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1. Small Mach number

joint work with F. Cordier & A. Kumbaro (CEA)
J. Comput. Phys. 231 (2012), 5685-5704
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Framework 4

Problems with coexistence of small & finite Mach numbers
e.g. jets, nozzles, phase changes

When Mach number ¢ — 0
compressible — incompressible

c.f. Klainerman & Majda

Framework: design method for compressible flows
that can handle this limit: all-speed scheme

using Asymptotic-Preserving (AP) methodology
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Goal

Scheme for compressible Euler

converges to incompressible Euler as ¢ — 0
full Euler/NS, general EOS

conservative, 2nd order (MUSCL)

CFL independent of ¢

Previous work on isentropic Euler

1st order: D. Tang, CiCP 11 ; 2nd order Tang, KRM 12
related work: D., Jin, Liu, 07 ; Haack, Jin, Liu, CiCP 12

Other methods

Analysis: Guillard, Dellacherie, . ..

Preconditioning: Chorin; Turkel; van Leer; Roe, ...
Implicit treatment: Nerrynck; Larrouturou; Klein; . ..
Hodge decomposition of u: Collela; D., Jin, Liu ...
Pressure correction: Patankar; Munz; Fedkiw; Wesseling;
Zienkiewicz . ..

ICE (Implicit Continuous Eulerian): Harlow & Amsden, 76 ...
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Scheme 6

Full Euler eq. (scaled form)
Op+V-pu=20
Opu+V-(puu)+e 2 Vp=0
OpE +V - (pHu) =0
E=e+e%u?/2, H=h+*ul*/2, h=c+p/p
p=p(p,h)

Time semi-discrete scheme
A" = p") + V- (pu)" =0
AL (o)™ = (pu)") + V- ((pu)" @ u" + ap™ld) + (=% — a)Vp" ! =0
At ((pE)" = (pE)") + V- H"(pu)" ™ =0

(pE)" ! = (pe)™ Tt +2p"|u"? /2, (pH)" T = (ph)" Tt 4+ &2p"[u"|? /2

1 1 1 1 1 1 1
hn—l— — en—i— _l_pn—I— /pn—i— : n-+ n—+ 7hn—i— )

p" T = p(p
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Elliptic eq. for the pressure 7

Eliminate (pu)™*! in energy eq. using momentum eq.
(pE)"™ = At (e™* = )V - (H"VD") = 6(p", (pu)", (pE)")
For perfect gas EOS, e =p/(v — 1)
Ertl = (y = 1)7ip"H + e%p 22
p" = AR (y=1)(e 2 =) V- (H"Vp"H) = 6(p", (pu)", (pE)")

p" 1 precalculated by mass conservation eq.

For general EQS p = p(p, h)
En—l—l — (ph>n—|—1 _pn—i—l 4 82pn|un|2/2

(ph)" 1 = p" ! — AR — )V - (H'Vp™H) = d(p", (pu)", (pE)")
p(pn—i—l, hn—|—1) — pn—i—l

System solved for (p"*™1, h"*1) by Newton's method

Pierre Degond - AP schemes for complex fluids - Madison, Kl-net workshop, May 2015



Properties 8

Spatial discretization
Implicit terms — centered
Explicit terms — Rusanov (local Lax-Friedrichs)

2nd order by MUSCL + RK2CN in time

AP property
When ¢ — 0, scheme consistent with

Otp+ V- (pu) =0
p = Cst under suitable boundary conditions
Ot(pe) +V - (phu) =0
h=e—p/p, p=pph)
Ot(pu) + V- (pu®u)+ Ve =0
V-u=0
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Backwards facing step

(c) Roe scheme
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Lid-driven cavity 10

(g) AP scheme (h) Low Mach (i) Roe scheme
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Heat-driven cavity

11

(j)) AP scheme

(k) Low Mach
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2. Jamming

with L. Navoret (Strasbourg) & Jiale Hua (Donghua U. Shanghai)
J. Comput. Phys. 230 (2011) 8057-8088 & 237 (2013) 299-319
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Isentropic compressible Euler 13

Scaled Euler system

6%/)—% ‘7(ﬁHL) =0
0y (pu) + V(pu @ u) + V(po(p) +ep1(p)) =0

po(p) ~ p7° background pressure A (o)
p1(p) ~ (p”*—p_*p)71 singular pressure
p1 maintains the bound p < p*

p°(p) = po(p) + ep1(p)

p®(p) =
ro(p) + ep1(p)

ep1(p)

po (p)

