(%p, V) + (% - %p) 2L (%p, V)

interior point, = is ghost point, @ is the point
at the boundary, O is the point for
extrapolation, the dashed line is the
boundary.



Flow around an airfoil in 2D

Solve the time evolution Boltzmann equation (x, v) ¢ Q x RJ, with O ¢ R?,
of

1
& + V'vxf = mQ(f)

We consider a Mach number Ma = 0.3 and a Reynolds number Re = 3000.
The Mach, Reynolds and Knudsen numbers relation is given by:

Ma [~m
Kn=—/—, ~v=14
n Re 2

I

nl

r’ 0.5f Bl I—f

Mw

of [———
)

-0.5 T T T T T
-1 -0.5 0 0.5 1 1.5 2

Figure: Flow around an object. Domain including an airfoil.



Flow around an airfoil in 2D
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D shape Simulation

We still consider the guiding center model but now in a D shape geometry.

@ A (b)
1) We first look for a stationary solution of the guiding center model :
~Vi-(BV.ip)=p()—po InQ,
{ =0 on 09.

For a suitable function 5, we have a unique solution.



D shape Simulation

The steady state solution is computed numerically

1.0 lu.oon 1o Iu.lzu
f !
| 0s
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] -02
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(a) Potential ¢g (b) Density po

Now we still consider the previous initial data (¢, 70) which is a stationary
solution of the guiding-center model, but perturb it of magnitude of <.
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D shape
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Simulation

0.5

0.0

.0 -
1012717416 1820 2.2
X-Axis

0.5

0.0

-1.0 -

1.0 1.2 1.4 1.6 1.8 2.0 2.2
X-Axis

0.01052

0.005258

.005258

--0.01052

0.009494

0.004747

-0.004747

--0.009494

Y-Axis

¥-Axis

0.5

0.0

.0 -
10 1.2 1.4 1.6 1.8 2.0 2.2

X-Axis

0.01018

0.005089

-1.000e-06

-0.005090

--0.01018

0.008716

0.004358

0.000

--0.008716

DA



Toward plasma physics applications

Let us now consider Particle-In-Cell methods based on semi-implicit
schemes in a disk shape domain where the Poisson equation is solved on a
cartesian grid (we work in cartesian coordinates here)

0.004 - . 0.006 - -
relative potential energy ——— relative potential energy ———
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‘ ‘ ’ 0.003 /,’ \
0 ‘ i 0.002 / \\\
-0.001 I 0.001 :
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-0.001

0.003
0.002

0.001

-0.002
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Conclusion

Current and future works :
@ Applications in plasma physics
e Joint project with european labs (Eurofusion project) : fusion reaction,
plasma confinement using large magnetic fields
o Dominant term is a magnetics field % (v x B) - vyf, no more dissipative
effects
o Inter-disciplinary works : computer science (HPC, large data), physics,
engineering
@ Applications to collective dynamics and self-interactions
o there are new kinetic models describing these phenomena (see bacteria
motions)

o the structure of this model is simpler but the operators depends on velocity
and space, steady states are not explicitly known
@ construction of hybrid method
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