ASYMPTOTICALLY PRESERVING NUMERICAL METHODS FOR LARGE REACTION DIFFUSION SYSTEMS WITH APPLICATIONS TO SOLAR CELL DESIGN

D. Brinkman⁽²⁾, C. Ringhofer⁽¹⁾, I.Sankin⁽³⁾

ARIZONA STATE UNIVERSITY

ringhofer@asu.edu, math.la.asu.edu/~chris Work supported by NSF 'KI-NET' and DOE 'SUNSHOT' ⁽²⁾: California State San Jose, ⁽³⁾: First Solar Inc.

<ロト <部ト < Eト < Eト = 王

SOLAR CELLS

Function

$$\partial_t n = \mathfrak{T}_n n + G(n, p), \ \partial_t p = \mathfrak{T}_p p - G(n, p)$$

n(x, t): density of electrons; p(x, t): density of holes; $\mathfrak{T}_{n,p}$: transport operator; *G*: generation / recombination term.

Function: External photons generate free electrons through *G*. They get transported by \mathfrak{T}_n to a terminal and 'harvested'.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SOLAR CELL EFFICIENCY

- Energy efficiency: $\frac{\text{electric energy output}}{\text{photon energy input}}$. Theorem: Limited to $\approx 30\%$ in standard solar cells.
- Cost efficiency: Cost = production cost + replacement cost (lifetime).
 - Production Cost:
 - Standard ('thick') solar cells; made of crystalline Si. Thin film solar cells: made of poly-crystalline materials (c.f. CaTe, CIGS) (require less raw material).
 - Lifetime:

Pollutants ('Defects') diffuse into the cell, become ionized and ruin (in the long run) the functionality of the cell. Pollutants: $Cl^{\pm}, O^{\pm}, S^{\pm}, As^{\pm}, ...$

Goal: Simulate the impact of design parameters during the production process on the structure and simulate the deterioration process.

THE MODEL₀₄

Transport of free electrons and holes:

$$\partial_t n = \nabla \cdot (\nabla n - n \nabla \phi) + G, \ \partial_t p = \nabla \cdot (\nabla p + p \nabla \phi) - G$$

Poisson equation:

$$\nabla \cdot \varepsilon \nabla \phi = \mathbf{n} - \mathbf{p} + dop(\vec{u}), \ dop(u) = \sum_{m=1}^{M} z_m u_m$$

Defect transport and reaction

$$\partial_t u_m = \nabla \cdot D_m (\nabla u_m + z_m u_m \nabla \phi) + r_m (n, \vec{u}), \ m = 1 : M$$

 $\vec{u} = (u_1, ..., u_M)$ defect densities, z_m : charge of species m.

 $\vec{r}(n, \vec{u}) = (r_1, ..., r_M)$ (binary) reaction among defects (chemical) or between defects and electrons (c.f. $Cl^0 + n \rightarrow Cl^-$).

$$r_n(\vec{u}) = \vec{u}^T A_n \vec{u} + B_n \vec{u}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

CHALLENGES₀₆

Evolution of defects coupled to free electrons via reactions \vec{r} . Evolution of free electrons coupled to defects via the doping *dop* and the potential ϕ .

Remark: For given defects and given *dop*, the numerical treatment of electron and hole transport is well developed.

Challenge 1: Couple large diffusion reaction system for the defects \vec{u} to the (well understood) carrier transport model.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Challenge 2

Poly-crystalline material \Rightarrow Different transport properties (diffusion matrices) within the overlap of different crystals \Rightarrow Grain boundaries.

