
Outline

Dimension reduction for
dipolar Gross-Pitaevskii equations

Yongyong Cai

Center for Scientific Computation and Mathematical Modeling (CSCAMM)

University of Maryland, College Park

joint with Weizhu Bao, Matthias Rosenkranz, Zhen Lei,
Hanquan Wang, Naoufel Ben Abdallah

May 2013, CSCAMM

1 / 48



Outline

1 Dipolar Gross-Pitaevskii equations

2 Lower dimensional dipolar GPE
Two dimensions case
One dimension case

3 Multi-layered dipolar BEC

4 Conclusion

2 / 48



Dipolar Gross-Pitaevskii equations Lower dimensional dipolar GPE Multi-layered dipolar BEC Conclusion

Dipolar Bose-Einstein Condensate

Experimental setup

Molecules meet to form dipoles

Cool down dipoles to ultracold

Hold in a magnetic trap

Dipolar condensation
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Mathematical model

N-particle system: N-Hamiltonian system (dimensions 3N)

Mean-field approximation: particles described by a single wave
function.

Gross-Pitaevskii equation (GPE) for weakly interacting dilute
boson gas at zero temperature

i∂tψ = −1

2
∆ψ + V (x)ψ + β|ψ|2ψ, x ∈ R3

ψ complex wave-function describing the condensates

V (x) real trap potential

β > 0-defocusing (repulsive interaction); β < 0-focusing
(attractive interaction)
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Validity of GPE for BEC without dipole-dipole interaction

from N-body theory for system of trapped particles to GPE
theory

time-independent GPE (R.Seiringer, E.H. Lieb and J.
Yngvason PRA,2000)

time-dependent GPE (H.T. Yau et al., Ann. Math, 2010;
Xuwen Chen, ARMA 2013)

5 / 48



Dipolar Gross-Pitaevskii equations Lower dimensional dipolar GPE Multi-layered dipolar BEC Conclusion

Mathematical Model for dipolar BEC

• Dipolar Gross-Pitaevskii equation (re-scaled): ψ := ψ(x, t),
x ∈ R3

i∂tψ =

[
−1

2
∇2 + V (x) + β|ψ|2 + λ

(
Udip ∗ |ψ|2

)]
ψ,

Trapping potential: V (x) = 1
2 (γ2

xx2 + γ2
yy 2 + γ2

z z2)

Interaction constants: β (short range), λ (long range)

Dipole-dipole interaction (DDI) kernel:

Udip(x) =
3

4π

1− 3 (x·n)2

|x|2

|x|3 =
3

4π

1− 3 cos2(θ)

|x|3 , n fixed &|n| = 1
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Mathematical Model

Dipolar kernel:

Udip =
3

4π|x|3
(
1− 3(x · n)2/|x|2

)
, x ∈ R3 (2.1)

Highly singular near 0, Udip(x) = O( 1
|x|3 )

Fourier transform: (̂Udip)(ξ) = −1 + 3(n·ξ)2

|ξ|2 , ξ ∈ R3

No limit at ξ = 0
No limit as |ξ| → ∞
Omit the singularity at ξ = 0, when simulating
Locking phenomena in computation
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Our formulation

• Identity1: r = |x|, ∂n = n · ∇, ∂nn = ∂n(∂n)

Udip(x) =
3

4πr 3

(
1− 3(n · x)2

r 2

)
= −δ(x)− ∂nn(

1

4πr
) (2.2)

• Dipole-dipole interaction:

Udip ∗ |ψ|2 = −|ψ|2 − ∂nnϕ, ϕ =
1

4πr
∗ |ψ|2, (2.3)

ϕ =
1

4πr
∗ |ψ|2 ⇐⇒ −∆ϕ = |ψ|2 (2.4)

1O’Dell et al., PRL 92 (2004), 250401, Parker et al., PRA 79 (2009), 013617
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Reformulation

• Gross-Pitaevskii-Poisson type equations:

i∂tψ =

[
−1

2
∇2 + V (x) + (β − λ)|ψ|2 − 3λ∂nnϕ

]
ψ,

∇2ϕ(x, t) = −|ψ(x, t)|2, lim
|x|→∞

ϕ(x, t) = 0,

• Energy

E (ψ) =

∫

R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

β − λ
2
|ψ|4 +

3λ

2
|∂n∇ϕ|2

]
dx
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Ground States

• Nonconvex minimization problem

E (φg ) = min
φ∈S

E (φ), S =
{
φ
∣∣‖φ‖2 = 1, E (φ) <∞

}

• Nonlinear Eigenvalue problem (Euler-Lagrange eq.)

µφ =

[
−1

2
∆ + V (x) + (β − λ)|φ|2 − 3λ∂nnϕ

]
φ

−∆ϕ = |φ|2, lim
|x|→∞

ϕ(x) = 0, ‖φ‖2 = 1

• Chemical potential µ:

µ =

∫

R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 + (β − λ)|ψ|4 + 3λ|∂n∇ϕ|2

]
dx

=E (φ) +

∫

R3

[
β − λ

2
|ψ|4 +

3λ

2
|∂n∇ϕ|2

]
dx
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Ground state results

Theorem

(Bao, Cai & Wang, JCP, 10’) Assume

V (x) ≥ 0, x ∈ R3, and lim
|x|→∞

V (x) =∞(confining potential)

• Results

Existence of ground state φg ∈ S if β ≥ 0, −β2 ≤ λ ≤ β
Positive ground state is unique, φg = e iθ0 |φg |, θ0 ∈ R
Nonexistence of ground states, i.e. lim inf

φ∈S
E (φ) = −∞

β < 0
β ≥ 0 and λ < −β

2 or λ > β
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Numerical method for ground state

• Gradient flow with discrete normalization (imaginary time):

∂tφ(x, t) =

[
1

2
∇2 − V (x)− (β − λ)|φ(x, t)|2 + 3λ∂nnϕ(x, t)

]
φ(x, t),

∇2ϕ(x, t) = −|φ(x, t)|2, x ∈ Ω, tn ≤ t < tn+1,

φ(x, tn+1) := φ(x, t+
n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖2
, x ∈ Ω, n ≥ 0,

φ(x, t)|x∈∂Ω = ϕ(x, t)|x∈∂Ω = 0, t ≥ 0;φ(x, 0) = φ0(x),with ‖φ0‖2 = 1

• Full discretization

Backward Euler sine pseudospectral (BESP) method

Avoid zero-mode in phase space by using DST
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DST vs FFT

