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1. Individual-Based Model
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Collective dynamics & self-organization

Micro-scale 2 Macro scale

Emergence of large-scale

Individual agents > coherent structures
obey simple rules

Not directly encoded
no leader in agent’s behavior
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Link micro to macro scales
Lack of conservations
Breakdown of chaos property

Phase transitions
Symmetry-breaking
Jamming

Continuum to network
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Description of the system to model 5

Self-propelled agents which align with their neighbors
Case 1: Alignment of their directions of motion (Vicsek)
Case 2: Alignment of their full body attitude (new model)

Vicsek model Body attitude alignment
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VICSEk m0d6| [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]

Individual-Based (aka particle) model

self-propelled = all particles have same constant speed a
align with their neighbours up to a certain noise

X (t) € R%: position of the k-th particle at time ¢
Vi (t) € S9=1: velocity orientation (|Vi(t)| = 1)
Xy (t) = aVi(t)
dVi,(t) = Py o (vVidt + V27 dBY), Pyo=1d -V @V

- Tk
Tk = Z Vi, Vi = A
j, 1X;— X <R 7z -
7 7
v alignment frequency; 7 noise intensity V4 %

T, Vi neighbors’ mean velocity, mean orientatiory
Py projection on Vi, maintains [Vi(t)| =1

o indicates Stratonovich SDE o
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Body attitude alignment model (w3as, to appear 7

X (t) € R%: position of the k-th subject at time ¢
A (t) € SO(d): rotation mapping reference frame (eq,...,eq) to
subject’s body frame

€2
Ar(t)e; € S4=1: propulsion direction
. e ez2(q
Xk(t) = CLAk(t)el

€3 es(q)
dAy(t) = Pr, ., so(a) © (vAgdt + V27 dBy), ex(@)
Mi(ty= Y Aj(t), A =PD(M(t))

M;. arithmetic mean of neighbors’ A matrices

A =PD(M) < 3S symmetric s.t. M = AS (polar decomp.)

Pr, .,50(a) Projection on the tangent Ts, ySO(d),
maintains Ay (t) € SO(d)
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Questions

Can we quantify the difference between the two models 7

Is body-alignment just Vicsek for direction of motion
with frame dynamic superimposed to it ?

Or does body-alignment provide genuinely new dynamic ?
I.e. do gradients of body frames orientation influence
direction of motion ?

Not easy to answer with Individual-Based Model
Goal: use coarse-grained model to answer this question
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Quaternions

Quaternions: ¢ =qo+ qii + ¢2 + g3k, qo,...,q3 € R.
i* = j2 = k? = ijk = —1: division ring H (non commutative)
q = Req+1Imq with Req =qo, Imqg=qii+ q2j + g3k
R > §= (q1,¢2,q3) = ¢ = q1i + ¢2J + g3k € {q € H,Req = 0}
Conjugate ¢* = Req — Img
Scalar product p - ¢ = pqg* = RepReq + Imp - Img

Unitary quaternions H; = {¢ € H,qq¢* =1} =~ S3
H; > g = cos(0/2) +sin(0/2)n, 6 € [0,2m), 71 € S
The map R? > ¥ — Im(qug*) € R? is rotation axis n angle 0

Given A € SO(3) encoded by g and —q € H;
Alq1)Alg2) = Alq1¢2)
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Quaternion representation (d=3) fxiviroro166) 10

X (t) € RY: position of the k-th subject at time ¢
qr(t) € Hy: quaternion encoding rotation mapping reference frame
(€1, €2, €3) to subject’s body frame

&1 (qr(t)) = Im(qr(t) e1 qi(t)*) € S propulsion direction

Xi(t) = a1 (qr(t)) =
dqi(t) = Py e o (WEy(t)dt + /T/2dBY), l R
Fr(t) = (qu(t) - q(t)) qr(t) s ea(@)

A ——— e

e1(q)

g1 (t) leading eigenvector of tensor

Qrt)= ) qi(t)®q(t)
35 | X —Xk|<R
Qr(t) de Gennes Q-tensor; ¢x(t) mean nematic alignment direction
Describes alignment of q; with q; or —gi
P, ()~ projection on q,ﬁ, maintains giq, = 1
Similarity with polymer models

Quaternion dynamics identical to previous rotation matrix dynamics
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2. Mean-Field model

T
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Mean-field model 12

f(x,q,t) = particle probability density = € R3, q € H;

satisfies a Fokker-Planck equation

Ocf +a€i(q) - Vaof + Vg (Frf) = (7/4)Aqf
Fr(x,q,t) = vP, ((qr(2,t) - Qs(2,1)), Ppr=ld—q®q

dr(z,t) = leading eigenvector of tensor

Qf(zv, t) = / f(:v’, q t) (q/ 0% q/) dq' dx’
|’ —x|<R JH;

