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Background: population adaptive evolution

Darwin (1809-1882) 'On the origin of species’ (1859)

Motivation. Analyze self-contained mathematical models for Darwins mechanism at the
population scale using only the

Ingredients.
» Population multiplication with heredity
» Natural selection:
- individuals own a phenotypical trait: ability to use the environment.
- Because of competition, the individuals that are the most preforment are selected.
» Mutations can modify the trait from parents to off-springs.



A direct selection model

We consider a structured population model

Bf(t,x) = f(t,x)R, t>0,x€ X.

v

Population structured by a continuous trait variable x € X
Reproduction (or fitness) R includes both growth a and competition (b > 0):

\{

R = a(x) — /X b(x, y)f(t, y)dy.

» The competition b > 0 means that the individual with trait y only has a negative
effect on the one with trait x, therefore leading to selection!

n
f— g pio(x — x)?
=1

» see Desvillettes, Gyllenberg, Jabin, Mischler, Perthame, Raoul, ...
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Selection or no selection

As an example, we consider
a(X) = G(X7 04 )7 b(X7y) = G(X =Y 0-2)7

where

M)

G(x,0) = LIS 2

» For oy < o, the Dirac mass is a stable steady state.

» One can verify that for 04 > o5 there is a smooth steady state which is given by

feq = G(X,0), o =o01—o02.



Selection or no selection

The first row oy = 0.01 < o> = 0.05; the second row: oy = 0.05 > o5 = 0.01.
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Branching

We test initial data of delta-like function with
a(x)=A—x2, b(x,y)= _
a T T+ (x -y
(1) branching into two subspecies for A = 1.5.
(2) A = 2.5, branching into two subspecies and then a new trait appears in the middle.
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Model description

Bf(t,x) = f(t,x)R, t>0, x € X.

v

Wellposedness in C([0, co); L' (X)) is known for f € L'(X), provided

aeL>*(X), |{x; a(x)>0} #0;
bel=(XxX), inf b(x,x')>0.
x,x'eX

Desvillettes L, Jabin PE, Mischler S, Raoul G (2008)

The model is interesting from the point of view of large-time behavior.
Natural questions appear, such as

v

does the population really converge to an equilibrium?
Is this equilibrium an evolutionarily stable strategy or distribution (ESS or ESD)?
Does this limit depend on the initial population distribution?
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Evolutionary Stable Distribution (ESD)

» Solutions are expected to converge toward the stationary states ...

{feol 700 (a0 - [ beeyiitnay ) o}

» However, there are many stationary states!
A special class of stationary states features a particular sign property characterized by
the ESD:
Vx € Supp?, R=0,
vx e X, R<O0.
Jabin and Raoul (JMB 2011)

» Existence of ESD is known only for some a and b (Raoul 2009)
» In general case, the ESD is not necessarily unique!
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Model parameters

The basic assumptions for some existing results:

(Dae L=(X), Hx a(x)>0} #0,
(i) € L(X x X), inf b(x,x') > 0.

The uniqueness of the ESD is ensured if

vg e L'OONO) [ [ bl y)ag(y)dicy > o.

Convergence to ESD (when time becomes large) toward a singular ESD is rather
complex.

Partial results under additional symmetry assumption on b, say

b(x,y) = b(y, x).
Jabin and Raoul (JMB2011)
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Relative entropy

The proof of global convergence to the ESD relies on a Lyapunov functional of the form

f(t, x)

which is dissipating in time and serves as a relative entropy.