• Evaluate Edip(φ) = λ
2

∫
R3

(
Udip ∗ |φ|2

)
|φ|2 dx via DST and FFT

for φ := φ(x) = π−3/4γ
1/2
x γ

1/4
z e−

1
2 (γx (x2+y2)+γzz2), x ∈ R3

Case I: γx = 0.25, γz = 1

Case II:γx = γz = 1

Case III: γx = 2, γz = 1

Case I Case II Case III
DST DFT DST DFT DST DFT

2.756E-2 2.756E-2 3.555E-18 1.279E-4 0.1018 0.1020
1.629E-3 1.614E-3 9.154E-18 1.278E-4 9.788E-5 2.269E-4
1.243E-7 1.588E-5 7.454E-17 1.278E-4 6.406E-7 1.284E-4

Table: Errors, mesh size h = 1, 0.5, 0.25 from top to bottom
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Dynamics

• The problem

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) + (β − λ)|ψ|2 − 3λ∂nnϕ

]
ψ,

∇2ϕ(x, t) = −|ψ(x, t)|2, lim
|x|→∞

ϕ(x, t) = 0, x ∈ R3, t > 0

ψ(x, 0) = ψ0(x), x ∈ R3

• Mathematical question: Existence and uniqueness
• Existing results

Carles, Markowich & Sparber, Nonlinearity, 21 (2008)

Antonelli & Sparber, Physica D (2010)
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Well-posedness Results

Theorem

• Energy space:

ψ0 ∈ X ={
u ∈ H1(R3)

∣∣‖u‖2
X = ‖∇u‖2

2 + ‖u‖2
2 +

∫
Rd V (x)|u|2 dx <∞

}

• Results:

Local existence, ∃T ∈ (0,∞] such that problem has a unique
solution ψ ∈ C ((0,T ],X )

If β ≥ 0 and −β
2 ≤ λ ≤ β, global existence, T =∞

16 / 48



Dipolar Gross-Pitaevskii equations Lower dimensional dipolar GPE Multi-layered dipolar BEC ConclusionTwo dimensions case One dimension case

Dipolar GPE in reduced
dimensions
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Dimension reduction

• Dimension reduction, i.e. 3D −→ 2D or 1D (Cai, Rosenkranz,
Bao, Lei, PRA, 10’)

V (x) =
1

2

(
γ2
r (x2 + y 2) + γ2

z z2
)
, x = (x , y , z) ∈ R3

γ = γr/γz � 1, Disk-shaped BEC, 3D to 2D

γ = γr/γz � 1, Cigar-shaped BEC, 3D to 1D
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Quasi-2D dipolar GPE

Assumption: V (x , y , z) = Vr (x , y) + γ2
z

2 z2 (γ = γr/γz � 1,
γr = 1)

Ansatz: ψ(·, t) ≈ e−
it

2γ φ(x , y , t)wγ(z), wγ(z) = 1
(γπ)1/4 e−

z2

2γ

Substitute the ansatz into dipolar GPE, multiplying both sides
by wγ(z) and integrating over z
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Quasi-2D dipolar GPE

Quasi-2D equation:

i∂tφ =

[
−1

2
∆ + Vr + β2D |φ|2 −

3λ

2
(∂n⊥n⊥ − n2

z∆)ϕ2D

]
φ,

where β2D = β−λ+3λn2
z√

2γπ
, x = (x , y)T , n⊥ = (nx , ny )T ,

∂n⊥ = n⊥ · ∇, ∂n⊥n⊥ = ∂n⊥(∂n⊥), ∆ = ∂xx + ∂yy and

ϕ2D(x, t) = U2D
γ ∗|φ|2, U2D

γ (x) =
1

2
√

2π3/2

∫

R

e−s
2/2

√
|x|2 + γs2

ds.

As γ → 0+, ϕ2D ≈ (−∆)−1/2|φ|2
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Properties of U2D
γ (x)

r = |x|

U2D
γ (r) ≈ 1√

2γπ3/2
[− ln r + ln 2

√
γ + C ] , near r = 0,

U2D
γ (r) ≈ 1

2πr
, as r →∞

Û2D
γ (|ξ|) = 1

π

∫∞
−∞

e−
γξ2

3
2

|ξ|2+ξ2
3
dξ3

Û2D
γ (|ξ|) ≈ 1

|ξ| , near ξ = 0;

Û2D
γ (|ξ|) ≈

√
2γ

π
· 1

|ξ|2 , as |ξ| → ∞.
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Cauchy problem for 2D dipolar GPE

Cb := inf06=f ∈H1(R2)

‖∇f ‖2
L2(R2)

·‖f ‖2
L2(R2)

‖f ‖4
L4(R2)

Theorem

(Bao, Ben Abdallah & Cai, SIMA, 12’) Energy space

X =

{
φ ∈ H1(R2)

∣∣
∫

R2

|x|2|φ(x)|2 dx <∞
}

local well-posedness: ∃ a unique solution
φ(x, t) ∈ C ([0,T ),X )

global well-posedness

λ ≥ 0 and β − λ > −
√

2πCb
√
γ;

λ < 0 and β + 1
2 (1 + 3|2n2

z − 1|)λ > −
√

2πCb
√
γ.
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Ground state of the 2D equation

E2D(Φ) =

∫

R2

[
1

2
|∇Φ|2 + Vr (x)|Φ|2 + β2D |Φ|4 −

3λ

4
|Φ|2ϕ̃2D

]
dx

where β2D = β−λ+3n2
zλ

2
√

2πγ

ϕ̃2D =
(
∂n⊥n⊥ − n2

z∆
)
ϕ2D , ϕ2D = U2D

γ ∗ |Φ|2.

Ground state

min E2D(Φ) subject to ‖Φ‖L2 = 1 and E2D(Φ) <∞.
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continued

Theorem

Vr (x , y) = 1
2 (x2 + y 2), then

(i) ∃ a ground state Φg ∈ X if

λ ≥ 0 and β − λ > −
√

2πCb
√
γ;

λ < 0 and β + 1
2 (1 + 3|2n2

z − 1|)λ > −
√

2πCb
√
γ.

(ii) Φg = e iθ|Φg | (θ ∈ R). the positive ground state |Φg | is unique
if :

λ ≥ 0 and β − λ ≥ 0;

λ < 0 and β + 1
2 (1 + 3|2n2

z − 1|)λ ≥ 0.