Q¢(x,t) = Q-tensor in a neighborhood of z

(G¢(x,t) - q)qs(x,t) provides nematic alignment of ¢ with g¢(z,1)
F¢(x,q,t)) = projection of nematic alignment direction on ¢+
(r,q) € R® x H; ; Vg, V,: div and grad on H;

A, Laplace-Beltrami operator on Hj; ~ S*
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Passage to dimensionless units

13

Highlights important physical scales & small parameters

Choose time scale ¢, space scale xg = aty
Set f scale fo =1/xz3, F scale Fy = 1/tg

Introduce dimensionless parameters v = vity, T = 7lp, R = m_]i

Change variables x = xo2’, t = tot’, f = fof', F = FoF’

Get the scaled Fokker-Planck system (omitting the primes):

Of +€1(q) Vaf + Vg (Frf)=(T/DAS
‘Ff(xv%t) — EPqJ-((qf(x7t) . Q)Qf(xat))a PqJ— = Id — qXq

dr(z,t) = leading eigenvector of tensor

Qf(:l},t) — / ) f(a:’,q’,t) (q’@q/) dq' dx’
|£U/—£C|<R H;
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Macroscoping scaling 14

Choice of to such that 7=1 <1

Macroscopic scale:
there are many velocity diffusion events within one time unit

N

= O(1)

Social interaction and diffusion act at the same scale

Assumption 1: k=

Implies v~ = O(e), i.e. mean-free path is microscopic

Assumption 2: R =-¢

Interaction range is microscopic
and of the same order as mean-free path 71

Possible variant: R = O(y/€): interaction range still small
but large compared to mean-free path. To be investigated later
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Fokker-Planck under macroscopic scaling 15

With Assumption 2 (R = O(¢))

Interaction is local at leading order: by Taylor expansion:

Qr =Qs +0(%), Q1) = ; flz,q',t) (¢ ®q)dq

Q¢(x,t) = local Q-tensor. From now on, neglect O(g?) term

Fokker-Planck eq. in scaled variables

8(atf€ + €] (Q) : fog) = —Vq : (Ffsfs) + Aqu
Ff(aja Q7t) — 4]{PqL ((ij(CC,t) ) q)ﬁf(xvt))a qu =Ild—-q®gq

dr(z,t) = leading eigenvector of tensor

Qs(x,t) = : flx,qd,t)(d ®q¢")dq

Coarse-grained model is obtained in the limit ¢ — 0
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3.  Self-Organized Quaternionic
Hydrodynamics (SOHQ)

T
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Collision operator

17

Model can be written
1
O f° +e1(q) Vaft = gc(fe)
with collision operator
C(f) ==V - (Fr ) +Ayf
Fy = 4kP,. (27 - 9)ay)
qr leading eigenvector of Q)¢

Qf = ; (@) (¢ ®q)dd

When ¢ — 0, f¢ — f (formally) such that C(f) =0
= importance of the solutions of C'(f) = 0 (equilibria)

C' acts on g-variable only ((z,%) are just parameters)
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Algebraic preliminaries

18

Force Fy can be written: Fr(v) =2k V4((qr - q)?)
Note G¢ independent of ¢ ((x,t) are fixed)

Rewrite:

C(f)lq) =

q- [—2kqu((Qf‘Q)2) "‘qu]
a [FVa(—2k(qr - q)° +1nf)]

Let ¢ € H; be given: Solutions of
Vq( — 2k (qy - q)° +In f) = () are proportional to :

V
V

f(v) = Mgz(q) := %exp (2k(q - q)Q) with Mgz(q)dg =1
[H4

'generalized’ von Mises-Fisher (VMF) distribution

T
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VMF distribution 19

Again:
€2k(Q'q_)2

Jig, €2F4D° dg’

Mg(q) =

k > 0: concentration parameter; g € H; ~ S3: orientation

Order parameter: ci(k) s.t. [ Mz(q) e1(q) dg

kS k), 0<e(k)<1 e

Here:

concentration parameter k '
and order parameter ¢ (k)

0.4+

are constant 02

00_-
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Equilibria 20

Definition: equilibrium manifold & ={f(q)|C(f) =0}

Theorem: & = { pMj for arbitrary p € Ry and ¢ € H; }
Note: dim & =4

Proof: follows from entropy inequality:
2
Vo(£)| <0

H(f) = [ C(f) 5t da = = [ M |Va(5i-
follows from C'(f) =V, - [M(jqu(Mf >]

if

Then, C(f) = 0 implies H(f) =0 and MJ;f = Constant

and f is of the form pM;
Reciprocally, if f = pMg, then, g =g and C(f) =0
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Use of equilibria

21

fe— fase— 0with g — f(z,q,t) € € for all (z,1)

