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1. Small Mach-number

2. Jamming

3. Multiphase flows
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1. Small Mach number

joint work with F. Cordier & A. Kumbaro (CEA)

J. Comput. Phys. 231 (2012), 5685-5704
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4Framework

Problems with coexistence of small & finite Mach numbers
e.g. jets, nozzles, phase changes

When Mach number ε → 0
compressible → incompressible

c.f. Klainerman & Majda

Framework: design method for compressible flows
that can handle this limit: all-speed scheme

using Asymptotic-Preserving (AP) methodology

P ε,h h→0
−−−−→ P ε





y
ε→0





y
ε→0

P 0,h h→0
−−−−→ P 0
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5Goal

Scheme for compressible Euler
converges to incompressible Euler as ε → 0

full Euler/NS, general EOS

conservative, 2nd order (MUSCL)

CFL independent of ε

Previous work on isentropic Euler
1st order: D. Tang, CiCP 11 ; 2nd order Tang, KRM 12

related work: D., Jin, Liu, 07 ; Haack, Jin, Liu, CiCP 12

Other methods
Analysis: Guillard, Dellacherie, . . .

Preconditioning: Chorin; Turkel; van Leer; Roe, . . .

Implicit treatment: Nerrynck; Larrouturou; Klein; . . .

Hodge decomposition of u: Collela; D., Jin, Liu . . .

Pressure correction: Patankar; Munz; Fedkiw; Wesseling;

Zienkiewicz . . .

ICE (Implicit Continuous Eulerian): Harlow & Amsden, 76 . . .
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6Scheme

Full Euler eq. (scaled form)

∂tρ + ∇ · ρu = 0

∂tρu + ∇ · (ρu ⊗ u) + ε−2∇p = 0

∂tρE + ∇ · (ρHu) = 0

E = e + ε2|u|2/2, H = h + ε2|u|2/2, h = e + p/ρ

ρ = ρ(p, h)

Time semi-discrete scheme

∆t−1(ρn+1 − ρn) + ∇ · (ρu)n = 0

∆t−1((ρu)n+1 − (ρu)n) + ∇ · ((ρu)n ⊗ u
n + αpnId) + (ε−2 − α)∇pn+1 = 0

∆t−1((ρE)n+1 − (ρE)n) + ∇ · Hn(ρu)n+1 = 0

(ρE)n+1 = (ρe)n+1 + ε2ρn|un|2/2, (ρH)n+1 = (ρh)n+1 + ε2ρn|un|2/2

hn+1 = en+1 + pn+1/ρn+1, ρn+1 = ρ(pn+1, hn+1)
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7Elliptic eq. for the pressure

Eliminate (ρu)n+1 in energy eq. using momentum eq.

(ρE)n+1 − ∆t2(ε−2 − α)∇ ·
(

Hn∇pn+1
)

= φ
(

ρn, (ρu)n, (ρE)n
)

For perfect gas EOS, e = p/(γ − 1)

En+1 = (γ − 1)−1pn+1 + ε2ρn|un|2/2

pn+1−∆t2(γ−1)(ε−2−α)∇·
(

Hn∇pn+1
)

= φ̃
(

ρn, (ρu)n, (ρE)n
)

ρn+1 precalculated by mass conservation eq.

For general EOS ρ = ρ(p, h)

En+1 = (ρh)n+1 − pn+1 + ε2ρn|un|2/2






(ρh)n+1 − pn+1 − ∆t2(ε−2 − α)∇ ·
(

Hn∇pn+1
)

= φ̂
(

ρn, (ρu)n, (ρE)n
)

ρ(pn+1, hn+1) = ρn+1

System solved for (pn+1, hn+1) by Newton’s method
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8Properties

Spatial discretization
Implicit terms → centered

Explicit terms → Rusanov (local Lax-Friedrichs)

