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Introduction

We want to find u(xz,t) solution of

A;(w) o dW'(t) = 0 reRY, t>0

(u(,t =0) = uO(z)

A= (Aq,...,Ayx) € C?(R;RM), (Flux)

W =W, W) e o([0,00); RY),
two special cases being

w = (B!, ..., BY) (N-dimensional Brownian motion)

W) =(¢,...,1) (Standard SCL,



Introduction

Theorem (Pathwise entropy solutions) There is a unique 'kinetic
pathwise solution’
e fOr a given W

lua () = ur (0l 1y < [lud — wfll L1 gny.
o for two paths W; and «9 € BV(RY), then u; and u; satisfy
lua( )= w1 ()| L1 gay < lu3 — 3| 1wy

+OI(W1 — W) (B)| + Csupee(o.p) [(W1 — Wa)(s)



Motivation

One motivation :

For:=1,..., L, the system of stochastic interacting agents

1

L—1:7

dX{ = o(X}, 5i) 0 dWr,
i

Uncertainty in drivers behaviour

Randomness in an oil well extension
Variability in nephrons arrangements

Our problem is the formal |limit L — oo



Related works

Related works :

Stochastic perturbations

du + div(bu) + dB(t) oVu =0 (Stratonovich)
<
du + div(bu) + dB(t).Vu = Au (Ito)

Extensions to perturbations of Vlasov/Navier-Stokes style equations

du + divA(u) = F(u).dB(t)



Related works

Topological point of view

m
du = F(D?u; Du)dt + Y H;(Du) o dW;
1=1

m
du = F(D?u; Du)dt + Y ®;(u) o dW;
i=1
Principles :

e Pathwise
e Use characteristics for short times (iterate-Trotter)

e Rough paths.. X (1) = o(X ()W (1)



Outlines

1. Hyperbolic equations and shocks
Difficulties related to dW (¢)

How do we define a solution?

Can one prove existence, uniqueness ?

The x—dependant case

S S

Stochastic averaging lemmas



Hyperbolic equations and shocks

( N
0
1=
\ﬂ(at =0) = UO(w>

e Generates shocks (discontinuities) : low regularity

e Entropy inequality selects a type of solution (unique)

0
ox

for all S : R — R convex. Example (Kruzkov)

ni(w) <0

7

o N
as(u) +i;1

S(w)=lu—k|, keR,

e Non reversible in time'!



Hyperbolic equations and shocks

%ﬂ—l-Z%Ai(ﬂ = z€RY, t>0

e For A(-) convex (1 dimension)
e Decreasing discontinuities are propagated as shocks
e Increasing discontinuities are regularized

e We want to alternate A(-) convex and A(-) concave



Hyperbolic equations and shocks

A;(w) o dWi(t) =0 reRY, t>0

i (w) o dW'(t) <0, v S(-) convex.

0 N 9
—S(u
e Motivates the notation ‘o’ as in Stratonowich form

e Irreversible in time. We cannot write in 1 dimension,
u(zx,t) = u(z, W(t))

du(z, W(t)) = —88

T

Au(z, W(t))) o dW'(t)



Hyperbolic equations and shocks
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=
e Usual method : BV estimates (might be correct in x, not in t)
e Compensated compactness (Murat-Tartar)
e Kinetic formulation (Lions, BP, Tadmor)
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What do we want?

N
0 .
du+ 3 —A(w)odW'(t)=0 in RY x(0,00),
\ =1 0z
v=u® on RN x{0}.
W=l .. wh)c O([o,oo); RN), A= (Aq,..,Ay) € C2(R;RM),
a(u) = A = (A (w), ..., Aly(w)), (Velocity)
e Entropy dissipation : For § convex
( N 8
dS(w) + Y2 ~mi(u) 0 dW <0,

N\

i—=1 8%
L mi(w) = ai(u)S'(u) a; = Aj
(Stratonovich, no additional entropy dissipation)




What do we want?

e If we use Ito formula we loose the entropy ! We take expectations

%E(uQ) — E(ua(u)?(us)?)

No possible control of the RHS (shocks)

e For W continuous and u(t) € BV, we cannot obtain BV in time

du

. 0,
i W (t) au(x,t)

No control.
e \What does it mean to be a solution?



How do we define a solution?

AS in - we use the kinetic formulation
(4+1  if  0<¢<u(a,t),

0 otherwise.

\

S(ue.0) = [ S(©x(@,€ t)dg

( N '
dx + > ai(ﬁ)ix o dW"' = 2mdt in  (x,6,t) e RY xR x (0, 00),

| m(x,§,t) <0
Equivalent to the Entropy dissipation



How do we define a solution?

We can define solutions along the characteristics
X (t) = a(§)W, ¢ =0,

d

%
x(z = a@OW (). 6,t) = pe™ (@ — alOW(D),6,0)

These are globally defined (at variance with the case of H.-J. eq.)

e \We show regularization/unique limit usi,g only on this formulation.
e [ he uniqueness proof based on kinetic formulation

e Continuity with respect to W in ¢V



How do we define a solution?

Definition. We 'regularize along the characteristics. Consider
P° € DRYN) suchthat p®>0 and  fpvpO(x)dr =1,
p(y, @, &,t) = p2y — 2 + a(OW(1)),

solves formally the linear transport equation

dp+ N1 a;(€) L podWZZO in RY xR x (0,00),
and, hence

d(p(y,z, & t)x(x, &, 1)) + Z az(rS)

i=1 Lg

: 0
PX © dWZ — p(ya X, 57 t)(()_é.m(x7 57 t)dt

d

dt/ x(@, & Opy, @, &, d = —/ 9 oy, 2,6, )m(a, €, t)da

RN H¢



Can one prove existence, uniqueness ?