(iii) If β + 1
2λ(1− 3n2

z) < −
√

2πCb
√
γ, there exists no ground

state of the equation
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Numerical method for ground state

• Gradient flow with discrete normalization

∂tφ(x, t) = −δE2D(φ)

δφ
, tn ≤ t < tn+1,

φ(x, tn+1) := φ(x, t+
n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖2
, x ∈ Ω, n ≥ 0,

φ(x, t)|x∈∂Ω = ϕ(x, t)|x∈∂Ω = 0, t ≥ 0;φ(x, 0) = φ0(x),with ‖φ0‖2 = 1

• Full discretization

Backward Euler Fourier pseudospectral (BEFP) method

no singularity for zero mode

∣∣∣Û2D
γ (ξ)

∣∣∣ =
1

π

∣∣∣∣∣

∫

R

e−γs
2/2

|ξ|2 + s2
ds

∣∣∣∣∣ ≤
1

|ξ| , ξ ∈ R2,

∣∣∣F
(

(∂n⊥n⊥ − n2
z∆)U2D

γ

)
(ξ)
∣∣∣→ 0, as |ξ| → 0.
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Convergence of the 3D GPE to 2D GPE

Theorem

Suppose β =
√
γβ0, λ =

√
γλ0, −β0

2 ≤ λ0 ≤ β0 and β0 ≥ 0, let
ψγ ∈ C ([0,∞); X3) and φ ∈ C ([0,∞); X2) be the unique solutions
of the 3D and 2D equations, respectively, satisfying

ψγ(t = 0) = φ(t = 0)wγ(z),

then for any T > 0, there exists CT > 0 such that

∥∥∥ψγ(x , y , z , t)− e−i
t

2γ φ(x , y , t)wγ(z)
∥∥∥
L2(R3)

≤ CT
√
γ, ∀t ∈ [0,T ].
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Comparison of the ground states
CAI, ROSENKRANZ, LEI, AND BAO PHYSICAL REVIEW A 82, 043623 (2010)

Analogous to the quasi-1D case, we now derive an
approximate analytical expression for the density. To this end
we assume that a repulsive contact interaction term (third term)
in Eq. (16a) dominates the ground-state solution. Hence, we
neglect the kinetic and nonlocal terms in Eq. (16a). With
the stationary ansatz ψ2D(x,y,t) = e−iµr t

√
n2D(r) we find

the density profile n2D(r) = [µr − (r2/2)]{ β2D√
2πγ

[1 − εdd (1 −
3n2

z)]}−1, where r2 = x2 + y2 and µr is the radial part
of the chemical potential. The density vanishes for r �
R = √

2µr . By evaluating the normalization of the density,
2π

∫
drrn2D(r) = 1, we find the mean-field radius

R =
(

4β2D

π
√

2πγ

[
1 − εdd

(
1 − 3n2

z

)])1/4

. (19)

Inserting this radius into the analytical density profile yields

n2D(r) = 2

πR2

(
1 − r2

R2

)
. (20)

For the special case nz = 1 our expression for the density
n2D(r) coincides with the expression for the “2D mean-field
regime” given in Ref. [26]. We can formally general-
ize the condition for the validity of Eq. (20) given in
Refs. [26,49] to

β2D

√
γ 3

4π

[
1 − εdd

(
1 − 3n2

z

)] � 1. (21)

While this condition may suggest that n2D(r) is a good approx-
imation for large dipole moment and small axial polarization
nz, we note that in the regime nz � 1/

√
3 the anisotropy

and magnitude of the potential �2D increases appreciably.
This may be seen by evaluating the kernel Un

2D given in
Appendix C. In other words, n2D(r) is a good approximation
for the 2D density profile if condition Eq. (21) is fulfilled
and the dipoles are polarized predominantly in the axial
direction.

By numerically solving Eq. (16) we obtain radial density
profiles of a quasi-2D dipolar BEC for various trap anisotropies
and polarizations. For axial polarization (nz = 1) we find a
radially symmetric density. For nonaxial polarization (nz < 1)
we find that the quasi-2D BEC is elongated along the
polarization axis projected onto the x-y plane and compressed
orthogonal to the polarization axis. This is in contrast to the
quasi-1D case where the attraction between aligned dipoles
compresses the BEC along the polarization axis. This is a
result of the saddle shape of the potential Un

2D with minima
along the projection of the dipole axis. The experiments in
Ref. [3,50] show such an elongation of a dipolar BEC in the
TF regime.

In Fig. 4 we show density profiles of the quasi-2D BEC
along the elongated (solid blue lines) and compressed axes
(dashed red lines) in the x-y plane. If the dipoles are aligned
parallel to the symmetry axis of the quasi-2D BEC (nz = 1),
the overall dipolar interaction is repulsive. This is manifest in
Eq. (16), where the contact interaction term becomes larger
for positive dipole strength εdd and the nonlocal potential is
positive. Moreover, the BEC remains radially symmetric as a
result of the vanishing radially asymmetric derivative ∂n⊥n⊥ .
We plot the radially symmetric density profile for nz = 1 in
the top panels of Fig. 4. The radial profile of the BEC becomes

n z n z

n

x

n

x

n

x + y

n

FIG. 4. (Color online) Cuts through the radial density profiles of
the quasi-2D dipolar BEC given by Eq. (16) for various polarizations
and trap anisotropies. The cuts are taken along the axes with largest
(x̄ axis, solid blue lines) and smallest extend of the BEC (ȳ axis,
dashed red lines). The insets show density plots of the quasi-2D BEC
and the lines indicate the positions of the cuts (x̄ and ȳ axes, respec-
tively). The gray dotted lines are the analytical profiles n2D(r) and
the shaded areas are the profiles obtained from the 3D GPE [Eq. (1)].
For sufficiently large confinement the 3D GPE profiles are not distin-
guishable from our 2D solution. We choose β2D = 100, εdd = 0.9, and
the dipole axis n = (0,0,1) (top panels), n = (1,0,0) (middle panels),
n = 1√

2
(1,1,0) (bottom left panel), and n = 1√

3
(1,1,1) (bottom right

panel).

increasingly asymmetric as we move the polarization away
from the z axis. This is evident in the different widths of the
density profiles along the two orthogonal axes in the middle
and bottom panels of Fig. 4. The plots with polarizations
along the x axis or the diagonal of the x-y plane (middle
and bottom left panels of Fig. 4) show the largest difference in
width. The case of equal polarization in all directions (bottom
right panel in Fig. 4), n = 1√

3
(1,1,1), is special because the

dipole interaction does not have a local character. This is
manifest in Eq. (16) where the contribution of the dipole
interaction to the contact interaction vanishes at the angle
nz = cos θ̃ ≈ 54.7◦. Consequently, in the bottom right panel
of Fig. 4 we only observe a very small asymmetry of the radial
BEC density, which is a purely nonlocal effect caused by the
potential �2D.

