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INTRODUCTION
INTRODUCTION - CONCEPT

Particles vs. rational agents:
Social or biological agents can behave like

@ mechanical particles subject to forces: kinetic theory, minimize a
global energy functional.

@ rational agents trying to optimize an individual goal, given the
behavior of the ensemble: game theory, try to minimize
individual cost functions.

Goal:

@ Try to reconcile these viewpoints.

@ Show that kinetic theory can deal with rational agents.

@ Incorporate time-dynamics in game theory.

Applications:

— Social herding behavior: ( Degond , Liu, C.R; J Nonlinear Sci.
2014)

— Economics: (Degond , Liu, C.R; J. Stat. Phys. 2014 and Phil. Trans.
R. Soc, to appear)



OUTLINE

OUTLINE

@ Kinetics vs. game theory.

o General framework.

e Differences and similarities; mean field models; non - atomic

anonymous games; hydrodynamics.

© Wealth distribution I:

o Strategies <= Wealth

e Conservative economies (opinion formation models).

o Standard hydrodynamics with "high energy tails’ (Pareto tails).
© Wealth distribution II:

e Non - conservative systems.

e Mean field models and strategies.

e Macroscopic balance laws and generalized collision invariants.

© Conclusions and outlook.
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Nash equilibria vs. energy minimization g

Game with a finite number of players:

@ Nplayersn=1,...,N

@ Each player can play a strategy y,, n=1: N, Y = (y,..,yy) in
a strategy space ).

@ The cost function (=-payoff) of player n playing strategy y, in
the presence of the other players playing strategy
Yo =01y« Yne s Yatts - - IN) 18 G, ¥a)

o Each player tries to minimize its cost function by acting on their
strategy y,, not touching the others’ strategies ¥, (Best response
strategy).

Nash equilibrium:
Strategy Y = (Y1, ..., Yy) such that no player can improve on its cost
function by acting on its own strategy variable y,,.

Yn — %(f/n), ¢rz('¢na ?n) = min, ¢n(z’ ?n)a n=1:N




KINETIC VS. GAMES

Yn — wn(?n); (bn(wm ?n) = minz ¢n(Z, ?n); n=1:N

Nash equilibrium <= Fixed point problem

yn=U.(Y), n=1:N.

This is different from minimizing a global energy functional or
>, ®n (prisoner’s dilemma).

Identical players and anonymous games:
¢n(y;1, Yn) = ¢(ynz Yn)-

@ Players with the same strategy cannot be distinguished.



KINETI

THE CONTINUUM MODEL g4

Gn(Yns ?n) = ¢(yn, ?n) = ¢(¥n, ?n) - ¢f(Y>

Mean field model using a mean field cost function ¢/ (y), dependent
on the distribution of strategies f(y) dy
Nash equilibrium:

| b ) fre dy = infy [ ¢p (v) f dy

General framework of Non-Cooperative, Non-Atomic, Anonymous
games with a Continuum of Players (NCNAACP)

References:
@ Aumann, Mas Colell, Schmeidler, Shapiro & Shapley,
@ Mean-field games: Lasry & Lions, Cardaliaguet



KINETI

CONTINUUM MODEL WITH MIXED STRATEGIES

The basic model:

Each (identical) player tries to march towards its Nash equilibrium
(i.e. in the direction of —V,¢(y;f)) at each time step. = Kinetic
equation with state dependent cost function ¢¢(y) (best reply
strategy, open loop control).

O (v.1) = Vs [fVsy ()] =0

Noise: og

In a game with mixed strategies the choice of y is not certain but the
player picks y with some randomness. This is generally modeled by a
Brownian motion term of the form

dyn = —Vy,6(yn, ¥y) dt +/2DB,

which results in the kinetic equation

Of (v,1) = Vy - [fVy¢f (v)] = DA




KINETIC VS. GAMES

STEADY STATE FOR NE DRIVEN KINETICS

Show that the equilibrium of the kinetic equation is indeed a NE.
The equilibrium is given by

o(f) = Vy - [fvyfb()’;f) + Dvyﬂ =0

@ The solution of Q(f) = 0 can be reformulated as a fixed point
problem.

e For a given ¢, Q(f) is linear in f.
@ So, we write Q(f) = €(f, ¢) with € bilinear in f and ¢.