Theorem (Pathwise entropy solutions) There is a unique 'kinetic
pathwise solution’
e fOr a given W

luz(,t) —ur ()l pr gy < llul = ullp1 gy

e for two paths W; and «9 € BV(RY), then u; and uy satisfy

luoC )~ urCBlpigyy < lug = ufll 1,

(W1 — W) (O] lall (a9 vy + [uS] gy (ivy)

1/2
+ (suPac (o [(W1 = W) ()] 1016112 vy + 168132y )

Conclude...



Space dependent case

A;(z,u)odW (@) =0 in RY x(0,00),

i=1 8£Cz
v=u? on RN x{0}.

One W (t) only!

Kinetic formulation

dx + Z; — b(x, 5)_€X odW(t) = %mdt

0 0



Space dependent case

We test against smooth ‘generalized convolution kernels’

dp+z

And these are glven by
p(z, &, t) = p(x, &, W(t)),

— b(z, f)—gp o dW (¢) = 0.

with

p—I—Z p— b(z, f)—gp—o

Definition A stochastlc kmetlc solution is defined by

d 0



Space dependent case

Theorem There is a uniqgue stochastic kinetic solution and for a
given W

||u2('7t) — ul('at)”Ll(RN) < ||u8 - u(]?”Ll(RN)-

e EXistence is through weak limits
e Continuous dependency on W (t) is not proved

e Extension to multiple W*(t) by B. Guess. Characteristics

dX,;, = a;(z, £)dW' (1), d=(t) = —b(z, £)dW (¢)



Stochastic averaging lemmas

It is difficult to resist the idea to consider simply
Gif (@6, 8) + B() 0 £.Vaf = g(2,6,8) in R x (0,00),
f(0)=f9 on R2V,

The notation for the flux means

of
81137; .

N
B(t)o& Vaf = B(t) ) _ &
i=1
And the Stratonovich solution



Stochastic averaging lemmas

%f(%f,t)+B(t)O§fo=g(:U,§,t) in RQN X (0700)7
f(0)=f9 on R2V

Kinetic averaging lemma aim to prove regularity for

pula,t) = [ () (2. & t)ds

with 7 a smooth function with compact support.



Stochastic averaging lemmas

%f(%f,t) +EVLf =g(x,6t) in  R2N x (0,0),
f(0)=f9 on R2V,
Theorems (Deterministic averaging). Take B(t) =t.

Forg=0and A >0
—\t

2 o)
||6 p¢|| (R_I_ H1/2( N)) C(lb) ||f ”LQ(RNXRN)

For fO=0
pr”LQ(R"' Hl/Q(RN)) ||g||L2(]R+><RN><RN) I fHLQ(R—l—XRNxRN)

For fO =0 and g = div¢ h, we have

1/2 3/2

HhHLQ(R‘I'XRNXRN) ||f||L2(R+><]RNXRN)

||/%||L2 (R-l- H1/4(]RN))



Stochastic averaging lemmas

Long story behind that : F. Golse, BP, R. Sentis (CRAS 1985),
P.-L. Lions, Meyer, Gérard, Souganidis... Tadmor and Tao

The proof is based is inspired by the version in . Bouchut and L.
Desvillettes (no Fourier in time)



Stochastic averaging lemmas

Theorem (Comparison deterministic/stochastic).
1. For g=0 and A > 0 we have

le™*pyll )= CW) 12122 ey

Q(R—l—;Hl/Q(RN)

_ C'(supp )
At 2 02



Stochastic averaging lemmas

Theorem (Comparison deterministic/stochastic).
2. For fO = 0 we have

2
prnLQ(R"‘;Hl/Q(RN)) < CHQHLQ(R-I—XRNXRN)||f||L2(R+XRNXRN)-

2 1/2 3/2
EprHLQ(R‘l';Hl/Q(RN)) < CHg”LQ(R"‘XRNXRN)HfHLQ(R"‘XRNXRN)‘



Stochastic averaging lemmas

Theorem (Comparison deterministic/stochastic).

3. For f9 =0 and g = div¢h, we have

2 1/2 3/2
||p¢||L2(R+;H1/4(RN>) < CHhHLQ(R"‘XRNXRN)||f||L2(R+XRNXRN)'

2 2/3 4/3
Epr”LQ(R‘I';Hl/?’(RN)) < C||hl|L2(R+XRNXRN)||f||L2(R+><RN><]RN)'



Stochastic averaging lemmas

Idea of the proof.

0 - : .
ST 6 +iB(1) o k& =3

O Fn &0 +iBW o kEf +Af =g +AF

Fk,&,t) = fO(k, e MBS

+ /Ot e [g+ ATI(k, €t s)}eik'f(B(t_s)_B“))ds



Stochastic averaging lemmas

puk R <2| wﬁw,f)e—/\t—w“)’“fd&f

| 2
w2 [ [ e[ 4 PGk .t — e IO el

For g =20

<E [ [0f0h.&1) S0k, go)em M TIBOE G2 dgsde ar



Conclusion

In the non-degenerate case : £ — a(€) not locally contained in an
hyperplane

we know regularizing effects based on the kinetic formulation.

For random conservation laws, they are certainly very different
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