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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
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One can also use Bessel functions in 2D
and 3D to produce such a potential.
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2nd Order Model: Newton’s like

D’Orsogna, Bertozzi et al. model (PRL 2006):

Model assumptions:

@ Self-propulsion and friction terms
determines an asymptotic speed of

va/p.

@ Attraction/Repulsion modeled by an
effective pairwise potential U (x).

—Cue "/t L Cre /MR

U(r)

One can also use Bessel functions in 2D
and 3D to produce such a potential.

equations

C = CR/CA > LEZER/EA < 1 and
Cl* < 1:

U(r)

Pair-wise
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Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
( dx,-
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N
dv, Z B Vl

\ j=I1

with the communication rate, v > 0:

a; = a(|xi — x;|) =
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
( dx,-

dt

N
dv, Z B Vl

\ j=I1

with the communication rate, v > 0:

1

djj — a(‘xi _xj’) — (1 n |xi _lez)’y

Asymptotic flocking: v < 1/2; Cucker-Smale.
General Proof for v < 1/2; C.-Fornasier-Rosado-Toscani.

Global Stability for the full model: Albi-Balague-C.-VonBrecht (SIAM J. Appl.
Math. 2014), C.-Huang-Martin (Nonlinear Analysis: Real World Applications 2014).
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Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

Cdn
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< dvl-
- = > all —x) (v —w)
. jeXi(t)

where X;(1) C {1,...,N} is the set of dependence, given by
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Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

Cdn
d "
< dvl-
- = > all —x) (v —w)
. jeXi(t)

where X;(1) C {1,...,N} is the set of dependence, given by

Si(f) = {1<€<N L }

xe —lelvz

Cone of Vision:

Rigorous Mean-Field Limit: C.-Choi-Hauray-Salem, to appear in JEMS.
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Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:

[ Xi = v,

N\

dvi = |(a = Bil*)vi— Vi Y Ul —x|)| dt+vV2Ddli(1)
\ j#i

where I';(¢) are N independent copies of standard Wiener processes with values in
R? and o > 0 is the noise strength.
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Self-Propelling/Friction/Interaction with Noise Particle Model:

[ Xi = v,

N\

dvi = |(a = Bil*)vi— Vi Y Ul —x|)| dt+vV2Ddli(1)
\ j#i

where I';(¢) are N independent copies of standard Wiener processes with values in
R? and o > 0 is the noise strength. The Cucker—Smale Particle Model with Noise:

([ dx; = v;dt ;

< N

dvi = a(lx;—xi|)(vy —vi)dt + (2D " a(lx; — xi|) dTi(t) .
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Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:

(dX! = V! dt,

N\

N
dV; = V2D P(V;) o dB; — P(V;) | > KX—Xx)(V; — Vi) | dr.

\ J=1

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere
. d -

in R, 1.e.,

VRV

Pv)=1-— BE

Noise in the Stratatonovich sense: imposed by the rigorous construction of the
Brownian motion on a manifold. Rigorous derivation: Bolley-Canizo-C.

Main issue: phase transition driven by noise D: Degond-Liu-Frouvelle.



From micro to macro: PDE models
[ JeJe)
Vlasov-like Models

Outline

e From micro to macro: PDE models
@ Vlasov-like Models



From micro to macro: PDE models
(o] Je!
Vlasov-like Models

Convergence of the particle method

Empirical measures: if x;, v; : [0,T) — RY. fori = I,...,N,1is asolution to the
ODE system,

Cdu_
da "
dvi
dt

\

then the fy : [0,T) — P (R?) given by

N N
fult) == midiwmey  with Y mi=1,
i=1 i=1

1s expected to be the solution corresponding to initial atomic measures.
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Convergence of the particle method

Empirical measures: if x;, v; : [0,T) — RY. fori = I,...,N,1is asolution to the
ODE system,
( dx,-
a ="
orientation
) propulsion-friction attraction- repulsmn A -
dv; g n
7; = (a—p8W ) Vi ZmJVU |x; —xj\ - ijalj Vi) .
\ JFi

then the fy : [0,T) — P (R?) given by

N N
=D _midu@me)  With Y mi=1,
i=1 i=1

1s expected to be the solution corresponding to initial atomic measures.
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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

% + V- V)gf + din[(@ — 6|V|2)vf] — div, [(va* p)f] = 0.

