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Notation and topic of talk for particle system of N
particles

X = (xi )
N
i=1, X−j = (xi )

N
i=1,i 6=j , mN

X =
1

N

N∑
j=1

δ(x−xi ) ∈ P(R)

I Particle games with control d
dt xi = fi (X ) + ui , xi (0) = x̄i

I State xi of particle i will be in R ( but results are not limited
to this case)

I Each particle i shows its own control ui (hard case, compared
with a single control u for all particles)

ui = argmin Ji (X ,U) subject to particle dynamics

I Interest: N →∞ in the associated control problem

I Many contributions and applications: Lasry/Lions et al
(meanfield games), Piccoli/Fornasier (sparse controls),
H./Pareschi/Albi (MPC), Degond/Liu/Ringhofer (best-reply),
. . .



Setting of the problem i = 1, . . . ,N

(P)
d

ds
xi = fi (X ) + ui , ui = argmin ũ

∫ T

0

ν

2
ũ(s)2 + hi (X (s)))ds

I Particle system of N interacting particles each having its own
control

I Discussion restricted to quadratic cost in objective functional
and linear in dynamics (as in Lasry/Lions), integral costs

I Requires ν > 0 for well–posedness (ν >> 1 corresponds to
uncontrolled dynamics)

I (P) are N coupled optimal control problems to be solved
simultaneously

I Crucial assumption for meanfield limit: symmetry of fi and hi

in N − 1 variables for any N

(A) fi (X ) = f (xi ,X−i ), f (xi ,X−i ) = f (xi , (xσ(j))Nj=1,j 6=i )



MPC = Receding horizon control on short time horizon
L→ R



MPC = Receding horizon control on short time horizon
L→ R

(P)
d

ds
xi = fi (X ) + ui , ui = argmin ũ

∫ T

0

(ν
2

ũ2 + hi (X ))
)

ds

I Assume ui is piecewise constant on time intervals of length ∆t

I At time interval (t, t + ∆t) consider the discretized problem
as approximation to (P)

(MPC ) xi (t + ∆t) = xi (t) + ∆t (fi (X (t)) + ui ) ,

ui = argmin ũ∆t

(
∆tν

2
ũ2 + hi (X (t + ∆t))

)
I Up to O(∆t) we have ui = − 1

ν∂xi hi (X (t))

I Solution ui is independent of the choice of uj for j 6= i

I Scaling of the with ν necessary to have ui = O(1) in (IC)

I ui is suboptimal compared with (P)



Meanfield limit of controlled particle dynamics T → B

(MPC ) xi (t + ∆t) = xi (t) + ∆t (fi (X (t)) + ui ) ,

ui = argmin ũ∆t

(
∆t ν

2
ũ2 + hi (X (t + ∆t))

)
I Feedback formulation ui (t) = − 1

ν∂xi hi (X (t))) + O(∆t)

I Substituting to continuous dynamics
d
ds xi = f (xi ,X−i )− 1

ν∂xi h(xi ,X−i ) and to the kinetic equation
for m = m(t, x) as

∂tm + ∂x

((
f(x ,m)− 1

ν
∂xh(x ,m)

)
m

)
= 0.

I Toy example.

∂tm + ∂x

((∫
P(y , x)(y − x)− 1

ν
∂xφ(y , x)mdy

)
m

)
= 0.



