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Introduction Basic setting

Basic setting

Consider the time-evolution of (¢, -) € L?(R¢; C) governed by
Schrédinger’s equation:

2
ieOp* = —%Aw FV(@)s, ¢°0,2) = v§ € LA(RY),
where z € R%, t € R, and 0 < ¢ < 1 a (small) semi-classical parameter.

The potential V() € R is assumed to be smooth and V' € L>(R9).
Then, the Hamiltonian

&€ 62

is ess. self-adjoint on L?(R%) and thus v°(t) = e *H /=4, ¥Vt € R.
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Introduction Basic setting

Basic conservation laws for mass and energy:

ME(t) = 95 ()72 = 1451172,

2
E(t) = Z/R \Vwa(t,x)de—i—/ V(@)= (t, 2)[2da = E(0).

Rd
The initial data initial data ¢ is assumed to satisfy:

M=(0) = [¥§ll7. =1, sup E(0) < C < +oc.
0<e<1
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Introduction Basic setting

Basic conservation laws for mass and energy:

ME(t) = 95 ()72 = 1451172,

2
E(t) = Z/R \Vwa(t,x)de—i—/ V(@)= (t, 2)[2da = E(0).

Rd
The initial data initial data ¢ is assumed to satisfy:

M=(0) = [¥§ll7. =1, sup E(0) < C < +oc.
0<e<1

This implies (since V(x) > 0 w.r.0.g.) that ¢°(¢) is -oscillatory:

vieR:  sup ([[°(0)llrz + [eVY©(?)]|L2) < 4o0.
0<e<l
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Introduction Basic setting

The wave function ¢ can be used to define observable densities, i.e.
(real-valued) quadratic quantities of .

Two important examples are the position and the current density:
pE(t,x) = [5(t,2)[?,  JE(t @) = e Tm ($5(t,2) VY (¢, 7).
which satisfy the so-called Quantum hydrodynamic system (QHD):

Op® + div JE = 0,

. JE® J* g2 AL/p?
¢ +div +p°VV = —p° .
OpJ 1 < . > p 2pv<ﬁ
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A

Intr ion Bohmian dyr

Bohmian dynamics

In Bohmian mechanics' one defines particle-trajectories
Xe(t, ) RT =5 Ry = X5(L,y),

via the following ODE:

Xe(t,y) = u*(t, X°(t,y)), X°(0,y) =y e RY

where the initial y € R? are assumed to be distributed according to
p5 = |v§|? and the velocity field «* is (formally) given by

gy T (V)
WD) = e ! (wt,x) )

'D. Bohm, Phys. Rev. '52
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Introduction Bohmian dyr

Even though < is (highly) singular, it can be proved? that, for all t € R:

X¢4(t,-) is well-defined pf — a.e. and that
p(t) = X°(t, ) # po,

i.e. p°(t, x) is the push-forward of p§ under the mapping X (t, -):

/ o(2)p (t, ) = / o(X*(t, )i (y)dy, o € Co(RY).
Rd ]Rd

The latter is often called equivariance of the measure p¢(t, -)3.

2Berndl et al. CMP '95
3Teufel and Tumulka, CMP '05
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Introduction Bohmian dyr

The Lagrangian point of view of Bohmian dynanics (formally) obtained
by defining _
Pe(t,y) == X°(t,y)
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A

Intr ion Bohmian dyr

The Lagrangian point of view of Bohmian dynanics (formally) obtained

by defining _
P(t,y) == X°(t,y)

Then, since X© = u®(t, X*(t,y)):
. d
P = ﬁua(t, X(t,y)) = Owu® +u - Vus

and using the QHD system (rewritten in terms of p°, u®) gives:

" { X¢ = p*, X0,y) =y
P = —VV(X%) = VV5(t, X%), P*(0,y) = uj(y),

with V§ = —%A\/p?, the so-called Bohm potential.
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Introduction Bohmian dyr

The system (1):
@ provides a nonlocal perturbation of the classical Hamiltonian
phase space flow;

formally converges to the Hamiltonian flow in the classical limit
e —0;

is used for multi-particle computation in quantum chemistry*;
allows for a comparison to the well-known theory of Wigner
functions and Wigner measures;

could provide a possible starting point for an optimal-mass
transportation formulation of quantum dynamics.