F(t)_/x [( )log ) +f(t,x)—7(x)} ax,

The obtained convergence rate (with no selection) is

Ity =70 =0 (7).

llglle = (//b (x,y)g g(y)dXdy)VQ.

where
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Semi-discrete scheme

Let f;(t) denote the approximation of cell averages
1
£(t) ~ 7/f(t,x)dx,
hly

then we have the following semi-discrete scheme

N
ij(éj—hzbﬁﬁ‘), j=1,-- N,
i=1

Sla

where | |
3 =— | a(x)dx, 5--:—//bx, dxdy.
vl h/ll ( ) ol h2 i I/ ( y) y

The basic assumptions can be carried over to the discrete level:

13| < llallie, {1<j<N,3>0}+#0;

0 < bji < ||b]|L> and by = by, for 1 < i,j < N;

N N N
> > " bigig; > 0 forany g; such that > |g;|* # 0.
= = =
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Discrete ESD

> (Discrete ESD) For initial data £;(0) > O for all j = 1,2,--- , N, the corresponding
discrete ESD 7 = {f} (still called ESD) may be defined as

=h

N
Vie{1<i<N7T#0}, Rlfl:=a-h) bifi=0,
i=1

N
vie{(1<i<NF=0}, a-h> bfi<o.
i=1
This ESD is shown to be unique!
» Questions:
- Can we come up with an independent solver to produce the discrete ESD?

- Does the numerical scheme preserve: positivity and the relative entropy
dissipation law?

- Does the numerical solution converge toward the discrete ESD?
- What are the time-asymptotic convergence rates?
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How to generate ESD?

We prove that finding the ESD is equivalent to solving the following problem

min H, (2a)
fERN
subjectto fe S={f>0}, (2b)
where
T Bf

H(f)= — — a'f
(=" —a,

with f = (f, fo, -, fy)", B= (bj), and a = (21,3, --- ,ay)"/h.
» B is positive definite, symmetric, hence problem (2) has a unique solution.
» A good quadratic programing algorithm can be used to produce the ESD!
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Proven properties of the semi-discrete scheme

We define the discrete entropy functional as follows
N /. 7 ~
F=>" <f,|og (;) +f,1;»> h.
j=1 i
Theorem

Let f;(t) be the numerical solution to the semi-discrete scheme. Then
(i) If£;(0) > O forevery 1 < j < N, then fi(t) > 0 forany t > 0;
(i) F is non-increasing in time. Moreover,
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Positivity and entropy satisfying property

ffi+1 _fn

N
J I _ 15 -
Tar =@ —h ;bf/ @

Theorem
Assume F° < oo, and let fj” be the numerical solution to the fully-discrete scheme (3)

with time step satisfying

)\min
At < — ,
S [llallioe + [1bllzs 7l + Amax S(FO)|

where S is a monotone function. Then,
(i) {71 =0 for " = 0, and "1 > 0 for {7 > 0 forany n € N;
(i) F™ is a decreasing sequence in n. Moreover,

1 -
FMl— FN < —o At = 15,

N 7 .
Note: F" = Z (%) —+ f” 1}) h. Amin(Amax) denotes the smallest (largest)
)

eigenvalue o f = (bji)nxN-

\‘hl
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Convergence rates

» A strict ESD: if it also satisfies the following strict sign condition,
R[f] <0 forje {i: f =0}

» The strict ESD is both linearly and non linearly stable, with perturbations decaying
to zero exponentially in time.

» In order to quantify the exponential decay of the perturbations, we use the
following notation,

I={j|f=0and R, <0}, I°={,1<j<N}—I,

and ~

s=min(—-R[f]) >0, fm=minf > 0.
jel jele

u = hfmAmin, r=min{s, u}
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Convergence rates

Theorem
Let f;(t) be the solution to the semi-discrete scheme, associated with the strict ESD,
then there exists §* > 0 such that for any ¢ € (0,6*) if

1(0) = Fll2 <4,

then B
(1) = Fllo < C(1+ )%™, &=1(smpy,
where1 < p <2,

PO a?min{1, v/fm} \/ﬁ} / Hf||1 /IIfH1
VZ2max{1,a}’ HbHLoo

and C may depend on the parameters and the norms of the initial data but not explicitly
on N or h.

18
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Convergence rates

Another objective is to establish an algebraic convergence rate but with parameters
uniform in the mesh size, thus extending the rates known at the continuous limit.