For a given ¢, the solution of C(f, ¢) = 0 is given by

fO0) =270, Zy = [ 00 dy

for an arbitrary parameter (the number of agents) p = [ f(y) dy.
@ The solution of Q(f) = €(f, ¢y) = 0 is given by
’ f(y) = pg(y), Vp ‘ with g the Gibbs measure




KINETI

FIXED POINT PROBLEM FOR THE GIBBS MEASURE

The fixed point problem is of the form

g(y) — Z}Tgei(ﬁﬁ/D’ Z¢2 = fef(bg(})/D dy7

with the normalized Gibbs measure g satisfying| [ g(y) dy = 1, Vx|




KINETIC VS. GAMES

NASH EQUILIBRIUM {4

Nash equilibrium:

/ e DU () dy = i / e OV ) dy

Theorem (Degond, Liu,CR, 2013)

The Gibbs measure g given by the fixed point problem

I _ e
80) = e, Z,, _/e % 0)/D gy
o

is a Nash equilibrium for the modified cost function

tr(y) = ¢r(y) + DInf(y)




CONSEQUENCE

The equation

Of =V, [fVydr + DV,f]

models the interaction of an ensemble of agents (under an 11D
assumption), each marching towards a Nash equilibrium in
infinitesimal time steps.
o Different from mean field game theory, where players optimize
strategy over a finite time horizon.



KINETI

MOMENT DEPENDENT COST FUNCTIONS

The special case when ¢y depends on f only through the first K
normalized moments

O =Py 1,

o = [ dy, Yy = (L1, T, Tulr) = L2LE

@ Yields a nonlinear operator Q(f) = &(f, gbpf Y‘f>’ whose

nonlinearity is given only via the moments py, Y.

o In this case, the infinite dimensional fixed point
problem,defining the Gibbs measure, reduces to a finite
dimensional fixed point problem for the vector 7.



KINETIC VS. GAMES

@ In this case, the infinite dimensional fixed point problem,defining
the Gibbs measure, reduces to a finite dimensional fixed point
problem for the vector T.

1 s 6 =0
g0) = —e NP 7, = /e 2300 gy

Zd)l’f‘ LY
y
(=7 . “he/P — [, vW/D
= 2o, x f € 1t/ dy, Z¢1,T = fe 120/ dy |
K




KINETI

Games with configuration variables |5

@ Add configuration (aka “type”) variable X = (x1, .., xy) (e.g.
space)

@ x can be real space, the propensity to trade etc.

@ Motion depends on both type X and strategy Y

Xn = V(xn,¥n), nzl:N‘

@ Cost function depends also on types X

dyn(t) = =V, 0, Y, X) dt +2ddB;, n=1:N

Probability distribution depends on type x and strategy y:

£ =10

Satisfies space-dependent kinetic equation.:

Of + Vi (V(x,y)f) = Vy- (Vydrf) = DAY =0

with ¢ = ¢y (x,y)



KINETI

SCALE SEPARATION AND HYDRODYNAMIC CLOSURES ¢

@ Kinetic theory provides large time macroscopic limits for
different time scales.

@ Assume that the evolution of the strategy y is much faster than
that of type x.

@ Fast equilibration of strategy leads to slow evolution of type

alf + VX : [V(X, y)f] = éQ(f) = év}'[fv)’qsf(x?yv Z) +Dv\2f]

e: ratio of evolution time scales.

In zero’th order the solution will live on the manifold given by
O(f) = 0, parameterized by a finite set of x— dependent
parameters.



KINETI

THE GIBBS MEASURE AND THE SOLUTION OF Q(F) =0

Standard Approach:
@ Assume the solution of the fixed point problem

g(y) = ie—ﬁbgﬂ)? Z¢>g = fe—¢g()’)/D dy,

depends on K local parameters S = (sy, .., sx ). Therefore
g =g(x,y;5)

@ Assume that, in addition to y = 1, there are K collision invariants
C = (cy,..,ck) of Q such that

[ e as=o.
cx(y)

holds.

@ Parameterize the solution of Q(f) = 0 by its moments C and
close the moment equations.



KINETIC VS. GAMES

This gives K + 1 conservation laws of the form

1 1
p S oy ) #053:8) @14 T [ Vo () otx8) ] =0

This gives K + 1 macroscopic conservation laws for the K + 1 macro-
variables p(x), S(x).
@ Problem: What happens if there are fewer than K collision
invariants?

@ The local equilibrium fj,.(x, y, 1) = p(x,1)g(x,y, S(x, 7)) depends
on K parameters S, but there are only L conserved quantities
C=(c1(y),..,ce(y)) with L < K?

@ Leads to the concept of Generalized Collision Invariants (GCI),
(Degond & Motsch; 2009).