Meanfield games and model predictive control (MPC)



Hamilton–Jacobi Bellmann (HJB) Equation T → B

(P)
d

ds
xi = fi (X ) + ui , ui = argmin ũ

∫ T

0

(ν
2

ũ2 + hi (X ))
)

ds

I Pontryagins maximum principle gives existence of co–states φij
for (i , j) = 1, . . . ,N such that the optimal control ui and
corresponding optimal trajectory X fulfills

− d

ds
φij −

N∑
k=1

φik(∂xj )fk(X ) = ∂xj hi (X ), φij(T ) = 0,

νui = −φii .
I Value function for particle i starting at time t with initial data

X (t) = Y is

Vi (t,Y ) =

∫ T

t

(ν
2

u2
i + hi (X ))

)
ds

I PMP are characteristics for (s,X )→ Vi (s,X )



Toy example and formal computation to highlight main
ideas (1/2)

(Dynamics)x ′i = ui , u∗i = argminu

∫ T

0

g(
1

N

∑
j

xj) +
u2

2
ds

(Nash)∇Li (ui ,X , (λ
i
j)j ; (u∗j )j) = 0 :

x ′i = ui , λ
i
i = ui , (λ

i
j)
′ = g ′(

1

N

∑
j

xj)
1

N
, λij(T ) = 0

(Value)Vi (τ,Y ) =

∫ T

τ

g(
1

N

∑
j

∫ t

τ

u∗j ds + yj) +
(u∗i )2

2
dt

(HJB)(Vi )yk = −λik , (Vi )yi = u∗i ,

(Vi )τ = − (Vi )
2
yi

2
− g(

1

N

∑
j

xj)−
∫ T

τ

(λij)
′dt
∑
k

λkk(τ)



Toy example and formal computation to highlight main
ideas (2/2)

(HJB)(Vi )τ = − (Vi )
2
yi

2
− g(

1

N

∑
j

xj)−
∑
k

(Vk)yk (Vi )yk , (Vk)yk = u∗k = x ′k

(Symm)W (t, ξ,X ) = Vi (t, x1, . . . , ξ, . . . , xn)

(HJB −W )Wt = −
W 2
ξ

2
− g(

1

N

∑
j

xj)−
∑
k

Wxk Wξ,

Wξ(t, xi ,X−i ) = u∗i =⇒ x ′i = Wξ(t, xi ,X−i ),

d

dt
W (t, xi (t),X−i (t)) = Wt + (Wξ)2 +

∑
k,k 6=i

Wxk x ′k = +
1

2
W 2
ξ − g(

1

N

∑
j

xj)

(Meanfield)w(t, x) = W (t, x , ρ(t)), ρ(t, ·) =
1

N

∑
j

δ(· − xi )

∂tρ(t) + ∂ξ(wx(t, x)ρ(t)) = 0, wt =
1

2
w 2
x − g(

∫
xρ(t)dx).



Hamilton–Jacobi Bellmann (HJB) Equation T → B

(P)
d

ds
xi = fi (X ) + ui , ui = argmin ũ

∫ T

0

(ν
2

ũ2 + hi (X ))
)

ds

I Pontryagins maximum principle gives existence of co–states φij
for (i , j) = 1, . . . ,N such that the optimal control ui and
corresponding optimal trajectory X fulfills

− d

ds
φij −

N∑
k=1

φik(∂xj )fk(X ) = ∂xj hi (X ), φij(T ) = 0,

νui = −φii .
I Value function for particle i starting at time t with initial data

X (t) = Y is

Vi (t,Y ) =

∫ T

t

(ν
2

u2
i + hi (X ))

)
ds

I PMP are characteristics for (s,X )→ Vi (s,X )



Hamilton–Jacobi Bellmann (HJB) Equation T → B

(PMP)
d

ds
xi = fi (X ) + ui , xi (t) = yi ,

− d

ds
φij −

N∑
k=1

φik(∂xj )fk(X ) = ∂xj hi (X ), φij(T ) = 0,

ν ui = −φii , Vi (t,Y ) =

∫ T

t

(ν
2

u2
i + hi (X ))

)
ds.

I Differentiation of Vi with respect to yk and with respect to t
using φij gives HJB at Y = X (t)

∂yk Vi (t,Y ) = φik(t), −ν
2

u2
i − hi (Y ) =

d

dt
Vi (t,Y ) = ∂tVi (t,Y ) +

N∑
k=1

∂xk Vi (t,Y ) (fk(Y ) + uk) .