Theorem
Let 1;." be the numerical solution generated from fully discrete scheme with positive

initial data f > 0 forallj =1,--- , N, with f = {f} as its associated ESD. If

N .
- f; "
0 ._ Z j 0
j= i

then 0
~ 2F
-2 < =—
I =g <

provided that At is suitably small.
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Conclusion |

Rich dynamic behavior in discrete models.
Convergence rates:

For the strict discrete ESD, we establish the exponential convergence rate of
numerical solutions towards such a strict ESD. However, the convergence rate is
typically mesh dependent, as a similar result is not expected for the continuous
model.

For general discrete ESD, we prove that numerical solutions of the fully discrete
scheme converge towards the discrete ESD at a rate 1/n, which is faster than the
rate O(logt/t) obtained for the continuous model

Open questions:
Characterize (a, b) that generate Dirac concentrations
How to connect operator positivity [ b(x, y)n(x)n(y)dxdy > 0 to scaling limits.
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Models with mutation

Off-springs undergo mutations that change slightly the trait. Two models are

Of(t, x) = f(t,x)R + Af.

B (t,X) = f(t, )R+ 1 (/X £, y)M(x, y)dy — (¢, x)) .

Depending on the scales of mutations, both models can de derived from
» Stochastic models, Individual Based Models
- Nindividuals,
- rescale mutation, birth, death rates
- U. Dieckmann- R. Law, R. Ferriere
- N. Champagnat, S. Meleard
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A special case

When b = 1, the competition is uniform with same strength. The model becomes
Of(t,x) = f(t,x)R(x, p(1)) + Af(t, x),
R=a()—pl0), p= [ fltx)ok.

This special model was well studied.

Theorem (B. Perthame, et al) Let f be the solution of
atf(t7 X) = f(t7 X)R(X’ p(t))
Suppose X =R, R, < 0 and R(X, pmax) < 0,Vx. Then,

p(t) = poo, ast— oo,
tlim f(f,X) = pood(X = X=0), (Competitive Exclusion Principle)
— 00

and min, maxx R(x, p) = 0 = R(Xeo, poo) (PESSIMism principle)

However, when b # const, the problem is much more challenging!
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Asymptotic approach

We assume that mutations are RARE and introduce a scale ¢ for small mutations, so
that
edif(t, x) = f(t, x)R(x, p(t)) + € AL(t, x).

Theorem (B. Perthame, et al) Suppose X = R, R, < 0. Then, as ¢ — 0, we have
f(t.) = DO = X(O), p 5= [ f(t.xdx,
X
and the ‘fittest’ trait X(t) is characterised by the Eikonal equation with constraints
are(t, x) = R(x, p) + [Vxo(t, X)?
max o(t, x) =0 = ¢(t, X(t)).
» This is not far from Fisher/KPP equation for invasion fronts/chemical reaction:
edif(t, x) = f(t,x)(1 — f(t, X)) + EAf(t, x).

» Tools: WKB approach, level set, geometric motion.
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A new model

There are also other models featuring balance between evolutionary forces.
» We are concerned with the problem governed by

(1, )= AF(t, X) + %f(t, X) (a(x) - /Xb(x,y)fz(t, y)dy), fort>0, x € X,

(4a)

£(0,x) = f(x) > 0, x€ X, (4b)

a—f:O, X € 0X, (4c)
ov

where f(t, x) denotes the density of individuals with trait x, X is a subdomain of
RY, v is the unit outward normal at a point x on the boundary 8.X.

» The nonlinear competition effect does appear in the model for fish species:

out(t.x) = (.0 ()~ [ b)) ~ dixy))ooy ).

K. Shirakihara, S. Tanaka (1978)
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Gradient flow structure

» The model can be expressed as

16F
f=—_2"
O 2 5f

where the corresponding energy functional is
FIf] = %//b(x,y)f2(t, X)P(t, y)dxdy — %/a(x)fz(t,x)dx+/|vxf(t, X)Rax

so that the energy dissipation law %F[f] = —2 [|9¢f]2dx < 0 holds for all t > 0,
at least for classical solutions.