© 060 O

“Gindensperger et al. J. Chem. Phys. "00
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Bohmian measures Definition and basic properties

Bohmian measures

Definition

Fix ¢ > 0 and let ° € H'(R?), with associated densities p°, J¢. Then,

87 € M (RS x RY) is given by

(B% ) = /Rd p°(z)e <x ‘;8) dz, V€ Co(RE xRY).

In other words

Fap) = @3 (p - 2.

i.e. a mono-kinetic phase space distribution. It, formally, defines a
Lagrangian sub-manifold of phase space

£ = {(x,p) € RE x BY : p = u(2)},

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013
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Bohmian measures Definition and basic properties

Analogous to classical kinetic theory, we have

)= [ B @ = [ o).

Rd

However, for the second moment, we find

JL e = [ T,

which is not equal to the quantum mechanical kinetic energy:

e e 2 |JE$ 2
B =5 [ [V @)Pde = | /|Vﬂ dz,
2 R4 2 R4 p l’

i.e. we are missing the term of order O(¢?).
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Bohmian measures Definition and basic properties

Dynamics of Bohmian measures
Denote by ®f := (X*(t,y), P¢(t,y)) the (e-dependent) phase space
flow induced by (1).

Lemma (Equivariance of 3)

The mapping ®; exists globally in-time for almost all (z,p) € R?,
relative to the measure

By, p) = pi(y) 6(p — u(y))-
Moreover ®; is continuous in time on its maximal open domain and
pE(t) = @F 9 5o,

i.e. B¢(t) is the push-forward of 5¢ under the flow 5.

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013
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Bohmian measures Definition and basic properties

Thus, 5¢(t) formally solves the following Vlasov-type equation:

2 5
WpE+p-V. 05—V, <V(x) — €2Af/\p/>€p>> -VpB° =0,

@
pita) = [ BCta.dp)

Theorem (Weak formulation)

LetV € CL(RY) and y§5 € H*(R?). Then, for alle > 0,

pe(t,2,p) = p=(t, 2)0(p — w (1, 2))

is a weak solution of (2) in D'(Ry x R% x RY).

This is not straightforward since one requires V, V3 - V,5° to be well
defined as a distribution.

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013 13/36



Bohmian measures Classical limit of Bohmian measures

Classical limit of Bohmian measures

Lemma (Existence of a limiting measure)
Let ¢ (t) be e-oscillatory, i.e
Oiggl(!!wf(t)!m + eVY© ()l 2) < +oc.
Then, up to extraction of sub-sequences, it holds:
B % B in LO(Ry; MF(RY x RY)w — .
for some classical limit 3(t) € MT(R% x R¥). Moreover,

e—04

p(t, x) {5_}—O>+ /Rdﬁ(t,x,dp), J(t,x) — /deﬂ(t,x,dp).

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013
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Bohmian measures Classical limit of Bohmian measures

Thus, the limiting measure /(t) incorporates (for all times ¢ € R), the
classical limit of the quantum mechanical position and current
densities p(t), J°(t).
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Bohmian measures Classical limit of Bohmian measures

Thus, the limiting measure /(t) incorporates (for all times ¢ € R), the
classical limit of the quantum mechanical position and current
densities p(t), J°(t).

Remark (Tightness)
If in addition p°(t) = |1 (t)|? is tight, we also have

i [ 5 tdedp) = [[ s(t.do.dp)
e—04 R2d R2d

i.e. we do not loose any mass in the limit process.
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Bohmian measures Classical limit of Bohmian measures

Thus, the limiting measure /(t) incorporates (for all times ¢ € R), the
classical limit of the quantum mechanical position and current
densities p(t), J°(t).

Remark (Tightness)
If in addition p°(t) = |1 (t)|? is tight, we also have

i [ 5 tdedp) = [[ s(t.do.dp)
e—04 R2d R2d

i.e. we do not loose any mass in the limit process.

Q: Can we say more about 5(t), e.g., when is 3(¢) mono-kinetic ?