Implies that f(z,q,t) = p(z, 1) Mg()(q)
Need to specify the dependence of p and g on (x,t)
Requires 4 equations since (p,q) € Ry x H; =~ Ry x S? are

determined by 4 independent real quantities

f satisfies
ﬁtf + 61(Q) . fo — ].img_>0 %C(fs)

Problem: lim. o 2C/(f€) is not known

Trick:

Collision invariant
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Collision invariant 22
is a function ¢ (q) such that [ C'(f)dg =0, VY[
Form a linear vector space CZ
Multiply eq. by ¢: ¢! term disappears
Find a conservation law:
O( | flz,qt)v(q)dg) +Va (| flz,q,t)¥(q)ei(q)dg) =0
Hl Hl
Have used that 0; or V, and f ...dqg can be interchanged
Limit fully determined if dim CZ = dim £ =4
CL = Span{l}. Interaction preserves mass but no other quantity
Due to self-propulsion, no momentum conservation
dim CZ =1 < dim £ = 4. Is the limit problem ill-posed ?
Pierre Degond - Coarse-graining for collective dynamics - Kl-net ETH, 13/04/2017 {



Use of Cl: mass conservation eq. 23

Proof that ¢)(q) =1isa ClI ?

Obvious. C(f) =V |...] is a divergence
By Stokes theorem on the sphere, [ C(f)dg =0

Use of the ClI 1(q) = 1: Get the conservation law

O [ flz,q,t)dg) +Va- ([ flz,qt)ei(q)dg) =0

H; H;

With | = pM; we have
/fa:vt = p(x, 1), /fxvt)el( )dg = cip(z,t)er (q(x,t))

We end up with the mass conservation eq.

Oip+c1Vy - (,061( )) =0
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Generalized collision invariants (GCl) o4

Given qy € Hy, Define R, (f) =V, - [MCYOVQ(]WJ;O”
Note f — Rg, (f) is linear and C(f) = Rg, (f)

A function 1g,(q) is a GCl associated to qo, iff

[ Raol Oy da=0, w7 such that P [( [ s0) (@ 0)da)a] =0
IH¢
The set of GCI Gg, is a linear vector space

Theorem: Given gy € Hj, G, is the 4-dim vector space :

Gz = {q — a+h(q-Go) B-q, with arbitrary o € R and 8 € H with 5.y = 0}.

Introduce r = ¢ - qo € |—1,1]. h is the unique solution in V of:
dh
—(1-72)73/2 exp (—2/@7“2>di {(1—7“2)5/2 exp (2k’r2)d—}—l—(4k r*+3) h(r) = —r
r r
V={h| Q-r)?*heLl?-1,1), (1-7r>%*N e L*-1,1)}

Furthemore, h is odd and non-positive for » > 0
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Use of GCI: equation for q(x, t) 25

Use GCI h(q-q‘o)ﬁ-qforBEHwithB-(joz()
Equivalently, use the quaternion valued function
. (q) = h(q- Qo) Pyrq

Multiply FP eq by GCl 1)g,.: O(c™") terms disappear
/C’(f) ﬁgf dv= [ Rg;(f)vg, dg =0 by property of GCI

Gives: /((‘9tf€ + 61(Q) . fos) wqu dq =0

Ase — 0: f©— pMg and 1z, — ;7 Leads to:

/ (01 (pMyg) + e1(q) - Vo (pMyz)) Ygdg =0

Not a conservation equation

because of dependence of )7 upon (z,t) through ¢
J¢ or V. and [ ...dq cannot be interchanged
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Equation for ¢(x, )

26

Takes the form:

ﬂ<3t67+ cz2(e1(q) - Va;)g) + csle1(q) X Vaplq
+c4p| (Vi rel@)er(q) + (Ve - 0e1(q)]g =0

where

(vx,relcﬂ — (8:cz,reIQ)z 1,2,3 — ((8 6_7)6_7 )z 1,2,3 = H?m
(vx,rel ) CY) — xz relq Z E R

7;=1,2,3

Hj, = {q € H, Reqg = 0} ~ R3
(Op, rel@); = j-th component of 0. e|q

(Vx,re@)el(q) — ((axq;,reIQ) ' 61(‘7))121,2,3
Coefficients co and ¢4 depend on GCl A

Pierre Degond - Coarse-graining for collective dynamics - Kl-net ETH, 13/04/2017



Resulting system: SOHQ

27

Self-Organized Quaternionic Hydrodynamics (SOHQ)

System for density p(x,t) and quaternion orientation G(x,1):

Op + c1Vaz(pe1(q)) =0
p(01d+ e2(e1(@) - V2)a) + esler (@) x Vapl
‘|‘C4p[(vm,relg>€1 (Q_) + (vaz,rel ' Q>€1 (Q)]g =0