Velocity consensus Model:

of B V—w
::f(f\)r(x,v,t)

Orientation, Attraction and Repulsion:

g—]; 4+ v- V,f — din [(va*,O)f] — vv ) [€(f)(X, v, t)f(xa v, t)] .

Rigorous proofs of the mean field limit: Cafizo-C.-Rosado (M3AS 2010),
Bolley-Cafizo-Rosado (M3AS 2011), C.-Choi-Hauray (Springer Verlag 2012).
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Scaled Vlasov equation in d = 2, 3 dimensions:
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Fixed Speed Models as Asymptotic Limits

Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2, 3 dimensions:

1. .
Of +v-Vif +a (t,x)-Vf  + gleV{f (a— B[ )v} =0, (tx,v) € Ry x R*
with a®(¢,-) = =V, U x p°(t,-) — Hxf°(t,").

This asymptotic limit enforces that particles move at cruising speed /« /3. If one
formally does the expansion

fF=f+e +% +

we get
div, {f (c — BIv[)v} = 0
Of + div,(fv) + div, (fa(t, %)) + div, {f P (o = BP)v} = 0,

up to first order.

To eliminate the higher order term we use the invariants of the flow associated to the
field (o« — B|v|*)v - V,, functions of x and v/|v|.
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Vicsek Model as Asymptotic Limit

Bostan-C. (M3AS 2013)

Assume that U € o (Rd),.H (x,v) = h(x)v with & € Cj,(R?) nonnegative,
£ € Pu(RY x RY), suppf™ C {(x,) : x| < Lo, 7o < |v] < Ro}-

Then for all § > O the sequence (f°). converges towards the measure solution
f(t,x,w) on (x,w) € R? x \/a/BS of the problem

of + divy(fw) — divy, {f <I— r—12(w®w)> (VxU*p+H*f)} =

with initial data f (0 <f m>
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Remarks:

@ Adding noise we get from A,f to the Laplace-Beltrami operator on the sphere
A f. We only know how to perform the formal expansion but not the rigorous
limit.
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Vicsek Model as Asymptotic Limit

Bostan-C. (M3AS 2013)
Assume that U € o (Rd),.H (x,v) = h(x)v with & € Cj,(R?) nonnegative,
f™ € PR x RY), suppf™ C {(x,v) « x| < Lo, 70 < |v| < Ro}.

Then for all § > O the sequence (f°). converges towards the measure solution
f(t,x,w) on (x,w) € R? x \/a/BS of the problem

1
Of + divi(fw) — divy, {f <I — ﬁ(w ®w)> (VXU*p+H*f)} —
with initial data f(0 <fm>
Remarks:

@ Adding noise we get from A,f to the Laplace-Beltrami operator on the sphere
A f. We only know how to perform the formal expansion but not the rigorous
limit.

@ This formally shows that the fixed speed limit of the Cucker-Smale’s model is
the Vicsek’s model.



Phase Transition for Cucker-Smale
®O0
Local Cucker-Smale Model

Outline

a Phase Transition for Cucker-Smale
@ Local Cucker-Smale Model



Phase Transition for Cucker-Smale
(o] J
Local Cucker-Smale Model

The Local Cucker-Smale model with noise

@ We consider the following kinetic flocking model:

Of +VVif = Voo (v = w)f —av(l = p)f + DY)

where

f vf(t,x,v)dv
[ f(t,x,v)dv

@ The first term is a Cucker-Smale-like term, encourages the velocity to align
with the mean velocity

ur(t,x) =

@ The second term provides self-propulsion and friction, encouraging unit
velocities

@ The last term captures the influence of noise in the velocity
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The homogeneous problem
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of = V.- (v = w)f = av(l = p[)f + DV.f)
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The homogeneous problem

@ Looking at the spatially homogeneous problem:

af = Vo ((v = w)f — av(1 = vP)f + DV )

@ We have a gradient flow structure: write the equation as 0,f = V, - (fV,£) with
§E=®(v)+ Wxf+ Dlogf

e Confinement inv: ®(v) = « (|V|4 _ |V|2)

4 2

ki

o Interaction potential of the form W(v) = 5-
e Linear diffusion.

