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1. Individual-Based Model
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4Collective dynamics & self-organization

?

Individual agents
obey simple rules

no leader

Emergence of large−scale
coherent structures

in agent’s behavior

Micro−scale Macro scale

Not directly encoded

Link micro to macro scales
Lack of conservations

Breakdown of chaos property

Phase transitions
Symmetry-breaking

Jamming

Continuum to network
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5Description of the system to model

Self-propelled agents which align with their neighbors
Case 1: Alignment of their directions of motion (Vicsek)
Case 2: Alignment of their full body attitude (new model)

Vicsek model Body attitude alignment
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6Vicsek model [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]

Individual-Based (aka particle) model

self-propelled ⇒ all particles have same constant speed a

align with their neighbours up to a certain noise

Xk(t) ∈ R
d: position of the k-th particle at time t

Vk(t) ∈ S
d−1: velocity orientation (|Vk(t)| = 1)

Ẋk(t) = aVk(t)

dVk(t) = PV ⊥

k
◦ (νV̄kdt+

√
2τ dBk

t ), PV ⊥

k
= Id− Vk ⊗ Vk

Jk =
∑

j, |Xj−Xk|≤R

Vj , V̄k =
Jk

|Jk|
R

Xk

Vk

ν alignment frequency; τ noise intensity

Jk, V̄k neighbors’ mean velocity, mean orientation

PV ⊥

k
projection on V ⊥

k , maintains |Vk(t)| = 1

◦ indicates Stratonovich SDE
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7Body attitude alignment model [M3AS, to appear]

Xk(t) ∈ R
d: position of the k-th subject at time t

Ak(t) ∈ SO(d): rotation mapping reference frame (e1, . . . , ed) to

subject’s body frame

Ak(t)e1 ∈ S
d−1: propulsion direction

Ẋk(t) = aAk(t)e1

dAk(t) = PTAk(t)SO(d) ◦ (νĀkdt+
√
2τ dBk

t ),

Mk(t) =
∑

j, |Xj−Xk|≤R

Aj(t), Āk = PD(Mk(t))

Mk arithmetic mean of neighbors’ A matrices

A = PD(M) ⇔ ∃S symmetric s.t. M = AS (polar decomp.)

PTAk(t)SO(d) projection on the tangent TAk(t)SO(d),

maintains Ak(t) ∈ SO(d)
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8Questions

Can we quantify the difference between the two models ?

Is body-alignment just Vicsek for direction of motion
with frame dynamic superimposed to it ?

Or does body-alignment provide genuinely new dynamic ?
i.e. do gradients of body frames orientation influence

direction of motion ?

Not easy to answer with Individual-Based Model
Goal: use coarse-grained model to answer this question
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9Quaternions

Quaternions: q = q0 + q1i+ q2j + q3k, q0, . . . , q3 ∈ R.

i2 = j2 = k2 = ijk = −1: division ring H (non commutative)

q = Req + Imq with Req = q0, Imq = q1i+ q2j + q3k

R
3 ∋ ~q = (q1, q2, q3) ≈ q = q1i+ q2j + q3k ∈ {q ∈ H,Req = 0}

Conjugate q∗ = Req − Imq

Scalar product p · q = pq∗ = RepReq + Imp · Imq

Unitary quaternions H1 = {q ∈ H, qq∗ = 1} ≈ S
3

H1 ∋ q = cos(θ/2) + sin(θ/2)n, θ ∈ [0, 2π), ~n ∈ S
2

The map R
3 ∋ ~v → Im(qvq∗) ∈ R

3 is rotation axis n angle θ

Given A ∈ SO(3) encoded by q and −q ∈ H1

A(q1)A(q2) = A(q1q2)
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10Quaternion representation (d=3) [arXiv:1701.01166]

Xk(t) ∈ R
d: position of the k-th subject at time t

qk(t) ∈ H1: quaternion encoding rotation mapping reference frame

(~e1, ~e2, ~e3) to subject’s body frame

~e1(qk(t)) = Im(qk(t) e1 qk(t)
∗) ∈ S

d−1: propulsion direction

Ẋk(t) = a~e1(qk(t))

dqk(t) = Pqk(t)⊥
◦ (νFk(t)dt+

√

τ/2 dBk
t ),

Fk(t) =
(

q̄k(t) · qk(t)) q̄k(t)
q̄k(t) leading eigenvector of tensor

Qk(t) =
∑

j, |Xj−Xk|≤R

qj(t)⊗ qj(t)