Q: Can we infer from /(¢) information on the classical limit of X<(¢),
Pe(t)?
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Bohmian measures Classical limit of Bohmian measures

Young measures

We briefly recall the definition of Young measures:

Let f. : R? — R™ be a sequence of measurable functions. Then, there
exists a mapping
T : R — MT(R™),

called the Young measure associated to f., such that (after selection of
an appropriate subsequence):

Q (— (Y¢,g) is measurable for all g € Cy(R™);
@ For any test function o € L(; Co(R™)):

i [ ol fOac= [ [ otenarcydc

e—0 Rd

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013 16 /36



Bohmian measures Classical limit of Bohmian measures

Using the push-forward formula ¢(t) = ®f # 5§ and passing to the
limit e — 04 implies:

Lemma (Connection to Young measures)
Denote by

Tiy: Ry x RE = MY(REXRY) : (t,y) = Yo y(da, dp),

the Young measure associated to the Bohmian flow X¢(t,y), P*(t,y).
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Bohmian measures Classical limit of Bohmian measures

Using the push-forward formula ¢(t) = ®f # 5§ and passing to the
limit e — 04 implies:

Lemma (Connection to Young measures)
Denote by

Tiy: Ry x RE = MY(REXRY) : (t,y) = Yo y(da, dp),
the Young measure associated to the Bohmian flow X¢(t,y), P*(t,y).

Then, if pj gy po, strongly in L1 (R?), the following identity holds

B(t,z,p) = /d Tiy(z,p)po(y)dy-

Ry

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013 17 /36



Comparison to Wigner transforms Review on Wigner measures

Wigner transforms and Wigner measures

For any € > 0, one defines Wigner function w*(t) € L*(R% x R¥):

we(t,x,p) == (2717) / Y° (t T — fy> e <t,az + %y) e dy.

The function w® € L*(R¢ x R¢) solves a nonlocal dispersive equation.
In general, w®(t,x,p) # 0 and thus not a probability measure.

SLions and Paul, Rev. Math. Iberoam. 93
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Comparison to Wigner transforms Review on Wigner measures

Wigner transforms and Wigner measures

For any € > 0, one defines Wigner function w*(t) € L*(R% x R¥):

we(t,x,p) == (2711_) / Y° (t T — fy> e <t,az + %y) e dy.

The function w® € L*(R¢ x R¢) solves a nonlocal dispersive equation.
In general, w®(t,x,p) # 0 and thus not a probability measure.

It is well known® that if 1)°(t) is e-oscillatory, then, up to extraction of
sub-sequences,

w® % w i Cy(R; D/ (RY x RY) w — x.

where w(t) € M+ (RZ x Rg) is the Wigner measure, satisfying the
classical Liouville equation:

Ow+p - Vew — Vo,V - Vyw =0, inD(RExRY).

SLions and Paul, Rev. Math. Iberoam. 93
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Comparison to Wigner transforms Review on Wigner measures

Moreover, if ¢°(t) is e-oscillatory, then we also have

pe(t,x)e_}—%/ w(t, x,dp), Js(t,ﬂc)a_>—0>+ pw(t,z,dp).
R4 R4

More generally, for any (smooth) quantum mechanical observable

lim (070, 0P" (@07 (1) = [[ | alephutt.o.phdodp.

e—04

where Op®(a) is the Weyl-quantized operator associated to the
classical symbol a € Cp°(R$ x RY).
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Comparison to Wigner transforms Review on Wigner measures

Moreover, if ¢°(t) is e-oscillatory, then we also have

pe(t,x)e_}—%/ w(t, x,dp), Js(t,ﬂc)a_>—0>+ pw(t,z,dp).
R4 R4

More generally, for any (smooth) quantum mechanical observable

lim (070, 0P" (@07 (1) = [[ | alephutt.o.phdodp.

e—04

where Op®(a) is the Weyl-quantized operator associated to the
classical symbol a € Cp°(R$ x RY).