Literature
1D case: Bouchut et al, J. Nonlinear Sci 00; Berthelin, M3AS 02
Further studies: Labbe Maitre, MAA 13, Perrin Zatorska, CPDE 15
Traffic: Berthelin etal, ARMA 08, M3AS 08, K3M 12; D. Delitala, KRM 08
Hele Shaw: Perthame et al, ARMA 14, Interf. free bdry 14, M3AS 14
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Formal limit € — 0 14

Free boundary problem:
between compressible and incompressible region

If p < p*: compressible Euler
Ot(pu) + V(pu @ u) + Vpo(p) = 0

Note: if pg = 0: pressureless gas dynamics

If p = p*: incompressible Euler

V-u=20

p*(Oru+ (u-V)u) +Vp=0
Problem:

What relations at interface between the 2 regions ?
Soved in [D Navoret Hua] if interface smooth
If not (e.g. if topology changes): open problem
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Solving the e-dependent problem 15
Example of topology change

droplet collision @O — \

result possibly depends on pq

Solution: solve the e-dependent problem —
but for small € and p = p*: flow is nearly incompressible /oo

I.e. low Mach: requires use of AP scheme

Strategy: adapt previously developed AP scheme
note: difficulty if pg = O (infinite Mach limit)

c.f. numerical results for droplet collision
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Self-Organized Hydrodynamics (SOH) 16

Hydrodynamic model for self-propelled particles:
constant velocity
interact through alignment
subject to noise

Op+ V(pu) =0
p(Oru + c(u- V)u) + P,.Vp®(p) =0

uf =1

P,. = projection on plane {u}+. Maintains |u| = 1
Hyperbolic but non conservative (because term P, Vp©(p))
Non galilean-invariant ¢ # 1

Literature
Based on particle model proposed by Vicsek et al, PRL95
Derivation of SOH by D Motsch, M3AS 08
Related to (but # from) Toner & Tu, PRL 95
Study of SOH model: J.G. Liu, Frouvelle, T. Yang, H. Yu, ...
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e — 0in SOH 17

If p < p*: standard (i.e. compressible) SOH
Otp+ Vipu) =0
p(Op + (u- V)u) + Py Vpo(p) =0
ul =1
if po = 0: pressureless gas dynamics with ¢ # 1
If p = p*: incompressible SOH
V.-u=0
p*(Oru+ c(u-Vu) + P, Vp =0
jul =1

fields s.t. |u| =1 and V - u = 0 are singular

R K
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The e-dependent SOH problem 18

Difficulty with interface dynamics
even if interface is smooth, motion of interface unknown
SOH non-conservative system = shock speed unknown
Interface treatment ~ shock [D Navoret et al, JSP 10]
Resolution of e-dependent problem even more necessary

Difficulty with resolution of s-dependent problem

non-conservativity of the model due to |u| = 1 constraint
Strategy: use relaxation model [Motsch Navoret, MMS 11] i.e. solve

Or(pv) + V- (pr®@v) + VP (p) = B (1 = [uf)pv, B<1
without constraint on v

Time splitting: over each timestep At:

First solve conservative model for (p,v) without rhs: 571 =0
Then normalize the velocity: u = v/|v|
During conservative step, use AP-method to handle ¢ < 1
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Approximation to crowd modeling

19
Two-fluid model
Two groups of pedestrians (denoted + or —)
moving against each-other
Each pedestrian has preferred velocity w4
Actual velocity uy relaxes to w4 with rate (8
Congestion treated by singular pressure p©(p) with p = p3 + p_
t =0.00000 1 =0.07500 « 10'
Orp+ +V - (prus) =0 1 ¥ U '
Op(prus) + V- (prusr ®uy) + VP (p) o w03 mar L
—1 | »
=07 pr(wxr —ug)
e v [ T — .
O(prws) + V- (prwr @ug) =0 I
1 R — e
Evolution of a random patch of pedestrians - o5 [REEEE 0
top: excess flow. bottom: excess density e ¥ ai e
left: £ = 0. right: ¢t >0
: o g oy
0 et 0. 0 0.5 1
0 0.5 1 X
i
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3. Multiphase flows

joint work with F. Cordier & A. Kumbaro (CEA)
J. Sci. Comput. 58 (2014) 115-148
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Two-phase flows 21

Problem when a phase appears / disappears

passage between 1-fluid to 2-fluid and vice-versa
applications for safety in nuclear power plants: water / vapor
important in many other applications, e.g. meteorology (clouds)