Qk(t) de Gennes Q-tensor; q̄k(t) mean nematic alignment direction

Describes alignment of qk with q̄k or −q̄k
Pqk(t)⊥ projection on q⊥k , maintains qkq

∗
k = 1

Similarity with polymer models

Quaternion dynamics identical to previous rotation matrix dynamics
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2. Mean-Field model
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12Mean-field model

f(x, q, t) = particle probability density x ∈ R
3, q ∈ H1

satisfies a Fokker-Planck equation

∂tf + a~e1(q) · ∇xf +∇q · (Fff) = (τ/4)∆qf

Ff (x, q, t) = νPq⊥

(

(q̄f (x, t) · q)q̄f (x, t)
)

, Pq⊥ = Id− q ⊗ q

q̄f (x, t) = leading eigenvector of tensor

Qf (x, t) =

∫

|x′−x|<R

∫

H1

f(x′, q′, t) (q′ ⊗ q′) dq′ dx′

Qf (x, t) = Q-tensor in a neighborhood of x

(q̄f (x, t) · q)q̄f (x, t) provides nematic alignment of q with q̄f (x, t)

Ff (x, q, t)) = projection of nematic alignment direction on q⊥

(x, q) ∈ R
3 ×H1 ; ∇q·, ∇q: div and grad on H1

∆q Laplace-Beltrami operator on H1 ≈ S
3
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13Passage to dimensionless units

Highlights important physical scales & small parameters

Choose time scale t0, space scale x0 = at0

Set f scale f0 = 1/x30, F scale F0 = 1/t0

Introduce dimensionless parameters ν̄ = νt0, τ̄ = τt0, R̄ = R
x0

Change variables x = x0x
′, t = t0t

′, f = f0f
′, F = F0F ′

Get the scaled Fokker-Planck system (omitting the primes):

∂tf + ~e1(q) · ∇xf +∇q · (Fff) = (τ̄ /4)∆qf

Ff (x, q, t) = ν̄Pq⊥

(

(q̄f (x, t) · q)q̄f (x, t)
)

, Pq⊥ = Id− q ⊗ q

q̄f (x, t) = leading eigenvector of tensor

Qf (x, t) =

∫

|x′−x|<R̄

∫

H1

f(x′, q′, t) (q′ ⊗ q′) dq′ dx′
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14Macroscoping scaling

Choice of t0 such that τ̄ = 1
ε
, ε≪ 1

Macroscopic scale:

there are many velocity diffusion events within one time unit

Assumption 1: k := ν̄
τ̄
= O(1)

Social interaction and diffusion act at the same scale

Implies ν̄−1 = O(ε), i.e. mean-free path is microscopic

Assumption 2: R̄ = ε

Interaction range is microscopic

and of the same order as mean-free path ν̄−1

Possible variant: R̄ = O(
√
ε): interaction range still small

but large compared to mean-free path. To be investigated later
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15Fokker-Planck under macroscopic scaling

With Assumption 2 (R̄ = O(ε))

Interaction is local at leading order: by Taylor expansion:

Qf = Qf +O(ε2), Qf (x, t) =

∫

H1

f(x, q′, t) (q′ ⊗ q′) dq′

Qf (x, t) = local Q-tensor. From now on, neglect O(ε2) term

Fokker-Planck eq. in scaled variables

ε
(

∂tf
ε + ~e1(q) · ∇xf

ε
)

= −∇q · (Ffεf ε) + ∆qf
ε

Ff (x, q, t) = 4kPq⊥

(

(q̄f (x, t) · q)q̄f (x, t)
)

, Pq⊥ = Id− q ⊗ q

q̄f (x, t) = leading eigenvector of tensor

Qf (x, t) =

∫

H1

f(x, q′, t) (q′ ⊗ q′) dq′

Coarse-grained model is obtained in the limit ε→ 0
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3. Self-Organized Quaternionic
Hydrodynamics (SOHQ)
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17Collision operator

Model can be written

∂tf
ε + e1(q) · ∇xf

ε =
1

ε
C(f ε)

with collision operator

C(f) = −∇q · (Ff f) + ∆qf

Ff = 4kPq⊥

(

(q̄f · q)q̄f
)

q̄f leading eigenvector of Qf

Qf =

∫

H1

f(q′) (q′ ⊗ q′) dq′

When ε→ 0, f ε → f (formally) such that C(f) = 0

⇒ importance of the solutions of C(f) = 0 (equilibria)