@ Our model is continuity equation with velocity field of the form —V &
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The homogeneous problem

@ Looking at the spatially homogeneous problem:

of = V.- (v = w)f = av(l = p[)f + DV.f)

@ We have a gradient flow structure: write the equation as 0,f = V, - (fV,£) with
§E=®(v)+ Wxf+ Dlogf

. V4 V2
e Confinement inv: ®(v) = « (|4| — |2| )

e Interaction potential of the form W (v) = %
e Linear diffusion.
@ Our model is continuity equation with velocity field of the form —V &

@ Natural entropy for this equation given by the free energy of the system:
1
Flf] := / O(v)f(v)dv + —/ Wy —w)f(v)f(w)dwdv+ D | f(v)logf(v)dv
R4 2 RdJ Rd R4

:/Rd (o + (1= )M ) fvy dv = Sl +D [ flogf(v)av,
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The stationary solutions

@ We consider stationary solutions of the form:

flv) = %exp (%1 {a% + (1 —a)% —uf-v])
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The stationary solutions

@ We consider stationary solutions of the form:

4 2
| V]

flv) = %exp (%1 {a'VT + (1 —a)5- —uf-v])

@ We see that in order for the stationary solution to exist, #r must be a root of the
equation:

H(u,D) = /(v —u)f(v)dv
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The stationary solutions

@ We consider stationary solutions of the form:

4
|

flv) = %exp (%1 {a'VT + (1 —a)% —uf-v])

@ We see that in order for the stationary solution to exist, #r must be a root of the
equation:

H(u,D) = /(v —u)f(v)dv

@ We prove that, in any dimension'

e There 1s a region of parameter space with only one such root, namely
u=>0

e There is another region of parameter space with more than one root, u = 0
and |u| = Cop # 0

11D case was proven independently in J. Tugaut’s Phase transitions of McKean-Vlasov
processes in symmetric and asymmetric multi-wells landscape, and S. Herrmann and J. Tugaut.
Non-uniqueness of stationary measures for self-stabilizing processes
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Phase Transition driven by Noise

Main 1dea of our proof

@ Our proof hinges Laplace’s method and the behavior of H (u, D) as D varies:

e For small D, we are able to use Laplace’s Method to show that there is a
nonzero stationary solution
e For large D, %—7; 1s negative for all u.

@ Since we know that u = 0 1s a solution for all D, this shows that there 1s more
than one root of H for small D, and only one root for large D
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The case of small D

Find u such that it is a root of H(u, D), i.e. as D — 0,

o [ exp (—%Pu(v)) vidvy
[ exp (—%Pu(v)) dv

(1)
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The case of small D

Find u such that it is a root of H(u, D), i.e. as D — 0,

_ [ exp (—%Pu(v)) vidvy

1
[exp (—5Pu(v)) dv (L
Laplace’s Method tells us that this # must be such that
d 1
2wD)2 |H(P, 2 e 1P,
., (2mD) | ( (V))| p( ()) )

(27D)

where V is the global minimum of P,(v).



Phase Transition for Cucker-Smale
0000080
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The case of small D

Find u such that it is a root of H(u, D), i.e. as D — 0,

_ [ exp (—%Pu(v)) vidvy

[exp (—5Pu(v)) dv (L
Laplace’s Method tells us that this # must be such that
 aD)* [H(P.@)| " exp (= 5Pu(7)) o
(27D)* |H(Pu(7))| % exp (~ 5 Pu())

(
(v).

@ Find the minima of P,(v) = a@ + (1 — a)% — uvi

where v is the global minimum of P,

@ This global minimum is strictly positive

@ Hence, there 1s a nonzero stationary solution in addition to u=0
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The case of small D

Find u such that it is a root of H(u, D), i.e. as D — 0,

_ [ exp (—%Pu(v)) vidvy

[exp (—5Pu(v)) dv (L
Laplace’s Method tells us that this # must be such that
 aD)* [H(P.@)| " exp (= 5Pu(7)) o
(27D)* |H(Pu(7))| % exp (~ 5 Pu())

(
(v).

