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SOLAR CELLS

Function

@tn = Tnn + G(n, p), @tp = Tpp � G(n, p)

n(x, t): density of electrons;
p(x, t): density of holes;
Tn,p: transport operator;
G: generation / recombination term.

Function: External photons generate free electrons through G. They
get transported by Tn to a terminal and ’harvested’.
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SOLAR CELL EFFICIENCY

• Energy efficiency: electric energy output
photon energy input .

Theorem: Limited to ⇡ 30% in standard solar cells.
• Cost efficiency: Cost = production cost + replacement cost

(lifetime).
• Production Cost:

Standard (’thick’) solar cells; made of crystalline Si.
Thin film solar cells: made of poly-crystalline materials (c.f.
CaTe, CIGS) (require less raw material).

• Lifetime:
Pollutants (’Defects’) diffuse into the cell, become ionized and
ruin (in the long run) the functionality of the cell.
Pollutants: Cl±,O±, S±,As±, ...

Goal: Simulate the impact of design parameters during the production
process on the structure and simulate the deterioration process.
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THE MODEL04

Transport of free electrons and holes:

@tn = r · (rn � nr�) + G, @tp = r · (rp + pr�)� G

Poisson equation:

r · "r� = n � p + dop(~u), dop(u) =
PM

m=1 zmum

Defect transport and reaction

@tum = r · Dm(rum + zmumr�) + rm(n,~u), m = 1 : M

~u = (u1, .., uM) defect densities, zm : charge of species m.

~r(n,~u) = (r1, .., rM) (binary) reaction among defects (chemical) or
between defects and electrons (c.f. Cl0 + n ! Cl�).

rn(~u) = ~uTAn~u + Bn~u
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CHALLENGES06

Evolution of defects coupled to free electrons via reactions~r.
Evolution of free electrons coupled to defects via the doping dop and
the potential �.

Remark: For given defects and given dop, the numerical treatment of
electron and hole transport is well developed.

Challenge 1: Couple large diffusion reaction system for the defects ~u
to the (well understood) carrier transport model.
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Challenge 2
Poly-crystalline material ) Different transport properties (diffusion
matrices) within the overlap of different crystals ) Grain boundaries.
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Requires locally fine mesh resolution
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Enhanced transport coefficients within grain boundaries
Chlorine density
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SUMMARY08

• Large diffusion reaction system for charged defects on a
complicated (structured) medium.

• Coupled to well developed methodology for electrodynamic
equations
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ISSUES

1. Size: Up to 50-60 species (defects, Cl, As, O, S.....) in various
charged states. Complicated geometry (even in 2-D) ) O(106)
variables.

2. Multiscale in space: grain boundaries.
3. Multiple time scales: Electronic scale (10�7sec, Defect reaction

scale minutes � hours, Diffusion time scale (years).
• Implicit methods in time (after discretization, linearization etc.)

need the inversion of block - penta-diagonal matrices of size
Ngrid ⇤ N2

spec. Direct Sparse solution would need O(N2
grid ⇤ N3

spec)
operations per time step.

To be a useful engineering tool this has to run on a ’reasonable’ work
station.
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OUTLINE

1. Practical numerical issues ) operator splitting methods.
2. Operator splitting methods for multi-scale problems.

• Time scale resolution problem for ’standard’ operator splitting.
• Asymptotic analysis and relation to kinetic theory.

3. Asymptotically preserving (AP) operator splitting methods.
4. Results
5. Conclusions
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OPERATOR SPLITTING METHODS 12

@tun(x, t) = Dnun(x, t) + rn(~u(x, t)), n = 1 : Nspec

Operator splitting: split transport and reactions
Given ~u(x, tk), compute ~u(x, tk +�t) via

• Step 1: Given ~u(x, tk), compute ~u(1)(x, tk +�t) by

@tu(1)n (x, t) = Dnu(1)n , for tk  t  tk +�t,

IC: u(1)(tk) = u(tk), compute ~u(1)(x, tk +�t), n = 1 : Nspec

• Step 2: Given ~u(1)(x, tk +�t), compute ~u(2)(x, tk +�t) by

@t~u(2)(x, t) = ~r(~u(2)(x, t)), for tk  t  tk +�t,

IC: ~u(2)(x, tk) = ~u(1)(x, tk +�t), 8x

set ~u(tk +�t) = ~u(2)(tk +�t)
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Step 1: Nspec decoupled linear diffusion equations. O(N2
grid ⇤ Nspec)

operations.
Step 2: Ngrid decoupled nonlinear reaction equations. O(Ngrid ⇤ N2

spec)
operations.
Compare to fully implicit method:

fully implicit
operator splitting

=
N2

grid ⇤ N3
spec

N2
grid ⇤ Nspec + Ngrid ⇤ N2

spec

Operator splitting yields computational savings of O(1000) for
practical problems.
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THE MULTI-SCALE PROBLEM 14

Observation: The operator splitting method above produces the wrong
transport dynamics if the fast reaction scale is not resolved (�t~r > 1).