C acts on q-variable only ((x, t) are just parameters)
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18Algebraic preliminaries

Force Ff can be written: Ff (v) = 2k∇q

(

(q̄f · q)2
)

Note q̄f independent of q ((x, t) are fixed)

Rewrite:

C(f)(q) = ∇q ·
[

− 2k f ∇q

(

(q̄f · q)2
)

+∇qf
]

= ∇q ·
[

f ∇q

(

− 2k (q̄f · q)2 + ln f
)]

Let q̄ ∈ H1 be given: Solutions of

∇q

(

− 2k (q̄f · q)2 + ln f
)

= 0 are proportional to :

f(v) =Mq̄(q) :=
1

Z
exp

(

2k(q̄ · q)2
)

with

∫

H1

Mq̄(q) dq = 1

’generalized’ von Mises-Fisher (VMF) distribution
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19VMF distribution

Again:

Mq̄(q) :=
e2k(q·q̄)

2

∫

H1
e2k(q′·q̄)2 dq′

k > 0: concentration parameter; q̄ ∈ H1 ≈ S
3: orientation

Order parameter: c1(k) s.t.
∫

H1
Mq̄(q) e1(q) dq = c1(k)e1(q̄)

k
ր→ c1(k), 0 ≤ c1(k) ≤ 1

Here:

concentration parameter k
and order parameter c1(k)
are constant



↑ ↓Pierre Degond - Coarse-graining for collective dynamics - KI-net ETH, 13/04/2017

20Equilibria

Definition: equilibrium manifold E = {f(q) |C(f) = 0}

Theorem: E = { ρMq̄ for arbitrary ρ ∈ R+ and q̄ ∈ H1}
Note: dim E = 4

Proof: follows from entropy inequality:

H(f) =
∫

C(f) f
Mq̄f

dq = −
∫

Mq̄f

∣

∣

∣
∇q

(

f
Mq̄f

)

∣

∣

∣

2

≤ 0

follows from C(f) = ∇q ·
[

Mq̄f∇q

(

f
Mq̄f

)]

Then, C(f) = 0 implies H(f) = 0 and f
Mq̄f

= Constant

and f is of the form ρMq̄

Reciprocally, if f = ρMq̄, then, q̄f = q̄ and C(f) = 0
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21Use of equilibria

f ε → f as ε→ 0 with q → f(x, q, t) ∈ E for all (x, t)

Implies that f(x, q, t) = ρ(x, t)Mq̄(x,t)(q)

Need to specify the dependence of ρ and q̄ on (x, t)

Requires 4 equations since (ρ, q̄) ∈ R+ ×H1 ≈ R+ × S
3 are

determined by 4 independent real quantities

f satisfies

∂tf + e1(q) · ∇xf = limε→0
1
ε
C(f ε)

Problem: limε→0
1
ε
C(f ε) is not known

Trick:

Collision invariant
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22Collision invariant

is a function ψ(q) such that
∫

C(f)ψ dq = 0, ∀f
Form a linear vector space CI

Multiply eq. by ψ: ε−1 term disappears

Find a conservation law:

∂t
(

∫

H1

f(x, q, t)ψ(q) dq
)

+∇x ·
(

∫

H1

f(x, q, t)ψ(q) e1(q) dq
)

= 0

Have used that ∂t or ∇x and
∫

. . . dq can be interchanged

Limit fully determined if dim CI = dim E = 4

CI = Span{1}. Interaction preserves mass but no other quantity

Due to self-propulsion, no momentum conservation

dim CI = 1 < dim E = 4. Is the limit problem ill-posed ?
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23Use of CI: mass conservation eq.

Proof that ψ(q) = 1 is a CI ?

Obvious. C(f) = ∇q ·
[

. . .
]

is a divergence

By Stokes theorem on the sphere,
∫

C(f) dq = 0

Use of the CI ψ(q) = 1: Get the conservation law

∂t
(

∫

H1

f(x, q, t) dq
)

+∇x ·
(

∫

H1

f(x, q, t) e1(q) dq
)

= 0

With f = ρMq̄ we have
∫

f(x, v, t) dv = ρ(x, t),

∫

f(x, v, t) e1(q) dq = c1ρ(x, t)e1
(

q̄(x, t)
)

We end up with the mass conservation eq.