043623-6
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Comparison of the ground states

• Aspect ration: σx/σy

σα =

√∫

Rd

α2|ψd(x)|2 dx, α = x , y

• εdd = λ/β
MEAN-FIELD REGIME OF TRAPPED DIPOLAR BOSE-. . . PHYSICAL REVIEW A 82, 043623 (2010)

For comparison, in Fig. 4 we also plot the density profiles
of a dipolar BEC obtained by numerically solving the 3D
GPE [Eq. (1)] and integrating over the z direction. We find
excellent agreement with the solutions of our proposed 2D
equations (16) for sufficiently large trap anisotropies. In the
top left panel of Fig. 4 we notice a slight discrepancy to the
2D solution because the trap anisotropy is not sufficient to
suppress the change in the axial density profile caused by
the dipole interaction. Furthermore, in Fig. 4 we plot the
approximation n2D(r) [Eq. (20)]. We observe good agreement
within its regime of validity discussed following Eq. (21).
The analytical approximation of the radial profile agrees well
with the numerical ground-state solution if the polarization is
predominantly perpendicular to the BEC disc (top and bottom
right panels of Fig. 4). For polarizations predominantly in the
plane of the quasi-2D BEC, our proposed Eq. (16) remains
a good approximation while the analytical approximation
becomes invalid.

We have seen in Fig. 4 that the quasi-2D BEC in a radially
symmetric trap loses its radial symmetry if the dipole axis does
not point along its symmetry axis. This is a consequence of
the anisotropic nature of the dipolar interaction. It is possible
to observe this effect experimentally by measuring the aspect
ratio

σy

σx

=
√

〈y2〉√
〈x2〉

(22)

of the BEC. The aspect ratio is particularly suited for
measurements because it is not sensitive on the exact number
of particles [41].

We have computed the aspect ratio of a dipolar BEC
by numerically solving our 2D equations (16) for different
values of the dipole moment and polarization angle. Figure 5
summarizes these results. In Fig. 5(a) we plot the aspect
ratio for polarization along the x axis and varying dipole
interaction strength εdd . We observe that the BEC becomes
increasingly elongated as we increase the dipolar interaction
strength. In Fig. 5(b) we fix the dipole strength but let the
dipolar axis rotate in the x-z plane. This shows how the
radial BEC density profile changes from a symmetric disc
to an oval shape as we rotate the polarization away from
the z axis. We note that large changes in the aspect ratio
occur in a region around the magic angle θ̃ 
 θ̃m, where
the effective contact interaction is nearly independent of
the dipole interaction strength εdd . Large trap anisotropies
[dashed line in Fig. 5(b)] suppress the onset of significant
BEC asymmetry because the contact interaction dominates
the ground state. We have also obtained the aspect ratios by
numerically solving the 3D GPE, Eq. (1) and integrating over
the z axis (circles in Fig. 5). We find excellent agreement
with the aspect ratios obtained from our 2D equations. Since a
rotation of the polarization in the x-y plane only corresponds
to a rotation of the elongated axis of the ground-state density
(see Fig. 4), we obtain similar results to Fig. 5(b) for arbitrary
polarization. This shows that the reduced Eqs. (16) are
indeed a good approximation for describing quasi-2D dipolar
BECs at arbitrary polarization with sufficiently strong axial
trapping.

n

x
n z

n n

x

FIG. 5. (Color online) Aspect ratio of the quasi-2D BEC for
(a) varying dipole strength εdd with polarization along the x axis and
(b) varying polarization angle in the x-z plane [n = (sin θ̃ ,0, cos θ̃ )]
with εdd = 0.9. We use the trap aspect ratios γ = 1/10 (solid lines)
and γ = 1/80 (dotted lines) with β2D = 100. The circles indicate the
corresponding condensate aspect ratio according to the numerical
solution of the 3D GPE [Eq. (1)]. The upper axis in (b) shows
nz = cos θ̃ .

V. CONCLUSION

We have presented Gross-Pitaevskii-type mean-field equa-
tions for trapped quasi-1D [Eq. (9)] and quasi-2D [Eq. (16)]
dipolar BECs polarized along an arbitrary axis. These equa-
tions are based on a rigorous dimension reduction of the full
3D GPE. In contrast to previous works, they are valid for
arbitrary dipole alignment in the mean-field regime if the BEC
is in the ground state of the radial or axial harmonic trap,
respectively. Our result shows that quasi-1D and quasi-2D
dipolar BECs are governed by a modified contact interaction
term and an additional nonlocal potential. We have given
explicit expressions for the nonlocal potential for arbitrary
polarization (also see Appendix C).

One of the main advantages of the proposed mean-
field equations is that they are well suited for numerical
computations in strongly confined BECs. Our numerical
implementations of the ground-state computation in 1D and
2D perform much faster than our equivalent 3D computations.
This is because we only need to integrate over the reduced
dimensions, which vary over similar time scales, whereas
the excluded dimensions vary on a much faster time scale
for strong trap anisotropies. Moreover, the kernel of the
convolution in the nonlocal potential is bounded in 1D and
diverges only logarithmically in 2D. In contrast, in 3D the
corresponding kernel diverges inverse linearly. Our formula-
tion of the nonlocal potential in terms of partial derivatives
allows for efficient numerical methods based on the Fourier
transformation.

We have computed the ground states of our 1D and 2D
equations numerically and compared them with the ground
states of the 3D GPE. We find excellent agreement but
notice small discrepancies in 1D for the case when the BEC
is polarized perpendicular to the elongated direction. By
neglecting the kinetic energy term and assuming a vanishing
nonlocal potential, we have derived analytical expressions
for the density profiles of quasi-1D and quasi-2D dipolar
BECs when the dipoles are aligned predominantly along the
z axis. The ground state of the quasi-2D dipolar BEC becomes
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Dipolar GPE in 1D

Assumption: V (x , y , z) = z2

2 + γ2(x2+y2)
2 (γ � 1)

Ansatz: ψ(·, t) ≈ e−iγtφ(z , t)wγ(x , y),

wγ(x , y) = γ1/2π−1/2e−
x2+y2

2
γ

1D dipolar GPE:

i∂tφ =

[
−1

2
∂zz +

z2

2
+ β1D |φ|2 −

3λ
√
γ(3n2

z − 1)

8
√

2π
∂zzϕ

1D

]
φ,

where β1D = γ
β+ 1

2
λ(1−3n2

z )

2π ,

ϕ1D(z , t) = U1D
γ ∗|φ|2, U1D

γ (z) =

√
2γeγz

2/2

√
π

∫ ∞

|z|
e−γs

2/2 ds, z ∈ R.
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Properties of U1D
γ (z)

U1D
γ (z) = 1−

√
2γ

π
|z |+ O(z2), z near 0

U1D
γ (z) ≈ 1√

π|z | ,

Û1D
γ (ξ) =

√
2√
γπ

∫∞
0

e
− s

2γ

ξ2+s
ds

Û1D
γ (ξ) ≈

√
2√
γπ

(−γe − 2 ln |ξ|+ ln(2γ)), ξ near 0

Û1D
γ (ξ) ≈ 2

√
2γ√

π|ξ|2 , as ξ →∞.

