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Notation and topic of talk for particle system of N
particles

N
X = (Xi)ll'vzla Xj= (Xi),I'V:L,'?gj, Z x—x;) € P(R)

» Particle games with control th' = f{(X) + uj, x;(0) = X;

» State x; of particle / will be in R ( but results are not limited
to this case)

» Each particle i shows its own control u; (hard case, compared
with a single control u for all particles)

u; = argmin J;(X, U) subject to particle dynamics
» Interest: N — oo in the associated control problem
» Many contributions and applications: Lasry/Lions et al

(meanfield games), Piccoli/Fornasier (sparse controls),
H./Pareschi/Albi (MPC), Degond/Liu/Ringhofer (best-reply),



Setting of the problem i =1,..., N

-
(P) %x, — F(X) + u;, 0 = argmin ﬁ/o Y i(s)? + hi(X(s)))ds
» Particle system of N interacting particles each having its own
control
» Discussion restricted to quadratic cost in objective functional
and linear in dynamics (as in Lasry/Lions), integral costs
» Requires v > 0 for well-posedness (v >> 1 corresponds to
uncontrolled dynamics)
» (P) are N coupled optimal control problems to be solved
simultaneously

» Crucial assumption for meanfield limit: symmetry of f; and h;
in N — 1 variables for any N

(A) (X)) =F(xi, X2), Fxi, Xoi) = F(xi, (X)) fon i)



MPC = Receding horizon control on short time horizon
L—-R

past current time prediction horizon
]?"'N trdjeutmry : .. (Jp[llndl predlcted trd_]cu(lry xu (k)
//’ - _7’/4/ ’9— R T W |
v ; ; icurrent | ;
I 3 3 state 5"(”) feedback value ,u(x(ng) =
: past feedliack values




MPC = Receding horizon control on short time horizon

L—R

(P)

d . T L)
XN = fi(X) + uj, uj = argmin 5/0 <§u —i—h,(X))) ds

» Assume u; is piecewise constant on time intervals of length At

vV V. v Y

At time interval (t,t + At) consider the discretized problem
as approximation to (P)

(MPC)  xi(t + At) = x;(t) + At ((X(t)) + ui),

At
up = argmin ;At <2ya2 + hi(X(t+ At)))

Up to O(At) we have u; = — 29, hi(X(t))
Solution u; is independent of the choice of u; for j # i

Scaling of the with v necessary to have u; = O(1) in (IC)
u; is suboptimal compared with (P)



Meanfield limit of controlled particle dynamics 17— B

(MPC)  xi(t + At) = x;(t) + At ((X(t)) + ui),

ALV p(X(t+ At)))

uj = argmin ;At (

» Feedback formulation v;(t) = =10, h;j(X(t))) + O(At)

12
» Substituting to continuous dynamics

%x,- = f(x;, X_i) — %8Xl.h(x,-,X_,-) and to the kinetic equation

for m = m(t, x) as

dem + 0, ((f(x, m) — uh(x, m)> m> —0.

> Toy example.

dem + Oy ((/ Py, x)(y —x) — % x¢()/,x)mdy> m) =0.
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Hamilton—Jacobi Bellmann (HJB) Equation 78

d . T V.o
(P)  —oxi = fi(X)+ui, uj = argmin ﬁ/o (5“ +h'(X))) ds

» Pontryagins maximum principle gives existence of co—states qﬁj"-
for (i,j) =1,..., N such that the optimal control u; and
corresponding optimal trajectory X fulfills

d . N .
— 5% D 1(0)f(X) = D hi(X), $}(T) =0,
s

vuj = —(ﬁ;

» Value function for particle i starting at time t with initial data
X(t)=Yis

Vi(t,Y) = /tT (%u? + h;(X))) ds

» PMP are characteristics for (s, X) — Vi(s, X)



Toy example and formal computation to highlight main
ideas (1/2)

T 2
1 u
. A * H - . —
(Dynamics)x; = u;, uf = argmlnu/o g(N % x;) + > ds
X, (A)j (uf);) =0
1