» Under the transformation u = 2, the resulting equation becomes

2
oru(t, x) = Au — |v27]| + u(t, x) (a(x) — /Xb(x,y)u(t, y)dy) .
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Issues and questions

v

Numerical approximation to capture the time-dynamics (w/ Wenli Cai, 2016)
Theory for the continuous model (w/ P.E. Jabin)

Well-posedness in C([0, oo); L2(X)) can be established for fy € L2(X).
Other questions

v

does the population converge to a nontrivial equilibrium?
Is this equilibrium globally stable?
Does this limit depend on the initial population distribution?

o T o
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Basic assumptions

In order to analyze the solution behavior at large times, we make the following
assumptions:

ac L>®(X), |{x; a(x)> 0} #0;
beL®(XxX), bn= inf_ b(x,x")>0.
x,x'eX

b(x.y) = by ). ¥g € L'OOVO} [ [ b(x.»)a()g(y)by > 0.

One can check that b defines then a scalar product over L'(X),

(9,h b—//bxy)g h(y)dxdy

with corresponding norm

llglle = (//b (x,¥)9 9(}’)dxdy)1/2.

In what follows we also use the notation

Hh] = %h (a— /b(x,y)hz(y)dy> :

(5¢)
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Well-posedness

Existence and uniqueness of the solution can be obtained without much effort.

Theorem
Let fy € L?(X), and both a and b satisfy the first two assumptions of (5). Then (4)
admits a global weak solution

f e L= (RT; L3(X)).

Moreover, we have

(@) |If]| := supsso IF(, )l2xy < M, (t,x) €ERT x X.

(b) f is stable and depends continuously on fy in the following sense: if f is another
solution with initial data %, then for every t > 0,

/|f— Fl2dx < e)“/\fo — Ty[2dx,
where \ depends only on a, b and ||f||.

The proof of this result is classical: (i) the a priori estimate of ||f]; (ii) fixed point
argument in a ball within C([0, T], L2(X)); (iii) extension to all time.
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Steady solutions

The steady problem:
Ag+H[g]=0, xe€X 0,9=0, ondX. (6)

Theorem

There exists g > 0 solution in the sense of distribution to (6). Moreover,

(i) If [ adx > 0 or [ adx < 0 with Ay < 1/2, then there exists a unique positive solution
such that 0 < Imin < g < Gmax < 00 in X.

(i) If [ adx < 0 with Ay > 1/2, there is no positive steady solution.

Remarks: If [ adx > 0, the steady state is strictly positive. The case [ adx < 0 is less
obvious. Brown and Lin (1980) proved that there exists a unique positive A1 and the
positive function ¢ € D(Ly) such that [ ay?dx > 0 and

JIVxyPax | [|VxvPax o2
/\1:W:|nf W.VGD(L1)and/avdX>0 . @

where D(Ly) = {u € H?(X) : dnu|gx = 0} is the domain of the Laplace operator
Liu=—Au.
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Steps in the proof

» Existence of the weak solution by a variational construction: The weak solution in
distributional sense is shown to be equivalent to the nonzero critical point of the
functional

1 1
Flw] = / {Z(b* w?yw? — ani + |VXW|2i| dx, w; = max(w,0).