γe- Euler-Mascheroni constant
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Cauchy problem for 1D dipolar GPE

Theorem

(Well-posedness) Energy space

X =

{
φ ∈ H1(R)

∣∣
∫

R
|x |2|φ(x)|2 dx <∞

}

global well-posed: ∃ a unique solution φ(x , t) ∈ C ([0,T ),X )
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Energy for 1D dipolar GPE

E1D(Φ) =

∫

R
[
|∂zΦ|2

2
+

z2

2
|Φ|2+

1

2
β1D |Φ|4+

3λ
√
γ(1− 3n2

z)

16
√

2π
|Φ|2ϕ]dz ,

where β1D = γ
β+ 1

2
λ(1−3n2

z )

2π and

ϕ(z) = ∂zz(U1D
γ ∗ |Φ|2).

Ground state

min E1D(Φ) subject to ‖Φ‖L2 = 1 and E1D(Φ) <∞.
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Ground state for 1D dipolar GPE

Theorem

For any parameter β, λ and γ, there exists a ground state of the
1D equation and the positive ground state |Φg | is unique under
one of the following conditions:

λ(1− 3n2
z) ≥ 0 and β − (1− 3n2

z)λ ≥ 0;

λ(1− 3n2
z) < 0 and β + λ

2 (1− 3n2
z) ≥ 0.

Moreover, Φg = e iθ0 |Φg | for some constant θ0 ∈ R.
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Numerical method for ground state

• Gradient flow with discrete normalization

∂tφ(x , t) = −δE1D(φ)

δφ
, tn ≤ t < tn+1,

φ(x , tn+1) := φ(x , t+
n+1) =

φ(x, t−n+1)

‖φ(·, t−n+1)‖2
, x ∈ Ω, n ≥ 0,

φ(x , t)|x∈∂Ω = ϕ(x , t)|x∈∂Ω = 0, t ≥ 0;φ(x , 0) = φ0(x),with ‖φ0‖2 = 1

• Full discretization

Backward Euler Fourier pseudospectral (BEFP) method

no singularity for zero mode

∣∣∣∂̂zzU1D
γ (ξ)

∣∣∣→ 0, as |ξ| → 0.
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Comparison of the ground states

MEAN-FIELD REGIME OF TRAPPED DIPOLAR BOSE-. . . PHYSICAL REVIEW A 82, 043623 (2010)

IV. QUASI-2D DIPOLAR BEC

In this section we consider a dipolar BEC which is strongly
confined along the z axis; that is, γ � 1 [cf. Fig. 1(b)]. Ana-
logous to the preceding section, we assume that gn0 � h̄ωz

and that the axial extend of the cloud is much larger than
the s-wave scattering length. If the dipolar interactions are
also small compared to the axial trap energy h̄ωz, then the
BEC is in the ground state of the axial harmonic trap. This is
the case of a quasi-2D BEC, where the BEC wave function

separates into
ψ(r,t) = e−iωzt/2ψ2D(x,y,t)w1D(z), (14)

w1D(z) =
(

mωz

πh̄

)1/4

e−mωzz
2/2h̄. (15)

In this section we use the dimensionless rescaling r → ra⊥,
t → t/ω⊥, ψ2D → ψ2D

√
N/a2⊥, where a⊥ = √

h̄/mω⊥ is the
radial magnetic length. Energies are given in units of h̄ω⊥. We
show in Appendix B that the transversal wave function ψ2D

fulfills the following equations:

i∂tψ2D(x,y,t) =
{
−1

2
∇2 + V2D(x,y) + β2D√

2πγ

[
1 − εdd

(
1 − 3n2

z

)]|ψ2D(x,y,t)|2 + �2D

}
ψ2D(x,y,t), (16a)

�2D = −3β2Dεdd

2

[
∂n⊥n⊥ − n2

z∇2] ∫
dx ′dy ′U2D(x − x ′,y − y ′)|ψ2D(x ′,y ′,t)|2. (16b)

Here V2D(x,y) = (x2 + y2)/2 and β2D = 4πNas/a⊥. We
denote with ∂n⊥ = nx∂x + ny∂y and ∂n⊥n⊥ = ∂n⊥(∂n⊥). The
kernel U2D is radially symmetric and is given by

U2D(r) = er2/4γ

(2π )3/2√γ
K0(r2/4γ ), (17)

where Kν (ν real) denotes a modified Bessel function of the
second kind and r2 = (x − x ′)2 + (y − y ′)2. In Appendix C

n z n z

n

x

n

x

FIG. 3. (Color online) Linear density of the quasi-1D BEC
according to the solution of our 2D equation, Eq. (9) (blue solid
lines), the corresponding analytical prediction of Eq. (12) (gray dotted
lines), and the full 3D GPE of Eq. (1) (shaded area). In the top panels
dipoles are aligned with the BEC axis, while in the bottom panels they
are aligned perpendicular to the BEC axis. We choose β1D = 100,
εdd = 0.9, and the γ given in the plots.

we show that the nonlocal potential [Eq. (16b)] can be written
as a simple convolution �2D = − 3β2Dεdd

2

∫
dx ′dy ′U (n)

2D (x − x ′,
y − y ′)|ψ2D(x ′,y ′,t)|2. There we also derive a closed form
for U

(n)
2D , which explicitly depends on the polarization axis.

Assuming validity of the GPE, the only approximation in the
derivation of Eq. (16) is the factorization Eq. (14).

In Fig. 2(b) we plot the kernel U2D [Eq. (17)] for different
trap anisotropies γ . In contrast to the equivalent 1D kernel
U1D in Fig. 2(a), the long-range behavior does not depend on
γ . In fact, we can show that U2D(r) ∼ 1/2πr for r → ∞.
This is equivalent to the long-range behavior of the 3D kernel
U3D. However, in the opposite limit, r → 0, we find that
the divergence of the kernel is only logarithmic, U2D(r) 


1√
2π3γ

[−ln(r) + ln(2
√

γ ) + const].

For numerical computations in Fourier space, the expres-
sion Eq. (16b) for the nonlocal potential is often more useful
than the closed form derived in Appendix C. Moreover, in the
limit of large trap anisotropy, γ � 1, we have shown that the
potential in Eq. (16b) is equivalent to a Poisson-type equation.
To this end we introduce the fictitious potential φ2D defined by
�2D = − 3β2Dεdd

2 [∂n⊥n⊥ − n2
z∇2]φ2D. For γ � 1 we may then

replace Eq. (16b) with

(−∇2)1/2φ2D(x,y,t) = |ψ2D(x,y,t)|2. (18)

Hence, the computation of the nonlocal potential �2D in
Fourier space involves only multiplications of the density
|ψ2D|2 with the momentum.