(Nash)V L;(u;
(NZ %) 5 M(T) =0

x! = uj, ,—u,,()\)
Value)V, ' *df C
(Value) Vi(r, gNZ uids +y;) + Tt

J

(HJB)( )}’k: )‘;o( )y—u,,
(Vi

)2 1
D ad s [
J

(\/,)7_ = -



Toy example and formal computation to highlight main
ideas (2/2)

(i), - -2 (*fo =S (s (== 5

(Symm) (t§X) Vit xy, .oy &y ey Xn)

(HJBfW)Wtf——fg ij — > Wi W,
K
We(t,xi, X_i) = uf = x{ = We(t,x;, X_i),
S Wt x(e), Xi(1)) = Wet (W) + 2 WX, = +§W§ sl )
(Meanfield)w(t, x) = W(t,x, p(t t,-) NZ(S - X;)

Dep(t) + O (wi(t, x)p(t)) =0, wy = %Wf — g(/ xp(t)dx).



Hamilton—Jacobi Bellmann (HJB) Equation 78

d . T V.o
(P)  —oxi = fi(X)+ui, uj = argmin ﬁ/o (5“ +h'(X))) ds

» Pontryagins maximum principle gives existence of co—states qﬁj"-
for (i,j) =1,..., N such that the optimal control u; and
corresponding optimal trajectory X fulfills

d . N .
— 5% D 1(0)f(X) = D hi(X), $}(T) =0,
s

vuj = —(ﬁ;

» Value function for particle i starting at time t with initial data
X(t)=Yis

Vi(t,Y) = /tT (%u? + h;(X))) ds

» PMP are characteristics for (s, X) — Vi(s, X)



Hamilton—Jacobi Bellmann (HJB) Equation 78

(PMP) %X,’ = f;(X) + uj, X,'(t) ES

d . Mo .
=558 = 2 B(0)A(X) = Ohi(X), ¢(T) =0,
k=1

v oo

v = —dl, Vi(t,Y) = /tT <2u,- + h,-(X))) ds.

» Differentiation of V; with respect to y, and with respect to t
using (;SJ"- gives HJB at Y = X(t)

Voo

Dy Vilt, Y) = 6i(t), —5uf = hi(Y) =
d N
V(B Y)=0Vi(t.Y) + kz_:laxkv,-(t, V) (F(Y) + ug).

» Substituting u; by ¢! = d,,Vi(t, Y) leads to the HJB for N
particles



HJB Equation for value function V; of particle i 17— 8

N
1 1
0: Vi + k_;¢~(a)(k Vk)(fk(x) - ;an Vk) + f;(X)ax, V= —h,(X) + Z(ax,'\/i)2

» Changed Y — X ie. V; = Vi(t, X)

» Backwards in time with terminal condition V;(T,X) =0
» Coupling of N particle dynamics

» Equation might not have a solution (if: Nash equilibrium)

» Retrieve optimal control by

1 . 1
ui(t) = ——¢i(t) = — =0, Vi(t, X(t))
1% 14
» Backwards implicit Euler discretization leads to

V(T — At, X) = hi(X(t)) + O(At)



Structure of HJB Equations i =1,... . N T B

N
1 1

O:Vi+ Y (O VI)(F(X) = =0 Vi) + £i(X)0y Vi = —hi(X) + = (0, Vi)?
k=1,k#i v 2v

» £;(X) = f(X) symmetric in all variables, h;(X) = h(x;, X_;)
are symmetric in X_;, let Z = (n,z1,...,2zy—1) and

Zk = (2k,Ms 215+ -+ 3 Zk—15 Zk 15+ - - ZN—1)
» Assume W = W(t,Z) solves equation

N—1 1
OW(t,Z) + Y 0, W(t,Z) (f(Zk) — —o,W(t, Z)>
k=1

FA(Z), W(t,Z) = ~h(Z) + 5 (0, W(t,2))

» Then, Vi(t,X) = W(t, x;, X_;) is solution to ith HIB
equation

» Meanfield limit in the equation for N — oo for W leading to
an equation for W(t, x, m)