Q: Under which circumstances do we know that w = 37
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Comparison to Wigner transforms Sufficient conditions for w = g

Results on the connection of w and

For simplicity we shall suppress any ¢-dependence in the following.
Theorem (Sub-critical case)
Assume that v is uniformly bounded in L?(R%) and that in addition

eveyE 2% 0, in L2 (RY).

loc

Then, up to extraction of subsequences, it holds

w(z,p) = Bla,p) = plz) 6(p).

v

Wave functions ¢ which neither oscillate nor concentrate on the scale
¢ (but maybe on some larger scale), yield in the classical limit the
same mono-kinetic Bohmian or Wigner measure with p = 0.

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013 20/36



Comparison to Wigner transforms Sufficient conditions for w = g
For the next result we use the representation

wa(x) _ aa(x)eiSf(:r:)/a’

with S¢(x) € R defined p° = |a®|?> — a.e. (up to additives of 27n, n € N).

Theorem (WKB wave functions)

Lety° be as above. If sV /pF "~ 0, in L2, .(R%), and if
025¢
€ sup 8_>—0§r0, Ve,5€1,....,d,
zeqe | 020

where Q¢ is an open set containing supp p°, then it holds

lim |(w®, ) = (5%,9)| =0, V¢ e Co(RG x Rp).

E—%0+

This result can be shown to be almost sharp.

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013
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Comparison to Wigner transforms Sufficient conditions for w = 3

Case studies

Example (Oscillatory function)
Let f € S(R% C), g € C®(R?,C) s.t. g(y +7) = g(y), vy €T ~ Z% and

V(@) = F)g ().

Then, 8 = w if, and only if, g(y) = ae’*¥, a € R, k € T*.

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013 22/36



Comparison to Wigner transforms Sufficient conditions for w = 3

Case studies

Example (Oscillatory function)

Let f € S(R% C), g € C®(R?,C) s.t. g(y +7) = g(y), vy €T ~ Z% and

V(@) = F)g ().

3

Then, 8 = w if, and only if, g(y) = ae’*¥, a € R, k € T*.

Example (Concentrating function)

U () = 2 (‘”““) ,

€

with f € S(R%; C). Thus [/°|? — 6(z — z0). Then, 3 = w iff f = 0.
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Comparison to Wigner transforms Sufficient conditions for w = g

Example (Semi-classical wave packet)

— 20

@Z}a(ﬂ?) = g_d/4f <x\ﬁ> eipo-x/a’ o, Po € Rda

with f € S®(R?; C), concentrating “only” on the scale /c (such ° are
often called “coherent states”).

Then, one easily computes

w=f=|fl728(p — po)d(z — 2o)-

This phase-space distribution describes classical (point) particles with
position zo and momentum pyg.
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The case of semi-classical wave packets

Semi-classical wave packtes

Denote by X (t), P(t) the solution of the classical Hamiltonian system

X =P X(0) =,
P=—-VV(X), P(0)=po.

and assume the initial data to be a coherent state, i.e.

r — X

ita) =iy (122

) eipo-x/ej Zo,Po € Rda
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The case of semi-classical wave packets

Semi-classical wave packtes
Denote by X (t), P(t) the solution of the classical Hamiltonian system
X =P X(0) =,
{ P=—-VV(X), P(0)=po.
and assume the initial data to be a coherent state, i.e.

r — X

NG

In addition, we recall that a sequence {f.}o<-<1 : R — R is said to
converge locally in measure to f, if for every § > 0 and every Borel set
Q with finite Lebesgue measure:

Yi(a) = ey ( ) )

;ii%meas{(x €Q| fe(z)— f(z)] = 0)} =0.
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The case of semi-classical wave packets

Theorem (Convergence of Bohmian trajectories)
LetV € C3(RY) and 5 a coherent state at x, po.
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The case of semi-classical wave packets

Theorem (Convergence of Bohmian trajectories)

LetV € C3(R?) and y§ a coherent state at xo, po.
@ Then, the limiting Bohmian measure satisfies

B(t,,p) = w(t,z,p) = || |72 8(x — X(t))3(p — P(1)),

where X (t), P(t) are the classical Hamiltonian trajectories.
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The case of semi-classical wave packets

Theorem (Convergence of Bohmian trajectories)

LetV e C} (R9) and 5 a coherent state at x, po.
@ Then, the limiting Bohmian measure satisfies

B(t,,p) = w(t,z,p) = || |72 8(x — X(t))3(p — P(1)),

where X (t), P(t) are the classical Hamiltonian trajectories.
© Consider the following re-scaled Bohmian trajectories

Ya(tvy) :Xa(t,x0+\/gy), Za(t7y) :Pa(t,x0+\/gy).