MOTIVATION OUTLINE OPERATOR SPLITTING METHODS ASYMPTOTICS AP SCHEMES CONCLUSIONS

Requires locally fine mesh resolution

Comparing Branch Results

Enhanced transport coefficients within grain boundaries Chlorine density

SUMMARY₀₈

- Large diffusion reaction system for charged defects on a complicated (structured) medium.
- Coupled to well developed methodology for electrodynamic equations

(日) (同) (三) (三) (三) (○) (○)

- 1. Size: Up to 50-60 species (defects, Cl, As, O, S.....) in various charged states. Complicated geometry (even in 2-D) $\Rightarrow O(10^6)$ variables.
- 2. Multiscale in space: grain boundaries.
- 3. Multiple time scales: Electronic scale $(10^{-7}sec, Defect reaction scale$ *minutes hours*, Diffusion time scale (*years*).
 - Implicit methods in time (after discretization, linearization etc.) need the inversion of block penta-diagonal matrices of size $N_{grid} * N_{spec}^2$. Direct Sparse solution would need $O(N_{grid}^2 * N_{spec}^3)$ operations per time step.

To be a useful engineering tool this has to run on a 'reasonable' work station.

OUTLINE

- 1. Practical numerical issues \Rightarrow operator splitting methods.
- 2. Operator splitting methods for multi-scale problems.
 - Time scale resolution problem for 'standard' operator splitting.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Asymptotic analysis and relation to kinetic theory.
- 3. Asymptotically preserving (AP) operator splitting methods.
- 4. Results
- 5. Conclusions

OPERATOR SPLITTING METHODS 12

$$\partial_t u_n(x,t) = \mathfrak{D}_n u_n(x,t) + r_n(\vec{u}(x,t)), \ n = 1 : N_{spec}$$

Operator splitting: split transport and reactions Given $\vec{u}(x, t_k)$, compute $\vec{u}(x, t_k + \Delta t)$ via

• Step 1: Given $\vec{u}(x, t_k)$, compute $\vec{u}^{(1)}(x, t_k + \Delta t)$ by

 $\partial_t u_n^{(1)}(x,t) = \mathfrak{D}_{\mathfrak{n}} u_n^{(1)}, \text{ for } t_k \leq t \leq t_k + \Delta t,$

IC: $u^{(1)}(t_k) = u(t_k)$, compute $\vec{u}^{(1)}(x, t_k + \Delta t)$, $n = 1 : N_{spec}$

• Step 2: Given $\vec{u}^{(1)}(x, t_k + \Delta t)$, compute $\vec{u}^{(2)}(x, t_k + \Delta t)$ by $\partial_t \vec{u}^{(2)}(x, t) = \vec{r}(\vec{u}^{(2)}(x, t))$, for $t_k \le t \le t_k + \Delta t$,

IC: $\vec{u}^{(2)}(x,t_k) = \vec{u}^{(1)}(x,t_k + \Delta t), \forall x$ set $\vec{u}(t_k + \Delta t) = \vec{u}^{(2)}(t_k + \Delta t)$ Step 1: N_{spec} decoupled linear diffusion equations. $O(N_{grid}^2 * N_{spec})$ operations.

Step 2: N_{grid} decoupled nonlinear reaction equations. $O(N_{grid} * N_{spec}^2)$ operations.

Compare to fully implicit method:

$$\frac{\text{fully implicit}}{\text{operator splitting}} = \frac{N_{grid}^2 * N_{spec}^3}{N_{grid}^2 * N_{spec} + N_{grid} * N_{spec}^2}$$

ション ふぼう ふけう ふけい ほう ろくの

Operator splitting yields computational savings of O(1000) for practical problems.

THE MULTI-SCALE PROBLEM 14

Observation: The operator splitting method above produces the wrong transport dynamics if the fast reaction scale is not resolved ($\Delta t\vec{r} > 1$).

Basic mechanism:

-Assume two species s_1 and s_2 with diffusion coefficients D_1 and D_2 with $D_1 >> D_2$.

-Assume a reaction $s_1 \rightarrow s_2$ much faster than both diffusion scales. so, we have $\approx \frac{D_2}{|\Omega|^2} \ll \frac{D_1}{|\Omega|^2} \ll r$.