∂tρ+ c1∇x ·
(

ρe1(q̄)
)

= 0
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24Generalized collision invariants (GCI)

Given q̄0 ∈ H1, Define Rq̄0(f) = ∇q ·
[

Mq̄0∇q

(

f
Mq̄0

)]

Note f → Rq̄0(f) is linear and C(f) = Rq̄f (f)

A function ψq̄0(q) is a GCI associated to q̄0, iff
∫

Rq̄0(f)ψq̄0 dq = 0, ∀f such that Pq⊥0

[(

∫

H1

f(q) (q ⊗ q) dq
)

q̄0

]

= 0

The set of GCI Gq̄0 is a linear vector space

Theorem: Given q̄0 ∈ H1, Gq̄0 is the 4-dim vector space :

Gq̄0 = {q 7→ α+h(q·q̄0)β·q, with arbitrary α ∈ R and β ∈ H with β·q̄0 = 0}.
Introduce r = q · q̄0 ∈ [−1, 1]. h is the unique solution in V of:

−(1−r2)−3/2 exp
(

−2kr2
) d

dr

[

(1−r2)5/2 exp
(

2kr2
)dh

dr

]

+(4k r2+3)h(r) = −r

V = {h | (1− r2)3/4h ∈ L2(−1, 1), (1− r2)5/4h′ ∈ L2(−1, 1)}
Furthemore, h is odd and non-positive for r ≥ 0
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25Use of GCI: equation for q̄(x, t)

Use GCI h(q · q̄0)β · q for β ∈ H with β · q̄0 = 0

Equivalently, use the quaternion valued function

ψq̄0(q) = h(q · q̄0)Pq̄⊥0
q

Multiply FP eq by GCI ψq̄fε : O(ε−1) terms disappear
∫

C(f) ~ψq̄f dv =

∫

Rq̄f (f)ψq̄f dq = 0 by property of GCI

Gives:
∫

(∂tf
ε + e1(q) · ∇xf

ε)ψq̄fε dq = 0

As ε→ 0: f ε → ρMq̄ and ψq̄fε → ψq̄ Leads to:
∫

(

∂t(ρMq̄) + e1(q) · ∇x(ρMq̄)
)

ψq̄ dq = 0

Not a conservation equation

because of dependence of ψq̄ upon (x, t) through q̄

∂t or ∇x and
∫

. . . dq cannot be interchanged
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26Equation for q̄(x, t)

Takes the form:

ρ
(

∂tq̄ + c2
(

e1(q̄) · ∇x

)

q̄
)

+ c3[e1(q̄)×∇xρ] q̄

+c4ρ
[

(∇x,relq̄)e1(q̄) + (∇x,rel · q̄)e1(q̄)
]

q̄ = 0

where

(∇x,relq̄) = (∂xi,relq̄)i=1,2,3 =
(

(∂xi
q̄)q̄∗

)

i=1,2,3
∈ H

3
Im

(∇x,rel · q̄) =
∑

i=1,2,3

(∂xi,relq̄)i =
∑

i=1,2,3

(

(∂xi
q̄)q̄∗

)

i
∈ R

HIm = {q ∈ H, Req = 0} ≈ R
3

(∂xi,relq̄)j = j-th component of ∂xi,relq̄

(∇x,relq̄)e1(q̄) =
(

(∂xi,relq̄) · e1(q̄)
)

i=1,2,3

Coefficients c2 and c4 depend on GCI h
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27Resulting system: SOHQ

Self-Organized Quaternionic Hydrodynamics (SOHQ)

System for density ρ(x, t) and quaternion orientation q̄(x, t):

∂tρ+ c1∇x

(

ρe1(q̄)
)

= 0

ρ
(

∂tq̄ + c2
(

e1(q̄) · ∇x

)

q̄
)

+ c3[e1(q̄)×∇xρ] q̄

+c4ρ
[

(∇x,relq̄)e1(q̄) + (∇x,rel · q̄)e1(q̄)
]

q̄ = 0

|q̄| = 1
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28

4. Comparison with SOH dynamics for Vicsek
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29SOH model for the Vicsek dynamics