In contrast to the 1D mean-field equation [Eq. (9)] in
2D the dipolar interaction increases the contact interaction
strength for dipoles aligned along the z axis (and positive
εdd ). This is a manifestation of the fact that magnets aligned
in parallel repel each other. The modification of the contact
interaction term by a factor of 1/

√
2πγ is due to the

compression along the z axis [34,46]. Furthermore, unlike
in 1D, the effect of dipolar interactions does not vanish at
the magic angle θ̃m: While the dipolar contact interaction
term vanishes, the nonlocal term [last term in Eq. (16a)]
does not.
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Multi-layered dipolar BEC
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Layered structure

Layered structure in daily life

Layered dipolar BEC

Effective dipole-dipole interactions in multilayered dipolar Bose-Einstein condensates

Matthias Rosenkranz, Yongyong Cai, and Weizhu Bao
Department of Mathematics, National University of Singapore, 119076, Singapore

(Dated: October 19, 2011)

We propose a two-dimensional model for a multilayer stack of dipolar Bose-Einstein condensates
formed by a strong optical lattice. We derive effective intra- and interlayer dipole-dipole interac-
tion potentials and provide simple analytical approximations for a given number of lattice sites at
arbitrary polarization. We find that the interlayer dipole-dipole interaction changes the transverse
aspect ratio of the ground state in the central layers depending on its polarization and the number
of lattice sites. The changing aspect ratio should be observable in time of flight images. Further-
more, we show that the interlayer dipole-dipole interaction reduces the excitation energy of local
perturbations affecting the development of a roton minimum.

PACS numbers: 67.85.-d, 03.75.Kk, 03.75.Lm, 03.75.Hh

I. INTRODUCTION

Layered structures of magnetic materials play a cru-
cial role both in today’s technology and in fundamen-
tal physical theories. Technological examples are aplenty
in the magneto-electronic industries, e.g., hard disks or
magnetic sensors. One theoretical goal of studying mul-
tilayers is to illuminate the elusive theory of high-Tc su-
perconductivity, where the layered structure appears to
play a crucial role [1]. For a realistic theory of atomic or
molecular multilayers it is, however, vital to include the
dipole-dipole interaction (DDI) between the underlying
particles.

The study of magnetic single- and multilayer films has
enjoyed a long history in condensed matter physics (for a
recent review, see Ref. [2] and references therein). There,
an alternating structure of ferromagnetic and nonmag-
netic layers is deposited on a substrate, e.g., by atomic
beam epitaxy. However, structural instabilities induced,
e.g., by temperature changes and film thickness variation
often complicate experiments in thin films.

Quantum-degenerate dipolar gases have received much
attention recently from both theoretical and experimen-
tal studies (for recent reviews, see Refs. [3, 4]). Their
DDI crucially affects the ground-state properties [5, 6],
stability [7–9], and dynamics of the gas [10]. Further-
more, they offer a route for studying exciting many-
body quantum effects, such as a superfluid-to-crystal
quantum phase transition [11], supersolids [12] or even
topological order [13]. Recent advances in experimen-
tal techniques have paved the way for a Bose-Einstein
condensate (BEC) of 52Cr with a magnetic dipole mo-
ment 6µB (Bohr magneton µB), much larger than con-
ventional alkali BECs [14–16]. Promising candidates for
future dipolar BEC experiments are Er and Dy with
even larger magnetic moments of 7µB and 10µB , respec-
tively [17, 18]. Furthermore, DDI-induced decoherence
and spin textures have been observed in alkali-metal con-
densates [19, 20]. Dipolar effects also play a crucial role
in experiments with Rydberg atoms [21] and heteronu-
clear molecules [22, 23]. Bosonic heteronuclear molecules
may provide a basis for future experiments on BECs with

dipole moments much larger than in atomic BECs [24].

In contrast to solid state thin film structures, the layer
width and spacing of BECs in optical lattices are pre-
cisely tunable with external fields. This makes dipolar
BECs a prime candidate for investigating the effects of
DDI in multilayers. For example, it has been shown that
the DDI stabilizes quasi-two-dimensional ultracold gases
for perpendicular polarization [9, 25] and enables con-
trolled chemical reactions [23]. Another intriguing effect
is the occurrence of interlayer bound states [26–31]. How-
ever, it is still unclear to what extend effective models for
multilayers of dipolar BEC at arbitrary polarization are
valid and how interlayer DDI can be detected.

In this article, we investigate the effect of interlayer
DDI on the ground state of the BEC. We present an
effective two-dimensional (2D) model for an arbitrarily
polarized dipolar BEC in a strong one-dimensional (1D)
optical lattice. Our 2D model offers a clear advantage for
numerical computation of ground state properties com-
pared to computations for a full three-dimensional (3D)
Gross-Pitaevskii equation (GPE): our computation times
reduce to seconds instead of dozens of hours. Previously,
such dimension-reduced models have been derived for
BECs without DDI [32–38] and with dipolar interactions

ψ`
z

x

d

ϑ

U2D U `+1`
2D

U `+2`
2D

1
2π2γ4

δ

γ

FIG. 1. (Color online) Setup of the multilayered dipolar BEC
polarized along d. An optical lattice along z separates the
dipolar BEC into 2D layers in the x–y plane with distance δ.
Apart from the intralayer DDI U2D, each layer interacts with
other layers via the interlayer DDI U j`

2D.
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Dipolar GPE

Dipolar BEC confined in a ‘transverse harmonic potential’+
‘longitude optical lattice’

V (x , y , z) = 1
2 (x2 + y 2) + V0π

2

2 sin2(πz), x = (~x , z), ~x = (x , y)

Dipolar GPE in 3D:

i∂tψ =

[
−1

2
∇2 + V (x) + (β − λ)|ψ|2 + λϕ

]
ψ

ϕ = ∂nn

(
1

−4πr
∗ |ψ|2

)
, n = (nx , ny , nz)T , |n| = 1
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Quasi-2D regime

V0 � 1, optical lattice approximated by a train of harmonic
potentials

the wave function separates as (Rosenkranz, Cai & Bao,
preprint, 11’)

ψ(x, t) = e−it/2γ2
∑

`

ψ`(~x , t)w`(z)

γ = V
−1/4
0 π−1/2

w`(z) = w(z − z`) = (1/πγ2)1/4e−(z−z`)2/2γ2

the Gaussians w`(z) do not mutually overlap

∫

R
w`(z)wj(z)dz ≈ 0, ` 6= j

39 / 48



Dipolar Gross-Pitaevskii equations Lower dimensional dipolar GPE Multi-layered dipolar BEC Conclusion

Quasi-2D equation

The 2D equation for ψ` = ψ`(~x , t) at `th site (Vho = 1
2 |~x |2)

i∂tψ` =

[
−1

2
∇2 + Vho +

1√
2πγ

[
β − λ(1− 3n2

z)
]
|ψ`|2 + V `

2D

]
ψ`.

potential V `
2D, Fourier transform V̂ `

2D(k), k = k(cosϕ, sinϕ)

V̂ `
2D(k) = 3λ

∑

j

([
(nx cosϕ+ ny sinϕ)2 − n2

z

]
Û j`

even(k)

+ 2inz(nx cosϕ+ ny sinϕ)Û j`
odd(k)

)
̂|ψj |2(k).