- Using operator splitting, in a time interval Δt , a particle of type s_1 travels on average a distance $\Delta x = \sqrt{\Delta t D_1}$. Then it gets converted into s_2 .
- In reality, it should almost immediately be converted into s_2 and travel only a distance $\Delta x = \sqrt{\Delta t D_2} << \sqrt{\Delta t D_1}$.
- This means we compute the wrong wave speeds for the diffusion - convection - reaction wave, unless we resolve the reaction time scale $\Delta tr \ll 1$.

Given the scales, $T_{end} \approx years \ r \approx \frac{1}{minutes}$, this is unacceptable!

A TOY EXAMPLE₁₅

Three (uncharged) species: S_1 : mobile defect; S_2 : vacancy (empty lattice site); S_3 : defect on lattice site.

Reaction: $S_1 + S_2 \rightarrow S_3$

1

$$\begin{pmatrix} \partial_t u_1 \\ \partial_t u_2 \\ \partial_t u_3 \end{pmatrix} = \begin{pmatrix} \nabla \cdot \nabla u_1 & -\frac{1}{\varepsilon} u_1 u_2 \\ & -\frac{1}{\varepsilon} u_1 u_2 \\ & & \frac{1}{\varepsilon} u_1 u_2 \end{pmatrix}$$

 $\varepsilon << 1$ ratio of diffusion to reaction time scale.

- Consider an isolated system (von Neumann b.c.)
- Monitor $u_1(x, t)$ at the right collector as a measure of the wave speeds.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

¹B. Sportisse, J. Comp. Phys. (2000)

Mobile defect at right endpoint as function of time.

'*': operator splitting solution with $\Delta t = 100\varepsilon$.

'-': operator splitting solution with $\Delta t = 0.1\varepsilon$

PARALLEL TO KINETIC MODELS 17

Kinetic models for binary interactions

$$\partial_t u(x, y, t) + \mathfrak{T} u = \mathfrak{Q}(u, u)$$

x: 'space',

- \mathfrak{T} : linear transport operator in *x*.
- y: attribute (velocity),

 \mathfrak{Q} : quadratic operator, modeling random binary collisions under the IID assumption.

$$\begin{aligned} \mathfrak{Q}(u,u)(x,y) &= \int K(y,y_1,y',y_1')u(x,y')u(x,y_1') \, dy'y_1'y_1 - \\ &\int K(y',y_1',y,y_1)u(x,y)u(x,y_1) \, dy'y_1'y_1 \\ K(y,y_1,y',y_1'): \text{ probability } (y',y_1') \to (y,y_1) \end{aligned}$$

Usual approach for $\mathfrak{Q} >> \mathfrak{T}$: Asymptotics, moment closures, etc.

- Find conserved quantities $\kappa \mathfrak{Q}(u, u) = 0 \ \forall u$
- Parameterize the local equilibrium $\mathfrak{Q}(\phi(z), \phi(z)) = 0 \ \forall z$.
- Moment closure gives large time asymptotics:

$$\partial_t \kappa \phi(z) + \kappa \mathfrak{T} \phi(z) = 0$$

Replace $y \rightarrow n \in \{1, ..., N_{spec}\} \Rightarrow$ same structure as discrete velocity model for the Boltzmann equation.

Problems:

- 1. No topology in the discrete attribute space $\{1, .., N_{spec}\}$.
- 2. No microscopically conserved quantities \Rightarrow no H- theorem.
- 3. Local equilibrium given by a system of N_{spec} quadratic equations.²

²Conradi, C., Flockerzi, D., Raisch, J., Stelling, J.: P. Natl. Acad. Sci. 104(49), (2007)

BASIC IDEA₂₀

Replace finding local equilibria and conservation laws by numerical linear algebra.

$$\partial_t \vec{u}(x,t) = \mathfrak{D}\vec{u} + \frac{1}{\varepsilon}\vec{r}(\vec{u})$$