Then 0 o
ve N x, 7225 p

locally in measure on R; x RY.
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The case of semi-classical wave packets

Remark

This result should be compared with a recent result by Dirr and
Rémerd, which proved

e—0
ye X,

in-probability induced by the measure ||15||?, locally on compact
time-intervals.
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The case of semi-classical wave packets

Remark
This result should be compared with a recent result by Dirr and
Rémerd, which proved
ye % x,

in-probability induced by the measure ||15||?, locally on compact
time-intervals. In comparison to their result:

@ we can also prove convergence of the re-scaled Bohmian

momentum Z°;
© we do not need a-priori estimates on the time-dependence;

© we immediately obtain existence of a sub-sequence {¢,}, such
that

n—oo n—,oo

v X, 7z "3 P, ae inQCR, xRy

4J. Funct. Anal. 10
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The case of semi-classical wave packets

Sketch of proof.
The proof relies on the use of Young measure theory. Let

Wy Ry X RZ — M+(R;l X Rg) i (6 y) = wey(z,p),

be the Young measure associated to the family of re-scaled Bohmian
trajectories Y (t,y), Z°(t,y).

4
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The case of semi-classical wave packets
Sketch of proof.
The proof relies on the use of Young measure theory. Let

Wy Ry X RZ — M+(Rg X Rﬁ) i (6 y) = wey(z,p),

be the Young measure associated to the family of re-scaled Bohmian
trajectories Y (t,y), Z°(t,y).

Using the push-forward formula °(t) = ®§ # 5§ and passing to the
limit e — 0 yields:

(t.p) = [ 170) Py o)y

4
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The case of semi-classical wave packets

Sketch of proof.
The proof relies on the use of Young measure theory. Let

Wy Ry X RZ — M+(R;l X Rg) i (6 y) = wey(z,p),
be the Young measure associated to the family of re-scaled Bohmian
trajectories Y (t,y), Z°(t,y).

Using the push-forward formula °(t) = ®§ # 5§ and passing to the
limit ¢ — 0 yields:

(t.p) = [ 170) Py o)y
Having in mind the particular form of the limiting measure 5(t), implies

wiy (2, p) = 6(p — P(1))0(x — X (1)),

This is equivalent to (local) in measure convergence of Y&, Z¢.
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WKB analysis of Bohmian trajectories  Pre-caustic behavior
WKB analysis of Bohmian trajectories
The, by now, classical, WKB ansatz is

Ve (L, 7) = af (¢, ) SEe)/e
with S(t,r) € Rand a° ~ a + ca; + %as + . . ..

Plugging this into Schrddinger’s equation and comparing equal powers
of ¢ yields a Hamilton-Jacobi equation for the phase

1
S + 5|VS|2 +V(z) =0, Sli=0 = So,
and a transport equation for the leading order amplitude

Oia+Va-VS + %AS =0, ali=0 = ao,

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013 28 /36



WKB analysis of Bohmian trajectories Pre-caustic behavior

WKB analysis of Bohmian trajectories
The, by now, classical, WKB ansatz is

ws (t, :E) — as(t’ z)eiS(t,x)/e
with S(t,r) € Rand a° ~ a + ca; + %as + . . ..

Plugging this into Schrddinger’s equation and comparing equal powers
of ¢ yields a Hamilton-Jacobi equation for the phase

oS + %WSF +V(z) =0, Sli=0 = So,
and a transport equation for the leading order amplitude

Bha+ Va-VS + %AS —0, alio = ao,
or, equivalently for p = |a|*:

9p + div(pVS) = 0.
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WKB analysis of Bohmian trajectories Pre-caustic behavior

In order to obtain S one needs to solve the Hamiltonian system:

{X(t7y):P(t7y)7 X(O,y)::%
P(t,y) = -VV(X(t,y)), P(0,y)=VSo(y).