KINETI

RELATION TO MEAN FIELD GAMES (Lasry & Lions) 2,

@ Mean-field game approach directly provides continuum
equations without Kinetic Eq. step.

@ Relies on an optimal control approach within a finite horizon
time [0, 7] using the Hamilton - Jacobi - Bellman system.

8fp+ Vi (Vp - mDu) = DAp7 7p(x> 0) = p](x)
1
O = §|Vu\2 — DAu+ Vo(x,p), u(x,T) =0

@ u is a control corresponding to agents’ mean strategy at x. (Plays
the role of the parameter S in the kinetic theory.)
@ Optimizes not only the local cost in time, but the cost along a
particle path x(z), ¢ € [0, T].
o Infinite dimensional two point boundary value problem for
te€[0,7].
In special cases the hydrodynamic system, arising from the kinetic
model is equivalent to the limit 7 — 0 in the Lasry - Lions model.



KINETIC VS. GAMES

SUMMARY PART I:

e Kinetic equation can be interpreted as incremental march
towards Nash equilibrium.

@ Kinetic equilibria are Nash equilibria if the correct mean field
cost function is used.

@ Relation to mean field games via infinitesimal time horizon
(open loop vs. closed loop control)



CONSERVATIVE ECONOMIES

OUTLINE:Wealth distribution I

© Kinetics vs. game theory.
© Wealth distribution I:

o Strategies <= Wealth
e Conservative economies (opinion formation models).
e Standard hydrodynamics with "high energy tails’ (Pareto tails).

© Wealth distribution II:

© Conclusions and outlook.



CONSERVAT ECONOMIES

A MODEL OF CONSERVATIVE ECONOMIES 4

Bouchaud & Mézard ; Cordier, Pareschi & Toscani ; Diiring &
Toscani

Of (x,y,0) + V- [fV(x,y)] = L&, by, x,)

Clf, ¢] = 3y[f0,6 + wd,y (5°f)]

The cost function ¢ depends on f only through its moments!

pr(x) = [f(x,y) dy, Tr(x) = %

@ Note: y > 0. Diffusion operator 8}2,()/2 f) associated to geometric
Brownian motion.

@ In the work of Cordier, Pareschi & Toscani ; Diiring & Toscani
etc., y is the individual wealth of an agent (identified with a
strategy in a game theoretical framework).



CONSERVATIVE ECONOMIES

The potential ¢, v is taken to be a quadratic. ¢ is of the form

o o z-x7 " dy' o
Pox(*3) = 5% =50y = 1y)* + const(x)

@ Ty denotes the local mean wealth.

@ Quadratic pairwise interaction potential ¢y; models binary
trading with the strategy to equalize the wealth.

@ ¢ depends on f only through its moments.

Solving the fixed point problem gives
Oy[r(y—"Te)lg+wd, ()] = 0, / gdy=1= g = const-e” 200V

T= L [y 50 ay, 7, () = /‘3_27”(}#)2 dy,
Zpy B
which is a trivial identity.
So, the solution of of C(f, ¢y) = 0 depends on the two macroscopic
parameters p, T (the density of agents and their mean wealth
=K =1).



ECONOMIES

CONSERVATION LAWS

Using geometric Brownian motion, the trading operator C also
conserves the mean wealth, i.e.

Y aylfwly = 1)+ wd 03] dy = 0, ¥p, X
/()

This gives a standard hydrodynamic limit for the macroscopic
variables of the form

o (1) + 1 (}) ¥ Winlxlay =0

with the local equilibrium density fj,. given by an inverse ['—
distribution:

1 —5-p —=L
Jioe = pgr, §x = ZvY e @




CONSERVATIVE ECONOMIES

@ This can be interpreted as a march of agents towards local
Nash equilibria for game associated to cost

ppx () = (k+2w)lny + K% +wlnp
(Degond, Liu,Cr, 2012)

K _ Y

@ The local equilibrium | gy = iy‘z 2¢” v |is an inverse T'—

distribution, and has “fat Pareto tails” as y — oo (Diiring &
Toscani, 2007).

@ f(x,y) decays only rationally as y — oc.



NON - CONSERVATIVE ECONOMIES

OUTLINE:Wealth distribution II

© Kinetics vs. game theory.
© Wealth distribution I:

© Wealth distribution II:

e Non - conservative systems.
o Mean field models and strategies.
e Macroscopic balance laws and generalized collision invariants.

© Conclusions and outlook.



NON - CONSERVATIVE ECONOMIES

NON CONSERVATIVE ECONOMIES 1,

Basic concept:

@ Agents do not trade with each other individually, but rather with
a local market, optimizing the individual wealth w.r.t. the
moments of the local wealth in the market.