2nd order by MUSCL + RK2CN in time

AP property

When ε → 0, scheme consistent with

∂tρ + ∇ · (ρu) = 0

p = Cst under suitable boundary conditions

∂t(ρe) + ∇ · (ρhu) = 0

h = e − p/ρ, ρ = ρ(p, h)

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇π = 0

∇ · u = 0
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9Backwards facing step

(a) Second-order Asymptotic Preserving scheme

(b) Low Mach Roe scheme

(c) Roe scheme
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10Lid-driven cavity

(d) AP scheme (e) Low Mach (f) Roe scheme

(g) AP scheme (h) Low Mach (i) Roe scheme
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11Heat-driven cavity

(j) AP scheme (k) Low Mach (l) Roe scheme
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2. Jamming

with L. Navoret (Strasbourg) & Jiale Hua (Donghua U. Shanghai)

J. Comput. Phys. 230 (2011) 8057-8088 & 237 (2013) 299-319
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13Isentropic compressible Euler

Scaled Euler system

∂tρ + ∇(ρu) = 0

∂t(ρu) + ∇(ρu ⊗ u) + ∇
(

p0(ρ) + εp1(ρ)
)

= 0

p0(ρ) ∼ ργ0 background pressure

p1(ρ) ∼
(

ρρ∗

ρ∗−ρ

)γ1 singular pressure

p1 maintains the bound ρ ≤ ρ∗

pε(ρ) = p0(ρ) + εp1(ρ)

Literature
1D case: Bouchut et al, J. Nonlinear Sci 00; Berthelin, M3AS 02

Further studies: Labbe Maitre, MAA 13, Perrin Zatorska, CPDE 15

Traffic: Berthelin etal, ARMA 08, M3AS 08, K3M 12; D. Delitala, KRM 08

Hele Shaw: Perthame et al, ARMA 14, Interf. free bdry 14, M3AS 14

ρ∗

p(ρ)

p0(ρ) + εp1(ρ)
pε(ρ) =

p0(ρ)

εp1(ρ)

ρ
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14Formal limit ε → 0

Free boundary problem:
between compressible and incompressible region

If ρ < ρ∗: compressible Euler

∂tρ + ∇(ρu) = 0

∂t(ρu) + ∇(ρu ⊗ u) + ∇p0(ρ) = 0

Note: if p0 = 0: pressureless gas dynamics

If ρ = ρ∗: incompressible Euler

∇ · u = 0

ρ∗
(

∂tu + (u · ∇)u
)

+ ∇p̄ = 0

Problem:
What relations at interface between the 2 regions ?
Soved in [D Navoret Hua] if interface smooth
If not (e.g. if topology changes): open problem
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15Solving the ε-dependent problem

Example of topology change
droplet collision

result possibly depends on p1

Solution: solve the ε-dependent problem
but for small ε and ρ ≈ ρ∗: flow is nearly incompressible

i.e. low Mach: requires use of AP scheme

Strategy: adapt previously developed AP scheme
note: difficulty if p0 = 0 (infinite Mach limit)

c.f. numerical results for droplet collision

?
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16Self-Organized Hydrodynamics (SOH)

Hydrodynamic model for self-propelled particles:
constant velocity
interact through alignment
subject to noise

∂tρ + ∇(ρu) = 0

ρ
(

∂tu + c(u · ∇)u
)

+ Pu⊥∇pε(ρ) = 0

|u| = 1

Pu⊥ = projection on plane {u}⊥. Maintains |u| = 1
Hyperbolic but non conservative (because term Pu⊥∇pε(ρ))
Non galilean-invariant c 6= 1

Literature
Based on particle model proposed by Vicsek et al, PRL95

Derivation of SOH by D Motsch, M3AS 08

Related to (but 6= from) Toner & Tu, PRL 95

Study of SOH model: J.G. Liu, Frouvelle, T. Yang, H. Yu, . . .
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17ε → 0 in SOH

If ρ < ρ∗: standard (i.e. compressible) SOH

∂tρ + ∇(ρu) = 0

ρ
(

∂tρ + (u · ∇)u
)