 $\varepsilon \ll 1$: ratio of reaction to diffusion time scale. Introduce the product of reactions as independent variable: $\vec{v} = \frac{1}{\varepsilon} \vec{r}(\vec{u})$. Gives the system

$$\partial_t \vec{u}(x,t) = \mathfrak{D}\vec{u} + \vec{v}, \ \partial_t \vec{v} = \frac{1}{\varepsilon} R(\vec{u}) (\mathfrak{D}\vec{u} + \vec{v})$$

with $R(\vec{u}) = \frac{\partial \vec{r}(\vec{u})}{\partial \vec{u}}$. $R(\vec{u})$ will be in general rank deficient \Rightarrow For a given \vec{u} , the fast dynamics will happen on the orthogonal complement of the left nullspace of $R(\vec{u})$. **Example:** reaction: $s_1 + s_2 \rightarrow s_3$

$$\vec{r}(\vec{u}) = \begin{pmatrix} -u_1 u_2 \\ -u_1 u_2 \\ u_1 u_2 \end{pmatrix}, \ R(\vec{u}) = \begin{pmatrix} -u_2 & -u_1 & 0 \\ -u_2 & -u_1 & 0 \\ u_2 & u_1 & 0 \end{pmatrix}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

rank =1, dim(null(R))=2

ASYMPTOTICS 24

For given \vec{u} the problem is linear! Given \vec{u} and $R(\vec{u})$, compute projection $P(\vec{u})$ with

$$P(\vec{u})R(\vec{u}) = R(\vec{u})P(\vec{u}) = 0$$

Split $\vec{v} = \frac{1}{\varepsilon} \vec{r}(\vec{u})$ into nullspace component and orthogonal complement.

$$\vec{v} = \tilde{v} + \hat{v}, \quad \vec{v} = P(\vec{u})\vec{v}, \quad \hat{v} = (id - P)\vec{v}$$

$$\partial_t \tilde{v} = \frac{dP(\vec{u})}{dt} (\tilde{v} + \hat{v}), \ \partial_t \hat{v} = \frac{1}{\varepsilon} R(\mathfrak{D}\vec{u} + \hat{v}) - \frac{dP(\vec{u})}{dt} (\tilde{v} + \hat{v})$$

- $P(\vec{u}(t))$ will evolve on the slow time scale.
- For $\varepsilon \to 0$ the fast time scale component \hat{v} converges to $R(\mathfrak{D}u + \hat{v} = 0 \Rightarrow \hat{v} = -(id - P)\mathfrak{D}\vec{u}.$

THE REDUCED PROBLEM

This gives the reduced problem

$$\partial_t \vec{u}(x,t) = P \mathfrak{D} \vec{u} + \tilde{v}, \ \partial_t \tilde{v}(x,t) = \frac{dP(\vec{u})}{dt} (\tilde{v} - (id - P)\mathfrak{D} \vec{u})$$

Step 1: For given u(x, t), compute $P(x, t) = G_R G_L$, $G_L^T G_R(u) = id$, $G_L R(u) = 0$, $RG_R = 0$ (analytically for small problems, numerically in general, The left nullspace G_L corresponds to the nullspace of the Stochiometry matrix).

Step 2: Solve

$$\partial_t \vec{u}(x,t) = P \mathfrak{D} \vec{u} + \tilde{v}, \ \partial_t \tilde{v}(x,t) = \frac{dP(\vec{u})}{dt} (\tilde{v} - (id - P)\mathfrak{D} \vec{u})$$

Remark: Step 1 quite computationally expensive since different nullspace bases have to be computed for every gridpoint. ³

³Craciun, G., Feinberg, SIAM J. Appl. Math. (2006)

TOY PROBLEM (REDUCED)₂₇

Reaction: $s_1 + s_2 \rightarrow s_3$

$$\vec{r}(\vec{u}) = \begin{pmatrix} -u_1 u_2 \\ -u_1 u_2 \\ u_1 u_2 \end{pmatrix}, \ R(\vec{u}) = \begin{pmatrix} -u_2 & -u_1 & 0 \\ -u_2 & -u_1 & 0 \\ u_2 & u_1 & 0 \end{pmatrix}$$

rank =1, dim(null(R))=2

$$G_L = \begin{pmatrix} -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, \ G_R = \frac{1}{u_1 + u_2} \begin{pmatrix} -u_1 & 0 \\ u_2 & 0 \\ u_1 & u_1 + u_2 \end{pmatrix}, \ P = G_R G_U^T$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AP (Asymptotically Preserving) Schemes 28