@ Their trading frequency as well as their goals depend on the
local value and and risk (uncertainty) of the market (i.e. higher
order moments of f).

o = The total wealth during trading is not conserved.

The cost function for the individual agent is then given by

On = ¢(xnaYn>T)v T = (Tla' TK)

and in the continuum model

O(xy) = by, 0), T = iy [ | [ fGey) dy



ECONOMIES

HARMONIC POTENTIALS

@ Asin the previous case, we use a harmonic potential ¢ of the
form

03 (y) = F(y— by)?

@ ay is the agent’s propensity to trade and by is its goal.

@ ay and by depend now on higher order moments of /!

@ We consider the case K = 2, T = <¥l> (dependence on value
2

and risk of the local market).



'ATIVE ECONOMIES

RISK AVERSE STRATEGIES 3,

@ The agent uses the mean T and the variance T, — T% of the
market worth, i.e. the risk, as its basis for making decisions. So
K=27T=(T,7,).

_ Y
o Weset|ay = T-12 |
1 -3 . L. . . .
© =y, s the variation coefficient (dimensionless measure
T
of the uncertainty in the market). Agent behavior is risk
averse!
Goals:

@ Freedom in choosing b.

@ One choice: | by = (1 + A)Yy |, i.e. the agent tries to beat the
market by a factor 1 + .




NON - CONSERVATIVE ECONOMIES

GIBBS MEASURE AND FIXED POINT PROBLEM

The resulting fixed point problem for the Gibbs measure is

T f () 600 v ) =5 exp(-2234%5)

The fixed point problem has a one parameter family of solutions,
given by

1
T =(1+ X)I%, VT,

and the corresponding local equilibrium is given by

I+A)T
Feaul,) = 727 s exp (= UH50)

i.e. again by an inverse ['— distribution, giving the ’fat Pareto
tails’.



NON - CONSERVATIVE ECONOMIES

MACROSCOPIC BALANCE LAWS

@ The difference to the binary interaction model is that the operator
C(f, o¢) = Olfoyo5 + wdy(y*f)] does not conserve y.
e So we have two parameters p(x, 1), T (x, t) in the local

)

equilibrium, but only one conservation law.



NON - CONSERVATIVE ECONOMIES

GENERALIZED COLLISION INVARIANTS (GCTI’S)36

@ Idea: (Degond, Motsch; 2009) Find C¢(y) such that
[ Ct(y)Q(f) dy = 0 holds on a manifold containing the local
equilibrium fj,¢(x, y, 1)!

@ ( does not conserve f for all solutions, but the moment vanishes
in the local equilibrium.

@ Gives a (non- conservative) large time equation in the
hydrodynamic limit of the form

f Cflocalfloc dy + f Cﬂocvx ’ [V(xa y)floc] dy=0

o This equation evolves on the macroscopic time scale, but is
not conservative, since Cy; = depends on the spatial variable x
and time.

T,

and
T,-1?

In the case ¢ = Xy - bg)* withag =
by = (1 + A\)Yy, the GCl is given by

Cﬁnc = CT](x7y’ t) = y(% - Tl(x’ t))




NON - CONSERVATIVE ECONOMIES

HYDRODYNAMIC EVOLUTION EQUATIONS FOR THE

NON-CONSERVATIVE ECONOMY

The macroscopic system for the local agent density p and mean
wealth Ty is of the form

0ip + V(puo) =0

pa[Tl -+ ﬁvx . (puz) — AV, - (thl) — %T]Vx . (pbl()) =0

with
o w = u(x; Y1) = [V(x,y)yrer,(y)dy, k=0:2
® g1, (x,)(y) the Gibbs measure given by the inverse I'—
distribution.

@ The local Nash equilibrium is given by
[y gr dy=(1+ )T}




NON - CONSERVATIVE ECONOMIES

Summary 4

@ Interplay between Kinetic Theory and Game Theory

o Best-reply strategy
o Nash equilibria are Kinetic equilibria of associated dynamics

@ Used this analogy to derive:

o large-scale evolution of system of agents subject to fast relaxation
towards Nash equilibrium
e Hydrodynamic models of games

@ Application to wealth distribution

o Equilibria are inverse gamma distributions
o Parameters evolve through system of macroscopic equations
e Applied to non-conservative economy through GCI concept

Perspectives:
@ Development in other contexts of social dynamics
e Comparisons with data in real-world applications

@ Rigorous proofs
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