δ`j = `− j , η(s) = exp(s2)erfc(s), erfc(s) = 1− erf(s)

Û j`
even(k) =

k

4
e
−
δ2
`j

2γ2

[
η

(
γ2k + δ`j√

2γ

)
+ η

(
γ2k − δ`j√

2γ

)]
,

Û j`
odd(k) =

k

4
e
−
δ2
`j

2γ2

[
η

(
γ2k + δ`j√

2γ

)
− η

(
γ2k − δ`j√

2γ

)]
,
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V̂2D decomposition

separate l = j (intralayer) and l 6= j (interlayer)

V̂ `
2D(k) = 3β[(nx cosϕ+ ny sinϕ)2 − n2

z ]Û2D(k)|̂ψ`|2(k)

+ 3λ
∑

j 6=`
[nx cosϕ+ ny sinϕ− inzsign(δ`j)]2

× Û j`
2D(k) ̂|ψj |2(k),

Û2D = 2Û00
2D and

Û j`
2D(k) =

k

4
e
−
δ2
`j

2γ2 η

(
γ2k − |δ`j |√

2γ

)
.

if γ � 1

Û j`
2D(k) ' k

2
e−|δ`j |k (` 6= j).
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Single mode approximation

If we assume that the the BEC densities in each layer vary
little over the central sites, we can simplify the 2D model to a
equation for the central site wave function ψ0(~x , t)

i∂tψ0 =

[
−1

2
∇2 + Vho +

1√
2πγ

[
β − λ

(
1− 3n2

z

)]
|ψ0|2 + V2D

]
ψ0

V̂2D(k) = 3β
(

[(nx cosϕ+ ny sinϕ)2 − n2
z ]Û2D(k)

+
∑

j 6=0

[nx cosϕ+ ny sinϕ− inzsign(δ0j)]2Û j0
2D(k)

)

× |̂ψ0|2(k).
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Numerical methods for ground states

For both 3D and 2D models, using gradient flow with discrete
normalization

For 3D GPE, the wave function vanishes at the boundary,
backward Euler Sine pseudospectral

For 2D model, backward Euler Fourier pseudospectral

n = (sinϑ, 0, cosϑ)T
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Comparison-particle number difference
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FIG. 3. (Color online) Relative particle number difference
between GPE ground state and the 2D model [Eq. (4)] for
individual lattice sites. The particle numbers are relative to
the particle number in the central layer N3D

0 (bars). The
discs indicate the particle number difference in the 2D model
relative to the central site (right axis label). The parameters
are Ns = 61 lattice sites with V0 = 20Er, Er/~ω = 60, and

g = 100
√

2Er/~ωπ2.

true densities vary sufficiently strongly over the central
lattice sites.

IV. INTERLAYER-DDI-INDUCED CHANGE OF
THE ASPECT RATIO

The interlayer DDI can cause observable effects in mul-
tilayered dipolar BECs. This becomes apparent from
Fig. 2. The strength of the interlayer DDI is compara-
ble to the strength of the intralayer DDI at wavelengths
larger than δ. We expect that the anisotropy of the DDI
for ϑ > 0 leads to a change in the aspect ratio of a quasi-
2D dipolar BEC in the central layer of a stack of dipolar
BECs. In this section, we investigate these effects nu-
merically using the single mode approximation for the
central layer.

To determine the mean radii of the central layer first we
computed ground state densities for a varying number of
lattice sites at a constant normalization. We calculated
the mean radii as

R2
α =

∫
d2ρα2|ψ0(ρ)|2, (α = x, y). (15)

The aspect ratio of the central layer is then given by
Ry/Rx. Magnetostriction causes the dipolar BEC to ex-
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FIG. 4. (Color online) Ground state densities of the central
lattice site for various DDI strengths and polarization angles.
The filled surfaces are the projection of the central site of the
GPE results, whereas the solid (dashed) contour lines are the
ground states of the coupled (single mode) 2D equation (4).
The plotted densities are all normalized to 1. The coupled
and single mode results are almost indistinguishable except
in the top left panel. The parameters are as in Fig. 3. The
plots use the magnetic length a0 =

√
~/mω as length unit.

pand along the polarization direction [3, 38]. Figure 5
shows the aspect ratio as well as the individual mean
radii of the BEC as a function of the number of lattice
sites Ns. The case Ns = 1 corresponds to a single layer
dipolar BEC. We observe that the interlayer DDI causes
an additional reduction in the aspect ratio depending on
the number of lattice sites and polarization angle. For
perpendicular polarization the aspect ratio remains un-
changed because the DDI is isotropic. However, the in-
dividual radii decrease. We have also computed aspect
ratios for a stronger lattice with V0 = 40Er and observed
a similar dependence of the mean radii on Ns. For this
stronger lattice and ϑ = π/4 the aspect ratio was closer
to 1 and its change slightly smaller than at V0 = 20Er.
For perpendicular polarization the mean radii and aspect
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FIG. 3. (Color online) Relative particle number difference
between GPE ground state and the 2D model [Eq. (4)] for
individual lattice sites. The particle numbers are relative to
the particle number in the central layer N3D

0 (bars). The
discs indicate the particle number difference in the 2D model
relative to the central site (right axis label). The parameters
are Ns = 61 lattice sites with V0 = 20Er, Er/~ω = 60, and

g = 100
√

2Er/~ωπ2.

scribes the ground state of the multilayer dipolar BEC
well. Its accuracy diminishes for strong DDI because the
true densities vary sufficiently strongly over the central
lattice sites.

IV. INTERLAYER-DDI-INDUCED CHANGE OF
THE ASPECT RATIO

The interlayer DDI can cause observable effects in mul-
tilayered dipolar BECs. This becomes apparent from
Fig. 2. The strength of the interlayer DDI is compara-
ble to the strength of the intralayer DDI at wavelengths
larger than δ. We expect that the anisotropy of the DDI
for ϑ > 0 leads to a change in the aspect ratio of a quasi-
2D dipolar BEC in the central layer of a stack of dipolar
BECs. In this section, we investigate these effects nu-
merically using the single mode approximation for the
central layer.