I Substituting ui by φii = ∂yi Vi (t,Y ) leads to the HJB for N
particles



HJB Equation for value function Vi of particle i T → B

∂tVi +
N∑

k=1,k 6=i

(∂xk Vk)(fk(X )− 1

ν
∂xk Vk) + fi (X )∂xi Vi = −hi (X ) +

1

2ν
(∂xi Vi )

2

I Changed Y → X i.e. Vi = Vi (t,X )

I Backwards in time with terminal condition Vi (T ,X ) = 0

I Coupling of N particle dynamics

I Equation might not have a solution (if: Nash equilibrium)

I Retrieve optimal control by

ui (t) = −1

ν
φii (t) = −1

ν
∂xi Vi (t,X (t))

I Backwards implicit Euler discretization leads to

Vi (T −∆t,X ) = hi (X (t)) + O(∆t)



Structure of HJB Equations i = 1, . . . ,N T → B

∂tVi +
N∑

k=1,k 6=i

(∂xk Vk)(fk(X )− 1

ν
∂xk Vk) + fi (X )∂xi Vi = −hi (X ) +

1

2ν
(∂xi Vi )

2

I fi (X ) = f (X ) symmetric in all variables, hi (X ) = h(xi ,X−i )
are symmetric in X−i , let Z = (η, z1, . . . , zN−1) and
Zk = (zk , η, z1, . . . , zk−1, zk+1, . . . , zN−1)

I Assume W = W (t,Z) solves equation

∂tW (t,Z) +
N−1∑
k=1

∂zk W (t,Z)

(
f (Zk)− 1

ν
∂ηW (t,Z)

)
+f (Z)∂ηW (t,Z) = −h(Z) +

1

2ν
(∂ηW (t,Z))2

I Then, Vi (t,X ) = W (t, xi ,X−i ) is solution to ith HJB
equation

I Meanfield limit in the equation for N →∞ for W leading to
an equation for W(t, x ,m)



Meanfield limits for W (t,Z) T → B

∂tW (t,Z) +
N−1∑
k=1

∂zk W (t,Z)

(
f (Zk)− 1

ν
∂ηW (t,Z)

)
+ f (Z)∂ηW (t,Z) = −h(Z) +

1

2ν
(∂ηW (t,Z))2

Function W (t,Z) = W (t, η, z1, . . . , zN−1) is symmetric in
(z1, . . . , zN−1) and therefore we may expect a limit W(t, η,m)

W (t,Z) = WN(t, η,mN−1
Z−N

) ∼W(t, η,mN
Z ),

∂tW (t,Z) ∼ ∂tW(t, η,mN
Z ), ∂ηW (t,Z) ∼ ∂ηW(t, η,mN

Z ),



Meanfield limit for the sum
N−1∑
k=1

∂zkW (t,Z)f (Zk) T → B

I As before for a symmetric function g and

N∑
j=1

c(xj)g(X ) =
d

dt
g(. . . ,Ci (t), . . . ) =

d

dt
G(mN

X (t)) ∼< ∂mG(m), c > .

I Apply to f if symmetric in all arguments f (Zk) ∼ f(m) to
obtain

N−1∑
k=1

∂zk W (t,Z)f (Zk) =
d

dt
W(t, η,mN

Z )− ∂tW(t, η,mN
Z ),

∂t

(
mN

Z

)
+ ∂x

(
f N(mN

Z )mN
Z

)
= 0.

I Hence:
N−1∑
k=1

∂zk W (t,Z)(f (Zk)− 1
ν∂ηW (t,Z))

∼< ∂mW(t, η,m), f(m)− 1
ν∂ηW(t, η,m) > .