General idea: $\partial_t u_{\varepsilon} = \mathfrak{F}^{\varepsilon}(u_{\varepsilon}) \to (\varepsilon \to 0) \to u_{\varepsilon} \to u_0$ Discretization:

$$\begin{split} u_{h}^{\varepsilon}(t+h) &= \mathcal{F}_{h}^{\varepsilon}(u_{h}^{\varepsilon}(t)) \rightarrow_{(h \rightarrow 0)} \rightarrow u_{h}^{\varepsilon} \rightarrow u_{0}^{\varepsilon} = u^{\varepsilon} \\ \lim_{\varepsilon \rightarrow 0} \lim_{h \rightarrow 0} u_{h}^{\varepsilon} &= \lim_{\varepsilon \rightarrow 0} u^{\varepsilon} = u^{0} \\ u_{h}^{\varepsilon}(t+h) &= \mathcal{F}_{h}^{\varepsilon}(u_{h}^{\varepsilon}(t)) \rightarrow_{(} \varepsilon \rightarrow 0) \rightarrow u_{h}^{\varepsilon} \rightarrow u_{h}^{0} \\ \lim_{\eta \rightarrow 0} \lim_{\varepsilon \rightarrow 0} u_{h}^{\varepsilon} &= \lim_{h \rightarrow 0} u_{h}^{0} = u^{0} \\ u_{h}^{\varepsilon} &\rightarrow_{(h \rightarrow 0)} \rightarrow u_{0}^{\varepsilon} \\ \downarrow & \downarrow \\ (\varepsilon \rightarrow 0) & (\varepsilon \rightarrow 0) \\ \downarrow & \downarrow \\ u_{h}^{0} \rightarrow_{(h \rightarrow 0)} \rightarrow u_{0}^{0} \end{split}$$

In practice: For $h \ll 1$, $\varepsilon \ll 1$ we obtain the same result for $h \ll \varepsilon$ and $\varepsilon \ll h ! ^{4}$ ⁴S. Jin, L. Pareschi: in Hyperbolic Problems: Theory, Numerics, Applications,

Ed. H. Freistuhler and G. Warnecke, Birkhauser-Verlag, Berlin, (2001). E + (E +) E -) a ??

AN AP- OPERATOR SPLITTING SCHEME 31

Given $\vec{u}(x, t_k)$ Set $u^0(x) = u(x, t_k)$ and $v^0(x) = \frac{1}{\varepsilon} \vec{r}(\vec{u}(x, t_k))$

Step 1: Compute the Jacobian $R(x) = \frac{\partial \vec{r}}{\partial \vec{u}}(x, t_k) \ \forall x$

Step 2: Solve for the reaction product

$$\partial_t \vec{\mathbf{v}}^1 = \frac{1}{\varepsilon} R(\vec{u}^0) (\mathfrak{D}\vec{u}^0 + \vec{\mathbf{v}}^1), \ t_k \le t \le t_k + \Delta t, \ \mathbf{v}^1(\vec{\mathbf{x}}, t) = \vec{\mathbf{v}}^0$$

via an L- stable method (backward Euler) without projection.

Step 3: Transport Solve

$$\partial_t u^1 = \mathfrak{D} u^1 + v^1(x, t + \Delta t), \ t_k \le t \le t_k + \Delta t, \ u^1(x, t) = u^0$$

Set $u(x, t_k + \Delta t) = u^1(x, t_k + \Delta t)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark: Step 2 is local in *x*

$$\partial_t \vec{v}^1(x,t) = R(\vec{u}^0(x))(\mathfrak{D}\vec{u}^0(x) + \vec{v}^1(x,t)) \; \forall x$$

Step 3 is local in the index n

$$\partial_t u_n^1(x,t) = \mathfrak{D}_n u_n^1(x,t) + v_n^1(x,t+\Delta t), \ n = 1 : N_{spec}$$

 \Rightarrow The computational work is twice the work of the original splitting method.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへ⊙

Theorem

If the numerical method used in the reaction step is L- stable, then this scheme is AP, i.e. for $\varepsilon \to 0$ and Δt fixed we obtain a discretization of the reduced analytical problem.