Meanfield limits for W(t,Z) T—B

N—-1

OW(t,Z) + Y 0, W(t,Z) <f(Zk) - %&IW(t, Z))

k=1
1
+F(2)0yW(t, Z) = —h(Z) + 5-(9, W(t,Z))?
Function W(t,Z) = W(t,n, z1,...,2zn—1) is symmetric in

(z1,...,2zn—1) and therefore we may expect a limit W(t,n, m)

W(t,Z) = Wn(t,n, my ") ~W(t,n,m}),
O:W(t,Z) ~ O:W(t,n,my), 0,W(t,Z) ~ 0, W(t,n, mY),



N-1
Meanfield limit for the sum > 0, W(t,Z)f(Zx) T—8
k=1

» As before for a symmetric function g and

c(5)g(X) = %g(. LG, ) = %G(mﬁ(t)) < OnG(m), ¢ > |

N
=1

J

» Apply to f if symmetric in all arguments f(Zy) ~ f(m) to
obtain

N-1
d
> 0 W(LD)F(Zi) = S W(t.1, m¥) — OW(t,n, mY),
k=1
O (mg) + O (fN(my)mgl) =0.

N-1

» Hence: D, W(t,Z)(f(Zi) — Lo,W(t,Z))
k=1

~< OmW(t,n, m),f(m) — 10, W(t,n, m) > .



Summary of meanfield limit for HJB T—B

DO (t, 1, m)+ < D W(E, 7, m). F(m) — Wt m) >
1
+ f(m)o,W(t,n, m) = —h(n,m) + Z(&,W(t7 n, m))?

Change 7 to x and introduce w(t,x) = W(t, x, m(t)) where
m(t)(-) is solution to conservation leads to

ew(t, x) + F(m)Daw(t, x) = —h(x, m) + %(wa(t, X))

Orm + Ox <m <f(m) — iBXW(t,x)>) =0



MPC for meanfield equation L—R

Orw(t, x) + f(m)Oxw(t, x) = —h(x, m) + %(&(w(t, x))?

d,m + 0, <m <f(m) - iw(t,x))) —0

» Terminal time was arbitrary; set T =t + At

» Terminal condition on w(T,x) = 0 and explicit backwards
Euler discretization leads to

w(T — At, x) = h(x, m)

» Taylor expansion yields kinetic equation equivalent to the
MPC approach applied to particle system

dem + 0. (m (f(m) 2 oh(x m)>) — 0
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Efficient computation of controlled particle systems

(P) iX-ff'(X)-i—u- uj = argmin /T (Zﬁz—i-h'(x))) ds
dS 1 — Iy I — g I 0 2 I

> Apply MPC approach at every time t with time horizon At to
obtain closed formula for u; = —10, h;j(X)

» Straight—forward discretization x/" = x;(t,) requires to
evaluate N collisions per time step (similar to explicit spatial
discretization of kinetic equation)

» Consider binary discretized interaction model where
fbin — £(X) and N =2

. At .
X=X+ At (X, X)) — =0 hP (X, X]),
v

J
n+l _ _n At fbin n n Ea hbin n n
X' =x"+ O, x) = — =0 hP (X7 X7,



Remarks on controlled binary interaction dynamics

X=X +T fbi”(><j,xi) — g@xihb"”(x,-,ij

. T i
=g ) — T, h ()

> Pre-collision states (x;, x;), post—collision states (x/, x) out
of i,j=1,..., N, interaction strength 7 = At

» Write kinetic equation for the single particle distribution with
~ interactions per At

» Choose a scaling of the rate «y such that binary interaction
model yields up to O(72) the MPC meanfield kinetic equation

Orm + O <m <f(m) - %@h(x, m))) =0

» Approach possible for alignment models as for example
opinion or wealth formation or Cucker—-Smale model

» Numerical examples computed as presented
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Figure: Solution profiles at time T =1, first row, and T = 2, second
row, for uncontrolled, mildly controlled case, strong controlled case. On
the left: desired state is set to wy = 0, on the right wy = 0.5 for the
strongly controlled case, and wy = —0.25 for the mildly controlled case.