Basic mechanism:
–Assume two species s1 and s2 with diffusion coefficients D1 and D2
with D1 >> D2.
–Assume a reaction s1 ! s2 much faster than both diffusion scales.
so, we have ⇡ D2

|⌦|2 << D1
|⌦|2 << r.

• Using operator splitting, in a time interval �t, a particle of type
s1 travels on average a distance �x =

p
�tD1. Then it gets

converted into s2.
• In reality, it should almost immediately be converted into s2 and

travel only a distance �x =
p
�tD2 <<

p
�tD1.

• This means we compute the wrong wave speeds for the diffusion
- convection - reaction wave, unless we resolve the reaction time
scale �tr << 1.

Given the scales, Tend ⇡ years r ⇡ 1
minutes , this is unacceptable!
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A TOY EXAMPLE15

Three (uncharged) species: S1: mobile defect; S2: vacancy (empty
lattice site); S3: defect on lattice site.

Reaction: S1 + S2 ! S3

0

@
@tu1
@tu2
@tu3

1

A =

0

@
r ·ru1 � 1

"u1u2
� 1

"u1u2
1
"u1u2

1

A

" << 1 ratio of diffusion to reaction time scale.
• Consider an isolated system (von Neumann b.c.)
• Monitor u1(x, t) at the right collector as a measure of the wave

speeds.
1

1B. Sportisse, J. Comp. Phys. (2000)
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Mobile defect at right endpoint as function of time.
’*’: operator splitting solution with �t = 100".
’-’: operator splitting solution with �t = 0.1"
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PARALLEL TO KINETIC MODELS 17

Kinetic models for binary interactions

@tu(x, y, t) + Tu = Q(u, u)

x: ’space’,
T: linear transport operator in x.
y: attribute (velocity),

Q: quadratic operator, modeling random binary collisions under the
IID assumption.

Q(u, u)(x, y) =
Z

K(y, y1, y0, y01)u(x, y0)u(x, y01) dy0y01y1�

Z
K(y0, y01, y, y1)u(x, y)u(x, y1) dy0y01y1

K(y, y1, y0, y01): probability (y0, y01) ! (y, y1)
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Usual approach for Q >> T: Asymptotics , moment closures, etc.
• Find conserved quantities Q(u, u) = 0 8u
• Parameterize the local equilibrium Q(�(z),�(z)) = 0 8z.
• Moment closure gives large time asymptotics:

@t�(z) + T�(z) = 0

Replace y ! n 2 {1, ..,Nspec}) same structure as discrete velocity
model for the Boltzmann equation.

Problems:
1. No topology in the discrete attribute space {1, ..,Nspec}.
2. No microscopically conserved quantities ) no H- theorem.
3. Local equilibrium given by a system of Nspec quadratic equations. 2

2Conradi, C., Flockerzi, D., Raisch, J., Stelling, J.: P. Natl. Acad. Sci. 104(49),
(2007)
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BASIC IDEA20

Replace finding local equilibria and conservation laws by numerical
linear algebra.

@t~u(x, t) = D~u +
1
"
~r(~u)

" << 1: ratio of reaction to diffusion time scale.
Introduce the product of reactions as independent variable: ~v = 1

"~r(~u).
Gives the system

@t~u(x, t) = D~u +~v, @t~v = 1
"R(~u)(D~u +~v)

with R(~u) = @~r(~u)
@~u .

R(~u) will be in general rank deficient ) For a given ~u, the fast
dynamics will happen on the orthogonal complement of the left
nullspace of R(~u).
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Example: reaction: s1 + s2 ! s3

~r(~u) =

0

@
�u1u2
�u1u2
u1u2

1

A , R(~u) =

0

@
�u2 �u1 0
�u2 �u1 0
u2 u1 0

1

A

rank =1, dim(null(R))=2



MOTIVATION OUTLINE OPERATOR SPLITTING METHODS ASYMPTOTICS AP SCHEMES CONCLUSIONS

ASYMPTOTICS 24

For given ~u the problem is linear! Given ~u and R(~u), compute
projection P(~u) with

P(~u)R(~u) = R(~u)P(~u) = 0

Split~v = 1
"~r(~u) into nullspace component and orthogonal

complement.

~v = ṽ + v̂, ṽ = P(~u)~v, v̂ = (id � P)~v

@tṽ =
dP(~u)

dt
(ṽ + v̂), @tv̂ =

1
"

R(D~u + v̂)� dP(~u)
dt

(ṽ + v̂)

• P(~u(t)) will evolve on the slow time scale.
• For " ! 0 the fast time scale component v̂ converges to

R(Du + v̂ = 0 ) v̂ = �(id � P)D~u.
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THE REDUCED PROBLEM

This gives the reduced problem

@t~u(x, t) = PD~u + ṽ, @tṽ(x, t) =
dP(~u)

dt
(ṽ � (id � P)D~u)

Step 1: For given u(x, t), compute
P(x, t) = GRGL, GT

LGR(u) = id, GLR(u) = 0, RGR = 0 (analytically
for small problems, numerically in general, The left nullspace GL

corresponds to the nullspace of the Stochiometry matrix).