Reason: Solving the equation

$$\partial_t \vec{v}^1(x,t) = \frac{1}{\varepsilon} R(\vec{u}^0(x))(\mathfrak{D}\vec{u}^0(x) + \vec{v}^1(x,t)) \,\forall x$$

for \vec{v}^1 by an *L*- stable scheme projects the term $\mathfrak{D}\vec{u}^0(x) + \vec{v}^1(x,t)$ into the nullspace of *R* for $\Delta t >> \varepsilon^5$

⁵D. Brinkman, D. Guo, C. Ringhofer, J. Applied. Phys. (2017)=(to appear) = ∽ < ?

RESULTS OF THE AP OPERATOR SPLITTING SCHEME FOR THE TOY PROBLEM₃₄

Reaction: $S_1 + S_2 \rightarrow S_3$ Mobile defect at right endpoint as function of time. Left: standard splitting, Right: AP - splitting '*': operator splitting solution with $\Delta t = 100\varepsilon$.

'-': operator splitting solution with $\Delta t = 0.1\varepsilon$

LARGE TIME RESULTS OF THE AP OPERATOR SPLITTING SCHEME FOR THE TOY PROBLEM

Reaction: $S_1 + S_2 \rightarrow S_3$ Mobile defect at right endpoint as function of time. Left: standard splitting, Right: AP - splitting '*': operator splitting solution with $\Delta t = 100\varepsilon$.

'-': operator splitting solution with $\Delta t = 0.1\varepsilon$

- 990

A MORE REALISTIC PROBLEM

Stochiometric Matrix

6. <u>80.46</u>	(1	0	1	- 1	0	0	0	0	0	0	e	0	0	0	0	0
S is a 20x16 matrix	0	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0
Each row is a reaction	1	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0
	0	1	0	- 1	1	0	0	0	0	0	e	0	0	0	0	0
	1	0	0	0	0	-1	1	0	0	0	е	0	0	0	0	0
- 17-1	1	0	0	0	0	0	-1	1	0	0	е	0	0	0	0	0
Rank[S] = 13	0	0	2	0	0	0	0	-1	0	0	6	0	0	0	0	0
Pank[null(S)]=2	0	0	1	1	0	0	-1	0	0	0	e	0	0	0	0	0
Rank[null(S)]=3	0	0	0	2	0	-1	0	0	0	0	e	0	0	0	0	0
	0	0	1	0	0	0	0	0	0	0	6	0	- 1	0	0	0
	1	0	0	0	0	0	0	0	0	0	-1	1	0	0	0	0
	1	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	1	-1	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	0	1	-1	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	e	0	0	-1	0	0
	0	0	0	0	0	0	0	0	1	1	e	0	0	-1	0	0
	0	0	0	0	0	0	0	0	0	0	6	0	1	0	-1	0
	0	0	0	0	0	0	0	0	1	0	6	1	0	0	-1	0
	1	1	0	0	0	0	0	0	0	0	e	0	0	0	0	0
	0)	0	0	0	0	0	0	0	0	1	6	0	0	0	0	- 1

200

A MORE REALISTIC PROBLEM

Snapshot: 16 defects, 20 reactions

CONCLUSIONS

- 1. Methodology for large reaction diffusion systems with different time scales, using asymptotic analysis.
- Compute local reaction equilibria by imbedding the system, using additional variables and local linear algebra.
 - Derive asymptotically preserving schemes, which do not need to resolve the fast reaction time scale.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

3. Methodology developed for thin film solar cells, but applicable to many problems.