+ Pu⊥∇p0(ρ) = 0

|u| = 1

if p0 = 0: pressureless gas dynamics with c 6= 1

If ρ = ρ∗: incompressible SOH

∇ · u = 0

ρ∗
(

∂tu + c(u · ∇)u
)

+ Pu⊥∇p̄ = 0

|u| = 1

fields s.t. |u| = 1 and ∇ · u = 0 are singular

u(x, t) u(x, t)
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18The ε-dependent SOH problem

Difficulty with interface dynamics
even if interface is smooth, motion of interface unknown

SOH non-conservative system ⇒ shock speed unknown

Interface treatment ≈ shock [D Navoret et al, JSP 10]

Resolution of ε-dependent problem even more necessary

Difficulty with resolution of ε-dependent problem
non-conservativity of the model due to |u| = 1 constraint
Strategy: use relaxation model [Motsch Navoret, MMS 11] i.e. solve

∂t(ρv) + c∇ · (ρv ⊗ v) + ∇pε(ρ) = β−1(1 − |v|2)ρv, β ≪ 1

without constraint on v

Time splitting: over each timestep ∆t:

First solve conservative model for (ρ, v) without rhs: β−1 = 0

Then normalize the velocity: u = v/|v|

During conservative step, use AP-method to handle ε ≪ 1
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19Approximation to crowd modeling

Two-fluid model
Two groups of pedestrians (denoted + or −)

moving against each-other

Each pedestrian has preferred velocity w±

Actual velocity u± relaxes to w± with rate β

Congestion treated by singular pressure pε(ρ) with ρ = ρ+ + ρ−

∂tρ± + ∇ · (ρ±u±) = 0

∂t(ρ±u±) + ∇ · (ρ±u± ⊗ u±) + ∇pε(ρ)

= β−1ρ±(w± − u±)

∂t(ρ±w±) + ∇ · (ρ±w± ⊗ u±) = 0

Evolution of a random patch of pedestrians
top: excess flow. bottom: excess density
left: t = 0. right: t > 0
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3. Multiphase flows

joint work with F. Cordier & A. Kumbaro (CEA)

J. Sci. Comput. 58 (2014) 115-148
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21Two-phase flows

Problem when a phase appears / disappears
passage between 1-fluid to 2-fluid and vice-versa
applications for safety in nuclear power plants: water / vapor
important in many other applications, e.g. meteorology (clouds)

Model: isentropic 2-phase model with pressure equilibrium
6= Baer-Nunziato model (pressures are not in equilibrium)
case of vapor disappearance. αv = εᾱv, ᾱv = O(1)

∂t(ᾱvρv) + ∂x(ᾱvρvuv) = 0

∂t(αℓρℓ) + ∂x(αℓρℓuℓ) = 0

∂t(ᾱvρvuv) + ∂x(ᾱvρvu2
v) + ᾱv∂xp + ε ᾱvαℓρ̃ u2

r δ ∂xᾱv = 0

∂t(αℓρℓuℓ) + ∂x(αℓρℓu
2
ℓ) + αℓ∂xp + ε ᾱvαℓρ̃ u2

r δ ∂xαℓ = 0

ρv = ρv(p), ρℓ = ρℓ(p), εᾱv + αℓ = 1
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22When the vapor disappears . . .

Limit ε → 0 ∂t(ᾱvρv) + ∂x(ᾱvρvuv) = 0

∂tρℓ + ∂x(ρℓuℓ) = 0

∂t(ᾱvρvuv) + ∂x(ᾱvρvu2
v) + ᾱv∂xp = 0

∂t(ρℓuℓ) + ∂x(ρℓu
2
ℓ) + ∂xp = 0

ρv = ρv(p), ρℓ = ρℓ(p)

Vapor and liquid decouple
standard isentropic Euler for (ρℓ, uℓ) with p s.t. ρℓ = ρℓ(p)
pressureless gas dynamics for (ᾱvρv, ᾱvρvuv) with r.h.s.