@ Find the minima of P,(v) = a@ + (1 — a)% — uvi

where v is the global minimum of P,

@ This global minimum is strictly positive
@ Hence, there 1s a nonzero stationary solution in addition to u=0

In order to prove this rigorously, we need to apply an implicit function theorem from
the positive root for D = 0, this needs to compute next orders in the expansion of
Laplace’s theorem and their limits as the noise D — 0. These expansions are not
standard since we need to track carefully the powers of D involved in each term.
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Phase Transition driven by Noise

The case of D — o

@ We show that H is strictly decreasing in u for D — oo

e We split the derivative into two pieces, one positive and one negative, and
show that the negative piece compensates for the positive
e This shows that H can have at most one zero for large D
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Numerical Exploration

Varying o and D

@ We have proven analytically that for small D, there i1s more than one stationary
solutions, while for large D, there is only one

@ Now, numerically consider where in parameter space each of these situations
occur

e Vary a and D and count the number of roots of H

e Compare also to where %—t‘ 1s positive and negative
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Numerical Exploration

The roots of ‘H plotted against D in 2D

u for alpha=2
||—u for alpha=4
—u for alpha=6
—u for alpha=8
—u for alpha=10
1|—u for alpha=12
u for alpha=14
11--dH/du(u) for alpha=2
--dH/du(u) for alpha=4
--dH/du(u) for alpha=6
R o dH/du(u) for alpha=8
-0.2" - |-~ dH/du(u) for alpha=10
PR ( )
(u)

--dH/du(u) for alpha=12

-0.47 4|--dH/du(u) for alpha=14
-0.6- 1
0.8 s ]
-1 0.1 02 03 _ 04 0.5 0.6
D (diffusion coefficient)
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Numerical Exploration

Numerical exploration, varying o and D in 2D

0 0.1 02 03 04 0.5 0 0.1 0.2 03

The number of roots at u = 0 The sign of %—7: atu =0
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Exploring the limit @« — oo 1n 2D

—

Two dimensional bifurcation diagram

o
©
[

o
e

o
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o
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o
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o
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u (magnitude of mean velocity of stationary solution)
o
(62}

o

—alpha=1
—alpha=10
—alpha=20
alpha=40
—alpha=60
||—alpha=80
—alpha=100

o

0.1 062 03 04 0.5
D (diffusion coefficient)
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Stability of the stationary solutions in 1D
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D (diffusion coefficient)



Phase Transition for Cucker-Smale
000000 e
Numerical Exploration

Comparing particles to f in 1D

3 I
—True stationary state (D=0.1)
+ Histogram of final state (D=0.1)
——True stationary state (D=0.2)
o5 + Histogram of final state (D=0.2) |

—True stationary state (D=0.3)

+ Histogram of final state (D=0.3)
True stationary state (D=0.4)
Histogram of final state (D=0.4)

2 4 True stationary state (D=0.5)

+ Histogram of final state (D=0.5)
—True stationary state (D=0.6)

+ Histogram of final state (D=0.6)
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Outline

e Reduced Hydrodynamics
@ Asymptotic limit
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Hydrodynamics via Asymptotic Limit

Bostan-C. (M3AS 2017)

Given a solution to

Of° + dive(f*v) + 5 div (o — BIVP)v) = -

1
3

divi{f* (v —u[f"]) + oV,f"}
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Hydrodynamics via Asymptotic Limit
Bostan-C. (M3AS 2017)

Given a solution to

O + dive(Fov) + édivv(fa(a — B = édivv{fg(v ~ ) + oV

g

for any o, r such that 5 €10, é[, we denote by [ = [ (;»2) the unique positive solution
of A(I) = %I with

" cos0e Y sin? =2 9 do
A(D) = o CleRy, d>2.

fOW elcos 0 gin?=2 9 d6
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Hydrodynamics via Asymptotic Limit
Bostan-C. (M3AS 2017)