Vicsek mean-field model for fε(x, v, t)

position x ∈ R
3, velocity orientation v ∈ S

2

As ε→ 0, fε(x, v, t) → ρ(x, t)MΩ(x,t)(v)

ρ(x, t) ≥ 0, Ω(x, t) ∈ S
2

MΩ(v) =
1
Z exp

(

k(Ω · v)
)

,
∫

S2
MΩ(v) dv = 1

(ρ(x, t),Ω(x, t)) solves SOH model:

∂tρ+ c1∇x · (ρΩ) = 0

ρ
(

∂tΩ+ c2(Ω · ∇x)Ω
)

+ c3 PΩ⊥∇xρ = 0, PΩ⊥ = Id− Ω⊗ Ω

|Ω| = 1

Similar to Compressible Euler eqs. of gas dynamics
System of hyperbolic eqs.

But major differences:
Geometric constraint |Ω| = 1: requires PΩ⊥ to be maintained
System is non conservative due to the presence of PΩ⊥

c2 6= c1: loss of Galilean invariance
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30SOHQ model in frame representation

q̄(x, t) ∈ H1 encodes rotation Λ(x, t) ∈ SO(3)
Λ(x, t) describes agents’ local average body attitude

Ω(x, t) = Λ(x, t)e1 = e1(q̄(x, t)) : direction of motion
u(x, t) = Λ(x, t)e2 = e2(q̄(x, t) : belly to back
v(x, t) = Λ(x, t)e3 = e3(q̄(x, t) : right to left wing

SOHQ model equivalent to

∂tρ+ c1∇x · (ρΩ) = 0

ρ
(

∂tΩ+ c2(Ω · ∇x)Ω
)

+ PΩ⊥

(

c3∇xρ− c4ρ r(Ω, u, v)
)

= 0

ρ
(

∂tu+ c2(Ω · ∇x)u
)

− u ·
(

c3∇xρ− c4ρ r(Ω, u, v)
)

Ω + c4ρ δ(Ω, u, v)v = 0

ρ
(

∂tv + c2(Ω · ∇x)v
)

− v ·
(

c3∇xρ− c4ρ r(Ω, u, v)
)

Ω − c4ρ δ(Ω, u, v)u = 0

|Ω| = |u| = |v| = 1, Ω · u = u · v = v · Ω = 0

with r(Ω, u, v) (for rotational) and δ(Ω, u, v) (for divergence):

r(Ω, u, v) = (Ω · ∇x)Ω + (u · ∇x)u+ (v · ∇x)v ∈ R
3

δ(Ω, u, v)u =
[

(Ω · ∇x)u
]

· v +
[

(u · ∇x)v
]

· Ω+
[

(v · ∇x)Ω
]

· u ∈ R
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31SOH (Vicsek) vs SOHQ (full body alignment)

Compare eqs for ρ and Ω:

SOH: Coarse-grained Vicsek model

∂tρ+ c1∇x · (ρΩ) = 0

ρ
(

∂tΩ+ c2(Ω · ∇x)Ω
)

+ c3 PΩ⊥∇xρ = 0

SOHQ: Coarse-grained body orientation model

∂tρ+ c1∇x · (ρΩ) = 0

ρ
(

∂tΩ+ c2(Ω · ∇x)Ω
)

+ PΩ⊥

(

c3∇xρ− c4ρ r(Ω, u, v)
)

= 0

Difference is the term

r(Ω, u, v) = (Ω · ∇x)Ω + (u · ∇x)u+ (v · ∇x)v

Shows how differences in body orientation affect direction of the flock
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32Answers

Can we quantify the difference between the Vicsek and body
alignment models ?

YES: by using coarse-grained models SOH and SOHQ respectively

Is body-alignment just Vicsek for direction of motion
with frame dynamic superimposed to it ?

Answer is ’NO’

Or does body-alignment provide genuinely new dynamic ?
i.e. do gradients of body frames orientation influence

direction of motion ?

Answer is ’YES’
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5. Conclusion
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34Summary & Perspectives

New collective dynamics model relying on full body alignment

body frame alignment ⇔ quaternion nematic alignment

Coarse-grained model is SOHQ

First order PDE for density and local average quaternion

describes dynamics of agents’ local mean body frame

dynamics genuinely 6= from velocity alignment (Vicsek or SOH)

Perspectives

analysis of the model

rigorous proof of convergence

numerical simulations

Higher dimensions
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