To determine the mean radii of the central layer first we
computed ground state densities for a varying number of
lattice sites at a constant normalization. We calculated
the mean radii as

R2
α =

∫
d2ρα2|ψ0(ρ)|2, (α = x, y). (15)
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FIG. 4. (Color online) Ground state densities of the central
lattice site for various DDI strengths and polarization angles.
The filled surfaces are the projection of the central site of the
GPE results, whereas the solid (dashed) contour lines are the
ground states of the coupled (single mode) 2D equation (4).
The plotted densities are all normalized to 1. The coupled
and single mode results are almost indistinguishable except
in the top left panel. The parameters are as in Fig. 3. The
plots use the magnetic length a0 =

√
~/mω as length unit.

The aspect ratio of the central layer is then given by
Ry/Rx. Magnetostriction causes the dipolar BEC to ex-
pand along the polarization direction [3, 40]. Figure 5
shows the aspect ratio as well as the individual mean
radii of the BEC as a function of the number of lattice
sites Ns. The case Ns = 1 corresponds to a single layer
dipolar BEC. We observe that the interlayer DDI causes
an additional reduction in the aspect ratio depending on
the number of lattice sites and polarization angle. For
perpendicular polarization the aspect ratio remains un-
changed because the DDI is isotropic. However, the in-
dividual radii decrease. We have also computed aspect
ratios for a stronger lattice with V0 = 40Er and observed
a similar dependence of the mean radii on Ns. For this
stronger lattice and ϑ = π/4 the aspect ratio was closer
to 1 and its change slightly smaller than at V0 = 20Er.
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FIG. 5. (Color online) Mean radii and aspect ratio of the
central BEC layer as a function of the number of lattice sites.
The different panels correspond to different polarization an-
gles. The interlayer DDI has a noticeable effect over sev-
eral lattice sites. The lines are marked at the right and are
only to guide the eye. The parameters are as in Fig. 3 with
gd/g = 19/20.

For perpendicular polarization the mean radii and aspect
ratio were nearly indistinguishable from the top panel
in Fig. 5. The DDI-induced change of aspect ratio has
been observed in a single layer 52Cr via time of flight
expansion[15, 51]. We suggest that the dependence of
the aspect ratio on Ns could also be observed via time
of flight expansion. To observe the central layers, in this
experiment the outer layers would have to be removed
on a time scale short enough to suppress equilibration,
e.g., with additional lasers focused on the outer layers.
This is followed immediately by time of flight expansion
of the BEC. The observable effect is largest for parallel
polarization ϑ = π/2.

V. BOGOLIUBOV EXCITATIONS

In this section we investigate the influence of interlayer
DDI on the excitation spectrum of a layered quasi-2D
dipolar BEC. In particular, we consider local density fluc-
tuations of the layered BEC and derive their Bogoliubov
energy. Their Bogoliubov energy can assume imaginary
values for suitable parameters, which indicates the on-
set of a dynamical instability that leads to exponential
growth of excitations.

To determine the Bogoliubov energy we consider small
perturbations around the ground state of Eq. (4). For
simplicity we assume a vanishing transverse harmonic
potential Vho = 0 and homogeneous density ν in each
layer. For an optical lattice with Ns sites ν = 1/Ns. A
stationary state of the effective 2D GPE (4) is given by
ψ`(ρ, t) = ψ`(t) = e−iµt

√
ν with the chemical potential

µ = [ḡ − ḡd(1− 3d2z)]ν. (16)

Now we add a local perturbation ξ`(ρ, t) to the station-

ary state ψ`(t), that is, ψ`(ρ, t) = e−iµt[
√
ν + ξ(ρ, t)].

We expand the perturbation in a plane wave basis as
ξ`(ρ, t) = (1/2π)

∫
d2q
(
uq`e

i(q·ρ−ωqt) + v∗q`e
−i(q·ρ−ωqt)

)

and insert ψ`(ρ, t) into Eq. (4). Here, ωq are the exci-
tation frequencies of quasimomentum q and uq`, vq` are
the mode functions in layer `. Keeping terms linear in
the excitations uq` and vq` we find the Bogoliubov-de
Gennes equations for perpendicular polarization

ωquq` =
q2

2
uq` + ν(ḡ + 2ḡd)(uq` + vq`)

− gdν
∑

j

Û j`2D(q)(uqj + vqj),
(17)

−ωqvq` =
q2

2
vq` + ν(ḡ + 2ḡd)(vq` + uq`)

− gdν
∑

j

Û j`2D(q)(vqj + uqj).
(18)

Excitations in layer ` are coupled to excitations in all lay-
ers through the interlayer DDI. However, the interlayer
DDI drops exponentially with the distance [cf. Fig. 2 and
Eq. (9)]. Therefore, first we only take into account near-
est neighbor interactions |`− j| ≤ 1. Then the matrix of
the system of Eqs. (17)–(18) becomes tridiagonal and can
be solved for its eigenenergies. The resulting Bogoliubov
energy EB(q) = ωq is determined by

E2
B(q) =

q2

2

[
q2

2
+ 2(ḡ + 2ḡd)ν

− 3gdνÛ2D(q)− 12gdνÛ
`+1,`
2D (q)

]
.

(19)

Because Û j`2D(q) vanishes for zero quasimomentum, the
speed of sound c = limq→0 ∂EB(q)/∂q =

√
ḡν + 2ḡdν is

not influenced by the interlayer DDI. Only the intralayer
DDI increases the speed of sound via its zero momentum
mode.

Now we generalize the Bogoliubov energy in multilayer
dipolar BECs to arbitrary polarization. After inserting
the expansion of the 2D wave functions into Eq. (4) we
find the squared Bogoliubov energy

E2
B(q) =

q2

2

[
q2

2
+ 2[ḡ − ḡd(1− 3d2z)]ν

+ 6gdνŴ
``
2D(q)− 12gdν

∣∣Ŵ `+1,`
2D (q)

∣∣
]
.

(20)

Here, Ŵ j`
2D(q) = [(dx cosϕ + dy sinϕ)2 − d2z]Û

j`
2D(q) in

polar coordinates q = q(cosϕ, sinϕ). In general, this
excitation energy is anisotropic but mirror symmetric
around the polarization direction projected onto the x–y
plane. Interestingly, the interlayer interaction always re-
duces the Bogoliubov energy compared to the Bogoliubov
energy of a dipolar BEC with only intralayer DDI. This
means that interlayer DDI drives the BEC closer towards
an instability regardless of the polarization direction.
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Conclusion

Dipolar Gross-Pitaevskii equations in reduced dimensions (1D,
2D)

Ground state and Cauchy problem for the 1D and 2D
equations

Model for multi-layered dipolar Bose-Einstein condensate

Efficient numerical implementation and good agreement
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THANK YOU !
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