Summary of meanfield limit for HJB T → B

∂tW(t, η,m)+ < ∂mW(t, η,m), f(m)− 1

ν
W(t, η,m) >

+ f(m)∂ηW(t, η,m) = −h(η,m) +
1

2ν
(∂ηW(t, η,m))2

Change η to x and introduce w(t, x) = W(t, x ,m(t)) where
m(t)(·) is solution to conservation leads to

∂tw(t, x) + f(m)∂xw(t, x) = −h(x ,m) +
1

2ν
(∂xw(t, x))2

∂tm + ∂x

(
m

(
f(m)− 1

ν
∂xw(t, x)

))
= 0



MPC for meanfield equation L→ R

∂tw(t, x) + f(m)∂xw(t, x) = −h(x ,m) +
1

2ν
(∂xw(t, x))2

∂tm + ∂x

(
m

(
f(m)− 1

ν
w(t, x)

))
= 0

I Terminal time was arbitrary; set T = t + ∆t

I Terminal condition on w(T , x) = 0 and explicit backwards
Euler discretization leads to

w(T −∆t, x) = h(x ,m)

I Taylor expansion yields kinetic equation equivalent to the
MPC approach applied to particle system

∂tm + ∂x

(
m

(
f(m)− 1

ν
∂xh(x ,m)

))
= 0



Meanfield games, MPC and numerics



Efficient computation of controlled particle systems

(P)
d

ds
xi = fi (X ) + ui , ui = argmin ũ

∫ T

0

(ν
2

ũ2 + hi (X ))
)

ds

I Apply MPC approach at every time t with time horizon ∆t to
obtain closed formula for ui = − 1

ν∂xi hi (X )

I Straight–forward discretization xn
i = xi (tn) requires to

evaluate N collisions per time step (similar to explicit spatial
discretization of kinetic equation)

I Consider binary discretized interaction model where
f bin = f (X ) and N = 2

xn+1
i = xn

i + ∆t f bin(xn
j , x

n
i )− ∆t

ν
∂xi h

bin(xn
i , x

n
j ),

xn+1
j = xn

j + ∆t f bin(xn
i , x

n
j )− ∆t

ν
∂xj h

bin(xn
i , x

n
j ),



Remarks on controlled binary interaction dynamics

x∗i = xi + τ f bin(xj , xi )−
τ

ν
∂xi h

bin(xi , xj),

x∗j = xj + τ f bin(xi , xj)−
τ

ν
∂xj h

bin(xi , xj),

I Pre-collision states (xi , xj), post–collision states (x∗i , x
∗
j ) out

of i , j = 1, . . . ,N, interaction strength τ = ∆t

I Write kinetic equation for the single particle distribution with
γ interactions per ∆t

I Choose a scaling of the rate γ such that binary interaction
model yields up to O(τ2) the MPC meanfield kinetic equation

∂tm + ∂x

(
m

(
f(m)− 1

ν
∂xh(x ,m)

))
= 0

I Approach possible for alignment models as for example
opinion or wealth formation or Cucker–Smale model

I Numerical examples computed as presented



Sznadj’s model with hi (X ) = 1
2(xi − wd )2

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

w

wd =0

T =1

 

 

exact
k = ∞
k =1
k =0.5

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

w

wd =-0.25

wd =0.5

T =1

 

 

exact
k = ∞
k =1
k =0.5

−1 −0.5 0 0.5 1
0

2

4

6

8

10

12

14

16

18

20

w

wd =0

T =2

 

 

exact
k = ∞
k =1
k =0.5

−1 −0.5 0 0.5 1
0

5

10

15

20

25

w

wd =-0.25

wd =0.5

T =2

 

 

exact
k = ∞
k =1
k =0.5

Figure: Solution profiles at time T = 1 , first row, and T = 2, second
row, for uncontrolled, mildly controlled case, strong controlled case. On
the left: desired state is set to wd = 0, on the right wd = 0.5 for the
strongly controlled case, and wd = −0.25 for the mildly controlled case.



Cucker–Smale model with control on velocity
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Figure: Trajectory of the center of mass in the controlled and uncontrolled
case. Terminal particle distribution in the controlled case at time T = 10.