There exists g € A:= {g € H'(X), g > 0}, such that

F(g) inf  F[w].
H1(X)

we

() If fadx > 0or [ adx < 0with Ay < 1/2, then g is not identically 0;

(i) If fadx < Owith Xy >1/2,g=0.
» Regularity and positivity: elliptic theory and the standard Harnack inequality.
» Uniqueness is more interesting
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Proof of uniqueness
Let g4 and g» be two positive solutions of (6), then using the positivity of b, third
assumption in (5)
0< [ [(6% - B)blx.y)(e? - )y
~ [ (@1~ B/90)91x) [ blx. NG )y~ [ (672 ~ ge)ae(x) [ blx.)GE (v e
~ [ (@1~ B/91)(281(x) + a()g1 () + [ (92— 6F/2)(280(x) + a(x)g2 (X))
= 2/(91 — 95/01) Agi(x) +2 /(92 — 07/92) Aga(x),

by using the equation (6). Hence by integrating by part

2019:Vxgo — 92V
OS—2/<VXQ1 _ 29192Vx02 — G5 xg1> Vg1 dx

g

2919>Vxg1 — g2V
—2/<ngg— 9192V xg1 — 95 x92>  Vxgodx

2
2
>dx<0.

9>

[l 2
= —2/ (ng1 — —Vxg
92

As a conclusion g2 = g2, leading to gy = g».

+ ’ngz - %me
(]|
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Main result

We can show the convergence of f(t, -) towards g:

Theorem
Assume both a and b satisfy (5). Consider any non-negative f© ¢ L'(X) N L>°(X).
Then the corresponding solution f(t, -) of (4) is such that

%F[f(t, )] < 0 aslong as f is not a steady solution. (8)

As a consequence
Mm fI£(t, ) = 9()l2x) = 0 (€)
— 00

And moreover, there exists C depending on initial data fy and g > 0 such that
/|f(t, X) — g(x)dx < Ce~"" Wt >0,

for [ adx > 0 or [ adx < 0 with Ay # % where of course g = 0 if Ay > 1/2.

For [ adx < 0 and X\ = 3,

/\f(t7x)|2dx < %t vt > 0.
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Proof of convergence

v

Since F is non-increasing, it only remains to show that for some f; > 0, if
Otf(ty, x) = 0 for all x € X, then 9;f(t,x) =O0forall x € Xand t > 0.

By uniqueness we have f(t, x) = f(fy, x) for all t > t,.
For 0 <t < fp, we prove by a contradiction argument based on a key quantity

v

v

[V xw|2dx
A(t) = ]X‘X7|
Jlw|2dx
with w = f(t, x) — f(f, x). Key estimates are
— On one hand d ; ’
— A< =22, A= - 3|16l oo M?).
GO < 50 A= S(llallo + 3]l M?)

On the other hand,

ﬂ lo ! ) =— 2 /wa wadx
at \°9 Sw2dx) [ w2dx !
< 2A(t) 4+ 2.
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Exponential convergence
In the case g > 0, we introduce the auxiliary functional

o [[57 - )]

which is bounded from below

Gz/{fzgnggz (éq)]dx:%/(ng)de.

A direct calculation gives

d

—G< —-D(f

er— (f,9),
where

D(fvg) =

f
tlon (D) are ) [ [ - r0p0n - e
The key is to show that that there exists n > 0 such that
D(f,9) > pllf/g —11I%. (10)

2
EGg—u/(fq) dx < — i“ G.
at g Omax
By Gronwall lemma

I#(t, ) — g HL2<\/7<\/7( max>

which gives
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A new functional inequality

Due to the Poincare inequality it suffices to find 1. independent of ¢ > 0 such that

2 [|f 2
= CXgmin/'éfc

1 f
o+ 517 = Pllg = wll g =TI

» find € so that ]
25 Cx Gain lIf/g = cl? + € (c® = 1)?[|gIl3-

2 2
flo-df oo
g g

» Foranyn >0

X
_ 77| | ‘07”2.
1—n

» Together

1> ngmm/‘ff1

X
dx-+lo— 1P (co+ 12 gl - 720 ).
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Conclusion Il

» The self-contained population models with three simple ingredients:
- growth and death: trait dependent
- limited resources: selection through competition
- mutations
is able to express selection and branching.
» Open questions
- Does the entropy method hold in the case with mutation?

- For the new model, how to characterize a more explicitly that generate positive
concentrations

- Whether similar results hold true for corresponding discrete models.

THANK YOU ALL
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