Pressureless gas dynamics not hyperbolic
double eigenvalue uv with non-diagonalizable jacobian
as ε → 0, model loses hyperbolicity (2 eigenvalues collapse)
the matrix of eigenvectors becomes singular
any method (eg Roe) based on eigenvector matrix collapses
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23Do not use the eigenvectors !

General non-conservative system

∂tV + A(V )∂xV = 0

Generalized Roe Scheme [Toumi & Kumbaro, JCP 96]

∆t−1(V n+1

i − V n
i ) + ∆x−1

(

φ−(V n
i , V n

i+1) + φ+(V n
i−1, V

n
i )

)

= 0

φ±(Vi, Vi+1) = A±(Vi+1/2) (Vi+1 − Vi), Vi+1/2 = (Vi + Vi+1)/2

A± = (A + |A|)/2

Formula for |A|:

If A = R diag(λ1, . . . , λN ) R−1 then |A| = R diag(|λ1|, . . . , |λN |) R−1

But R becomes singular as ε → 0 !
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24Alternate formula for |A|

Functional calculus

Let Φ: I → R continuous. I ⊇ Sp(A) = {λ1, . . . , λN}

Then Φ(A) = R diag
(

Φ(λ1), . . . ,Φ(λN )
)

R−1

Φ(A) only depends on the values (Φ(λk))N
k=1

of Φ on Sp(A)

Other expression of Φ(A) involving a polynomial

P (λ) =
∑N

p=0
apλ

p polynomial interpolating (λk, Φ(λk))N
k=1

Then Φ(A) = P (A) =
∑N

p=0
apA

p

P (A) can be evaluated without calling for R

P (A) is well-defined even when A is non-diagonalizable

If Aε → A as ε → 0, then Φ(Aε) = P (Aε) → P (A)

Approximate polynomial
If P δ → Φ as δ → 0, pointwise on Sp(A) then P δ(A) → Φ(A)
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25Polynomial schemes

Application to the computation of the Roe matrix |A|
[D, Peyrard, Russo, Villedieu, CRAS 99]

Stability request (under CFL)

|λ|

λmaxλmin

λ

Polynomial schemes P0, P1 and P2
|λ|

λmin
λmax

λ

|λ|

λmin
λmax

λ

|λ|

λmin
λmax

λ

Too much diffusion

Diffusion
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26Approximation by a high degree polynomial

Polynomial independent of A
Even polynomial, high degree

approximation of λ → |λ|

but construction ill-conditionned

Polynomial dependent on A
Use specificity of A in 2-phase model

Eigenvalues organized in 2 groups

One group is O(sound speed)

One group is O(10−8) smaller λ = O(10−8)

|λ|

λ

λ = O(1) λ = O(1)

Construction:
High order approx. of large λ

2nd order approx of one of the small λ

Allow large oscillations in between

Possibility to tune the diffusion
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27Hyperbolic tangent approximation

Use following approximation of λ → |λ|

Φ(λ) = τ + (1 − τ) λ tanh(λ/τ) cotanh(1/τ)

To compute tanh(s), use differential eq.
d
ds (tanh(αs)) = α(1 − tanh2(αs)

Matrix formula for B(s) = tanh(sA)
dB
ds = A (Id − B(s)2), B(0) = 0

Solve this differential eq. by implicit Euler

Bk+1 = Bk + h A (Id − (Bk+1)2)

Method works but too costly
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28Numerical results: Tee junction
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4. Conclusion
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30Conclusion

Construction of AP schemes
for full Euler or NS in the small Mach number regime
Semi-implicit treatment
Reduces to solving an elliptic equation for the pressure
Proved AP Property

Applications to jamming phase transition
Compressible to incompressible
For standard isentropic fluids
For Self-Organized Hydrodynamics (adding |u| = 1 constraint)

For multi-phase flows
Method that sustains phase appearance / disappearance
Based on polynomial schemes
Does not require the eigenvector matrix
Proved robust in very stiff cases
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