Step 2: Solve

@t~u(x, t) = PD~u + ṽ, @tṽ(x, t) =
dP(~u)

dt
(ṽ � (id � P)D~u)

Remark: Step 1 quite computationally expensive since different
nullspace bases have to be computed for every gridpoint. 3

3Craciun, G., Feinberg, SIAM J. Appl. Math. (2006)
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TOY PROBLEM (REDUCED)27

Reaction: s1 + s2 ! s3

~r(~u) =

0

@
�u1u2
�u1u2
u1u2

1

A , R(~u) =

0

@
�u2 �u1 0
�u2 �u1 0
u2 u1 0

1

A

rank =1, dim(null(R))=2

GL =

0

@
�1 1
1 0
0 1

1

A , GR =
1

u1 + u2

0

@
�u1 0
u2 0
u1 u1 + u2

1

A , P = GRGT
U
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AP (Asymptotically Preserving) Schemes 28

General idea: @tu" = F"(u") ! (" ! 0) ! u" ! u0

Discretization:

u"h(t + h) = F"
h (u

"
h(t)) !(h!0)! u"h ! u"0 = u"

lim
"!0

lim
h!0

u"h = lim
"!0

u" = u0

u"h(t + h) = F"
h (u

"
h(t)) !( " ! 0) ! u"h ! u0

h

lim
⌘!0

lim
"!0

u"h = lim
h!0

u0
h= u0

u"h !(h!0) ! u"0
# #

(" ! 0) (" ! 0)
# #
u0

h !(h!0) ! u0
0

In practice: For h << 1, " << 1 we obtain the same result for
h << " and " << h ! 4

4S. Jin, L. Pareschi: in Hyperbolic Problems: Theory, Numerics, Applications,
Ed. H. Freistuhler and G. Warnecke, Birkhauser-Verlag, Berlin, (2001).
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AN AP- OPERATOR SPLITTING SCHEME 31

Given ~u(x, tk)
Set u0(x) = u(x, tk) and v0(x) = 1

"~r(~u(x, tk))

Step 1: Compute the Jacobian R(x) = @~r
@~u(x, tk) 8x

Step 2: Solve for the reaction product

@t~v1 =
1
"

R(~u0)(D~u0 +~v1), tk  t  tk +�t, ~v1(x, t) = ~v0

via an L- stable method (backward Euler) without projection.

Step 3: Transport Solve

@tu1 = Du1 + v1(x, t +�t), tk  t  tk +�t, u1(x, t) = u0

Set u(x, tk +�t) = u1(x, tk +�t)
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Remark:
Step 2 is local in x

@t~v1(x, t) = R(~u0(x))(D~u0(x) +~v1(x, t)) 8x

Step 3 is local in the index n

@tu1
n(x, t) = Dnu1

n(x, t) + v1
n(x, t +�t), n = 1 : Nspec

) The computational work is twice the work of the original splitting
method.
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Theorem
If the numerical method used in the reaction step is L� stable, then
this scheme is AP, i.e. for " ! 0 and �t fixed we obtain a
discretization of the reduced analytical problem.

Reason: Solving the equation

@t~v1(x, t) =
1
"

R(~u0(x))(D~u0(x) +~v1(x, t)) 8x

for~v1 by an L� stable scheme projects the term D~u0(x) +~v1(x, t) into
the nullspace of R for �t >> " 5

5D. Brinkman, D. Guo, C. Ringhofer, J. Applied. Phys. (2017) (to appear)



MOTIVATION OUTLINE OPERATOR SPLITTING METHODS ASYMPTOTICS AP SCHEMES CONCLUSIONS

RESULTS OF THE AP OPERATOR SPLITTING SCHEME FOR THE
TOY PROBLEM34

Reaction: S1 + S2 ! S3 Mobile defect at right endpoint as function
of time. Left: standard splitting, Right: AP - splitting
’*’: operator splitting solution with �t = 100".
’-’: operator splitting solution with �t = 0.1"
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LARGE TIME RESULTS OF THE AP OPERATOR SPLITTING
SCHEME FOR THE TOY PROBLEM

Reaction: S1 + S2 ! S3 Mobile defect at right endpoint as function
of time. Left: standard splitting, Right: AP - splitting
’*’: operator splitting solution with �t = 100".
’-’: operator splitting solution with �t = 0.1"
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A MORE REALISTIC PROBLEM
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A MORE REALISTIC PROBLEM
Snapshot: 16 defects, 20 reactions
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CONCLUSIONS

1. Methodology for large reaction diffusion systems with different
time scales, using asymptotic analysis.

2. • Compute local reaction equilibria by imbedding the system, using
additional variables and local linear algebra.

• Derive asymptotically preserving schemes, which do not need to
resolve the fast reaction time scale.

3. Methodology developed for thin film solar cells, but applicable
to many problems.
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