Given a solution to

O + dive(Fov) + édivv(fa(a — B = édivv{fg(v ~ ) + oV

1
d

g

for any o, r such that 5 €10, [, we denote by [ = [ (;»2) the unique positive solution

of () = &1 with

r

foﬁ cos 0e' % sin? =2 9 do

fOW elcos 0 gin?=2 9 d6

Then the limit distribution f = lim.\ o f“, is a von Mises-Fisher equilibrium
f = pMia(w) dw on rS?~!, where the density p(t, x) and the orientation (¢, x)
satisfy the macroscopic equations (SOH)

lo

O:p + div, (p—ﬂ) =0, (t,x) e Ry x R
r

Vip
o

0 + kq F(Q°VX)Q+§([CI—Q®Q) 0
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Expansion

The behavior of the family (f©)->o0, as the parameter £ becomes small, follows by
analyzing the formal expansion

e=f+efM 42D 4
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The behavior of the family (f©)->o0, as the parameter £ becomes small, follows by
analyzing the formal expansion

f=f+e +9 +
Plugging the above Ansatz into the kinetic equation, leads to the constraints
div, {f(a — BJv|*)v} =0
div{f" (e = BIv[)v} = div {f (v — ulf]) + o V.f} := O(f)
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Asymptotic limit

Expansion

The behavior of the family (f©)->o0, as the parameter £ becomes small, follows by
analyzing the formal expansion

f=f+e +9 +
Plugging the above Ansatz into the kinetic equation, leads to the constraints
div, {f(a — BJv|*)v} =0
div{f" (e = BIv[)v} = div {f (v — ulf]) + o V.f} := O(f)

and to the time evolution equations

Of + divi(fv) + divo {f'? (a — B[ v} = L, (F)

with

(1) V/ —u V/
Ef(f(l)) — din{f(l)(v — ulf]) + vaf(l)} — div, {f fRdf ( f]) d }

fRdf dv’

cutting the development at second order.
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First term

Oth-order term in expansion

Assume that (1 + |v|*)F € M (RY). Then F solves div,{F(a — B[v[*)v} = 0in
D'(RY) ie.,

/ (o — Bv|*)v - Vyp dF(v) =0, forany ¢ € Ci(RY)
R4

if and only if suppF C {0} U rS.
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Oth-order term in expansion

Assume that (1 + |v|*)F € M (RY). Then F solves div,{F(a — B[v[*)v} = 0in
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if and only if suppF C {0} U rS.

Let F € M, (R?) be a non negative bounded measure on R?. We denote by (F) the
measure corresponding to the linear application
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First term

Oth-order term in expansion

Assume that (1 + |v|*)F € M (RY). Then F solves div,{F(a — B[v[*)v} = 0in
D'(RY) ie.,

/ (o — Bv|*)v - Vyp dF(v) =0, forany ¢ € Ci(RY)
R4

if and only if suppF C {0} U rS.

Let F € M, (R?) be a non negative bounded measure on R?. We denote by (F) the
measure corresponding to the linear application

v

o [ v0rorm)+ [ v (ﬂ) LosoF(v).

for all 1 € C2(RY).

Elimination

For any f € M, (R? x R?) such that div,{f(a — B|v|*)v} € Mp(R? x R?), we
have (div,{f(a — B|v]*)v}) = 0.
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Von Mises Distribution

Forany l € R4, ) € S, we introduce the von Mises-Fisher distribution

Mio(w) dw = ; dw, w € rSit
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Asymptotic limit

Von Mises Distribution
Forany l € R4, ) € S, we introduce the von Mises-Fisher distribution

dw, w € rSe

Kernel of the averaged collision operator

Let F' € /\/l,jr (Rd) be a non negative bounded measure on R, supported in rS?~".

The following statements are equivalent:
1. (O(F)) =0, thatis

/v;éo {—(v — ulF)) -V, [{E (ﬂ)] oA, {{; (ﬂ)] }F div— 0

for all ¢ € C2(rS$1).
2. There are p € R4, ) € S such that F = pM;qdw where [ € R satisfies

foﬂ cos0 e %sin?"20df o

fo7r elcos 0 gin?=2 9 d6 r?
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@ Stability of the symmetric and non-symmetric stationary states as solutions of
the homogeneous problem is not analytically known.

@ Uniqueness of the non symmetric equilibria except symmetries 1s open.

@ Phase transitions from ordered to disordered state driven by noise in the
inhomogeneous case should be explored.

@ Reduced Hydrodynamics recovered from the whole space local Cucker-Smale
model with noise by asymptotic limits.
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