T
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4. Comparison with SOH dynamics for Vicsek

T
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SOH model for the Vicsek dynamics 29
Vicsek mean-field model for f¢(x,v,t)
position = € R3, velocity orientation v € S?
As e — 0, fg(xa v, t) — ,O(ZIJ, t)MQ(m,t) (U)
p(x,t) >0, Qz,t) € §?
Ma(v) = 2 exp (k(Q-v)), [ Ma(v)dv=1
(p(x,t),2(x,t)) solves SOH model:
8tp + Clvx . (IOQ) =0
p (0 Q+ca(Q-Vy)Q) + c3 PaiVup=0, Por=I1d-—Qx0
Q=1
Similar to Compressible Euler egs. of gas dynamics
System of hyperbolic egs.
But major differences:
Geometric constraint |£2| = 1: requires Pn. to be maintained
System is non conservative due to the presence of P
co # c1: loss of Galilean invariance
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SOHQ model in frame representation 30

g(x,t) € Hy encodes rotation A(x,t) € SO(3)
A(z,t) describes agents' local average body attitude
(x,1) =
t) =

Q(x,
u(z, A(z,t)es = es(G(x,t) : belly to back
v(x,t) = Az, t)es = e3(q(x,t) : right to left wing

A(z,t)er = e1(G(x,t)) : direction of motion

SOHQ model equivalent to

Op+c1Vy - (p2) =0
0 ((%Q + (€2 - Vx)Q) + Pot (63Vx,0 — c4p1(Q, u, v)) =0
p(Oru+ca(2-Vy)u) —u- (csVep — capr(Q,u,v))Q + capd(Q,u,v)v =0
p (O + c2(Q-Vi)v) —v- (e3Vep — capr(Q,u,v))Q — capd(Q,u,v)u =0
Q] =lul=v=1 Qu=u-v=0v-Q=0
with (2, u, v) (for rotational) and 6(£2, u,v) (for divergence):
r(Qu,v) = (Q-Vy)Q+ (u-Vy)u+ (v-Vy)v €R?
0(Qu,v)u=[(Q-Vy)u] v+ [(u-Vu)v| - Q+ [(v-V,)Q] -u €R
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SOH (Vicsek) vs SOHQ (full body alignment) 31

Compare eqgs for p and 2

SOH: Coarse-grained Vicsek model

(975,0 + Clvx . (pQ) =0
P (&ﬁ —+ CQ<Q . Vx)ﬂ) + C3 PQLVQU,O =0

SOHQ: Coarse-grained body orientation model
875,0 + Clvx . (pQ) =0
0 ((%Q + (92 - Vx)Q) + Poe (c;;pr — c4p1 (0, u, v)) =0

Difference is the term

r(Q,u,v) =(Q-Va)Q+ (u-Viy)u+ (v- Vi)

Shows how differences in body orientation affect direction of the flock
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Answers

32

Can we quantify the difference between the Vicsek and body
alignment models 7

YES: by using coarse-grained models SOH and SOHQ respectively

Is body-alignment just Vicsek for direction of motion
with frame dynamic superimposed to it ?

Answer is 'NQO’

Or does body-alignment provide genuinely new dynamic ?
I.e. do gradients of body frames orientation influence
direction of motion ?

Answer is 'YES'

T
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5. Conclusion

T
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Summary & Perspectives 34

New collective dynamics model relying on full body alignment

body frame alignment < quaternion nematic alignment

Coarse-grained model is SOHQ
First order PDE for density and local average quaternion
describes dynamics of agents’ local mean body frame

dynamics genuinely # from velocity alignment (Vicsek or SOH)

Perspectives
analysis of the model
rigorous proof of convergence
numerical simulations

Higher dimensions

Pierre Degond - Coarse-graining for collective dynamics - Kl-net ETH, 13/04/2017 d



	
	hypertarget {sum}{Summary}
	
	Collective dynamics & self-organization
	Description of the system to model
	Vicsek model {	iny [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]}
	Body attitude alignment model {	iny [M3AS, to appear]}
	Questions
	Quaternions
	Quaternion representation (d=3)
{	iny [arXiv:1701.01166]}
	
	Mean-field model
	Passage to dimensionless units
	Macroscoping scaling
	Fokker-Planck under macroscopic scaling
	
	Collision operator
	Algebraic preliminaries
	VMF distribution
	Equilibria
	Use of equilibria
	Collision invariant
	Use of CI: mass conservation eq.
	Generalized collision invariants (GCI)
	Use of GCI: equation for $�ar q (x,t)$
	Equation for $�ar q (x,t)$
	Resulting system: SOHQ
	
	SOH model for the Vicsek dynamics
	SOHQ model in frame representation
	SOH (Vicsek)
vs SOHQ (full body alignment)
	Answers
	
	Summary & Perspectives