Meanfield games, MPC and Riccati



Optimality of the MPC approach

(P)
d

ds
xi = fi (X ) + ui , ui = argmin ũ

∫ T

0

(ν
2

ũ2 + hi (X ))
)

ds

I Corresponds to solve HJB equations on a moving horizon ∆t
I ui is optimal solution for the value function

V ∆t
i (t,Y ) =

∫ t+∆t
t

(
ν
2 u2

i + hi (X )
)

ds
(leads to approximation and cumulative errors)

I Simplified setting
fi (X ) linear, hi (X ) quadratic independent of i , single

control ui ≡ u
I Problem (P) has an explicit solution with

u = − 1
ν

N∑
j=1

(K (t)X )j where K (t) solves a backwards in time

Riccati equation
I Function 1

2 XTK (t)X = V (t,X ) fulfills HJB equation
(independent of i)



Riccati equation

(P)
d

ds
xi = fi (X ) + u, u = argmin ũ

∫ T

0

(ν
2

ũ2 + h(X ))
)

ds,

fi (X ) = (AX )i , h(X ) =
1

2
XTMX , u = −1

ν

N∑
j=1

(K X )j

I Riccati equation for K (t) ∈ RN×N with K (T ) = 0 given by

− d

dt
K (t) = KA + ATK − 1

ν
K 1 KT + M.

I Toy model and explicit Euler discretization leads to particular
structure of

K (t) = K(t)1

and K(t) ∈ R fulfills an ordinary differential equation

I Meanfield limit for N →∞ leads to kinetic equation coupled
to a single ODE for K



Explicit computation for toy model

(P)
d

ds
xi =

1

N

N∑
i=1

P(xj − xi ) + u, u = argmin ũ

∫ T

0

(
ν

2
ũ2 +

1

2
XTX )

)
ds,

Acting control for particle i with the binary interaction with
τ = ∆t

Riccati u = −τ
ν
K(t)xi , K(t) =

1√
ν

tanh(
T − t√

ν
)

MPC u = − τ 2

2(ν + τ 2)
(xi + xj)



MPC vs optimal (Riccati) control

Figure: Evolution of the mean
∫

xf (x , t)dx for in the Riccati control case
(left) and the MPC case (right). Plots are in log–scale and for different
penalization of the control ν. Left plot scales to 10−8, right to 10−0.55.



Meanfield games, MPC and Riccati



Performance bounds on the MPC
Is there a quantitative estimate on the performance of a general
MPC?

I Comparison in terms of the value function (optimal)

V ∗(τ, y) = argminu

∫ T

τ
h(X ) +

ν

2
u2ds

where x ′i (t) = f (X (t)) + u, t ∈ (τ,T ), xi (0) = yi .
I MPC controlled dynamics are

(xMPC
i )′(t) = f (XMPC (t)) + uMPC and future costs are

V MPC (τ, y) =

∫ T

τ
h(XMPC ) +

ν

2
(uMPC )2ds

I Finite dimensional result 1

V MPC (τ, y) ≤ αV ∗(τ, y)

for some 0 < α < 1 provided that V ∗ fulfills a growth
condition. α depends on the growth of the running cost h and
the MPC horizon M

1Grüne, 2009



MPC = Receding horizon control on short time horizon M



Performance bounds on the MPC (cont’d)
Is there a quantitative estimate on the performance of a general
MPC?

V MPC (τ, y) ≤ α(M, h)V ∗(τ, y)

I Result extends to the meanfield limit under same assumptions
(plus symmetry of running cost and dynamics)

I Observed numerically for an opinion formation model



Illustration of the effect of longer MPC horizon (N) on
opinion formation dynamics



Thank you for your attention.

Contact details. Michael Herty, herty@igpm.rwth-aachen.de


	 Established relations on meanfield games, model predictive control and Riccati equations 