Cucker-Smale model with control on velocity

ime=10010000

Figure: Trajectory of the center of mass in the controlled and uncontrolled
case. Terminal particle distribution in the controlled case at time T = 10.



Meanfield games, MPC and Riccati
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Optimality of the MPC approach

d . T,
(P) e fi(X) + uj, ui = argmin ﬂ/0 <§u + h;(X))) ds

» Corresponds to solve HJB equations on a moving horizon At
» u; is optimal solution for the value function
VAL, Y) = [F25 (302 + hi(X)) ds
(leads to approximation and cumulative errors)
» Simplified setting
fi(X) linear, h;(X) quadratic independent of i, single
control u; = u

» Problem (P) has an explicit solution with
N

u=-1% (K(t)X); where K(t) solves a backwards in time
j=1
Riccati equation
» Function %XTK(t)X = V/(t, X) fulfills HJB equation
(independent of 1)



Riccati equation

(P) 9 = f(X) +u, u= i T(5*2+h(X))) d
dsX' =f; u, u= argmin ; | 2u s,

N
(X) = (AX);, h(X) = 2XTMX, u =~ 3" (K X);

j=1

» Riccati equation for K(t) € RV*N with K(T) = 0 given by

d 1
——K(t)=KA+ATK - ZK1K" + M.
dt v
» Toy model and explicit Euler discretization leads to particular
structure of
K(t) = K(t)1
and K(t) € R fulfills an ordinary differential equation

» Meanfield limit for N — oo leads to kinetic equation coupled
to a single ODE for K



Explicit computation for toy model

N T
d _ 1 Z B . V.o T
(P) EX/ - N i=1 P(XJ XI) + u, u= argmln []/0 <2U + EX X)) ds’

Acting control for particle i with the binary interaction with
T=At

T—t
ﬁ

T 1
Riccati u = ——K(t)x;, — —tanh
iccati u VlC(t)x K(t) 7 anh(
2

’
MP = (x ;
Cu 2(1/+T2)(X’+XJ)

)



MPC vs optimal (Riccati) control
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Figure: Evolution of the mean [ xf(x, t)dx for in the Riccati control case
(left) and the MPC case (right). Plots are in log—scale and for different
penalization of the control v. Left plot scales to 1078, right to 1070-5.
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Performance bounds on the MPC

Is there a quantitative estimate on the performance of a general
MPC?
» Comparison in terms of the value function (optimal)

T
Vi(r,y) = argminu/ h(X) + %uzds
where x/(t) = f(X(t)) + u, t € (1, T),xi(0) = y;.
» MPC controlled dynamics are
(xMPCY (£) = F(XMPC(t)) + uMPC and future costs are

;
VMPC(T’y):/ h(XMPC)+%(uMPC)2dS

T

» Finite dimensional result 1

VMPC(1 y) < aV*(1,y)

for some 0 < @ < 1 provided that V* fulfills a growth
condition. « depends on the growth of the running cost h and

1ciine 2000



MPC = Receding horizon control on short time horizon M

past current time prediction horizon
]?"'N trdjeutmry : : ; L (Jp[llndl predlcted trd_]cu(lry xu (k)
//’ - : / ’9—,, R SEEET W |
v : : icurrent : NN
I 3 3 state 5"(”) feedback value ,u(x(ng) =
past feedliack v:aluesé




Performance bounds on the MPC (cont’d)

Is there a quantitative estimate on the performance of a general
MPC?

VMPC(r,y) < (M, h)V*(7,y)

» Result extends to the meanfield limit under same assumptions
(plus symmetry of running cost and dynamics)
» Observed numerically for an opinion formation model

=K

[

e
=

[en

.
.




lllustration of the effect of longer MPC horizon (N) on
opinion formation dynamics

(g) N=8 () N=9 i) N=10

Ficure 2 Fxnerimental results for the ontimization nroblem with



Thank you for your attention.

Contact details. Michael Herty, herty@igpm.rwth-aachen.de
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