Model: isentropic 2-phase model with pressure equilibrium

# Baer-Nunziato model (pressures are not in equilibrium)
case of vapor disappearance. a, = €y, O, = C’)(l)

(Qwpy) + Oz (Qppytiy) =0
O (agpe) + Or(cpprug) = 0

(G pothy ) + Op Ay poti?) + GyOpp + € Qppp u2 8 Opdiy = 0
O (cpporig) + Op(Copeuis) + pOyp + € Gpapp u? § Opory = 0
po = pu(D), pe=pe(p), €ay+ay=1
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When the vapor disappears . .. 22

Limit e — 0 Ot Ay py) + Op(Qpputy) = 0
Otpe + O (peue) = 0
Ot (Gty Pty ) + O (Gry pptt) + GtyOpp = 0
Oy (peg) + Oy (peus) + Opp = 0
po=pu(p);  pe = pe(p)

Vapor and liquid decouple

standard isentropic Euler for (pg, ug) with p s.t. ps = pe(p)
pressureless gas dynamics for (., py, Gy Py, ) With r.h.s.

Pressureless gas dynamics not hyperbolic

double eigenvalue u, with non-diagonalizable jacobian

as ¢ — 0, model loses hyperbolicity (2 eigenvalues collapse)
the matrix of eigenvectors becomes singular

any method (eg Roe) based on eigenvector matrix collapses
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Do not use the eigenvectors | 23

General non-conservative system

0,V + A(V)8,V =0

Generalized Roe Scheme [Toumi & Kumbaro, JCP 96]

AtV VY AT (o7 (VL VL) + T (ViR V) =0

0T (Vi, Vigr) = A (Vig1s2) (Vigr = Vi), Vig1jo = (Vi + Vig1)/2
AT = (A+|Al|)/2

Formula for |A|:
If A= Rdiag(A\i,...,An)R™! then |A| = Rdiag(|\i],...,|[An]) R™1

But R becomes singular as ¢ — 0 !
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Alternate formula for |A] 24

Functional calculus
Let &: [ — R continuous. I O Sp(A) ={\1,...,An}
Then ®(A) = Rdiag(®(M\1),...,2(A\n)) R}
®(A) only depends on the values (®(\))i_, of ® on Sp(A)

Other expression of ®(A) involving a polynomial
P(\) = Zé\f:o a,\P polynomial interpolating (g, ®(\x))i_;
Then ®(A) = P(A) =37 a, AP
P(A) can be evaluated without calling for R

P(A) is well-defined even when A is non-diagonalizable
If A°* — Aase— 0, then ®(A%) = P(A®) — P(A)

Approximate polynomial
If P — ® as § — 0, pointwise on Sp(A) then P°(A) — ®(A)
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Polynomial schemes

25

T

Application to the computation of the Roe matrix |A|
[D, Peyrard, Russo, Villedieu, CRAS 99]

Stability request (under CFL)

Polynomial schemes PO, P1 and P2

[ A

Too much diffusion

Pierre Degond - AP schemes for complex fluids - Madison,
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i Diffusion

| A
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Approximation by a high degree polynomial 26

Polynomial independent of A
Even polynomial, high degree
approximation of A — ||

but construction ill-conditionned

Polynomial dependent on A
Use specificity of A in 2-phase model
Eigenvalues organized in 2 groups

One group is O(sound speed)

One group is O(107%) smaller 7 x=oao )

Construction:

High order approx. of large A
2nd order approx of one of the small A
Allow large oscillations in between

Possibility to tune the diffusion
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Hyperbolic tangent approximation

Use following approximation of A — ||
®(N\) =74 (1 —7) Atanh(A/7) cotanh(1/7)
To compute tanh(s), use differential eq.
4 (tanh(as)) = a(l — tanh?(as)

Matrix formula for B(s) = tanh(sA)
48 — A(ld — B(s)?), B(0) =0

Solve this differential eq. by implicit Euler
Bt = B* + h A(ld — (B*1)?)

Method works but too costly
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Numerical results: Tee junction
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4. Conclusion
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Conclusion 30

Construction of AP schemes

for full Euler or NS in the small Mach number regime
Semi-implicit treatment

Reduces to solving an elliptic equation for the pressure
Proved AP Property

Applications to jamming phase transition
Compressible to incompressible
For standard isentropic fluids
For Self-Organized Hydrodynamics (adding |u| = 1 constraint)

For multi-phase flows

Method that sustains phase appearance / disappearance
Based on polynomial schemes

Does not require the eigenvector matrix

Proved robust in very stiff cases
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