Locally in-time, this yields a flow-map: X (t,-) : y — X(t,y) € R

Christof Sparber (UIC) Bohmian measures CSCAMM, May 2013
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WKB analysis of Bohmian trajectories Pre-caustic behavior

In order to obtain S one needs to solve the Hamiltonian system:

{ X(t,y) = P(t,y), X(0,y) =y,
Locally in-time, this yields a flow-map: X (t,-) : y — X(t,y) € R

In general, there is a time T* > 0, at which the flow X (¢, ) ceases to
be one-to-one. Points = € R? at which this happens are caustic points:

¢ ={r cR?: JycRst. x = X(t,y) and detV, X (¢,y) = 0}.

The caustic set is thus defined by ¢ := {(x,t) : * € %, } and the caustic

onset time is
T :=inf{t e Ry : € # 0}.
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WKB analysis of Bohmian trajectories Pre-caustic behavior

For ¢t > T™* the solution of the Hamilton-dacobi equation (obtained by
the method of characteristics), typically becomes multi-valued.

Figure : Classical trajectories for V(z) = 0 and VSy(z) = — tanh(5z — 2)
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WKB analysis of Bohmian trajectories Pre-caustic behavior

Theorem (Convergence before caustic onset)

Let y5(x) = ap(x)e™ @)/ with ag € S(R%;C), Sy € C°(R%; R) and
sub-quadratic.
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WKB analysis of Bohmian trajectories Pre-caustic behavior

Theorem (Convergence before caustic onset)

Let ¢ () = ag(x)e™ @/ with ag € S(R?; C), Sy € C°(R% R) and
sub-quadratic.

Then, there exists a T* > 0, independent of = € R?, such that:

@ For all compact time-intervals I, C [0,T*)

B =% B =w(t,x,p) = plt,2)d(p — VS(t, 7)),

where p(t,z) and S(t, z) solve the WKB system.
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WKB analysis of Bohmian trajectories Pre-caustic behavior

Theorem (Convergence before caustic onset)

Let ¢ () = ag(x)e™ @/ with ag € S(R?; C), Sy € C°(R% R) and
sub-quadratic.

Then, there exists a T* > 0, independent of = € R?, such that:
@ For all compact time-intervals I, C [0,T*)

B =% B =w(t,x,p) = plt,2)d(p — VS(t, 7)),

where p(t,z) and S(t, z) solve the WKB system.
© The corresponding Bohmian trajectories satisfy

e—0 e—0
xXe 5 Xx, PSP

locally in measure on {I; x supp po} C R; x RY, where py = |ao|?.
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WKB analysis of Bohmian trajectories Post-caustic behavior

What happens after caustic onset?

Theorem (Non-convergence after caustics)

Denote by ) the connected component of (R, x R%) \ & containing

{t =0}.
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WKB analysis of Bohmian trajectories Post-caustic behavior

What happens after caustic onset?

Theorem (Non-convergence after caustics)
Denote by ) the connected component of (R, x R%) \ & containing

{t =0}.
Then there exist initial data ao(y) and Sy(y) such that, outside of Q,

there are regions Q C (R; x R%) \ € in which both X¢ and P* = X¢ do
not converge to the classical, multivalued flow.

Remark

In the free case V (x) = 0 and if |ag| > 0 on all of R?, one can show that
on any connected component ) # g, whose boundary intersects 0§
P= does not converge to P.
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WKB analysis of Bohmian trajectories Post-caustic behavior

The obstruction to convergence stems from the fact that Bohmian
trajectories do not cross, even as € — 0.

2 8 8 %8 8 &

Figure : Left: Bohmian trajectories X¢(t,y) with e = 10~3 in the case V(z) = 0
and VSy(z) = —tanh(5z — 3). Right: A closeup of the central region.
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WKB analysis of Bohmian trajectories Post-caustic behavior

Oscillations not only appear in the trajectories X<, but also in the
momentum P=(¢,y) = u®(t, X°(t,y)). They are reminiscent of so-called
dispersive shocks, observed in, e.g. Korteweg-de Vries.

Figure : The quantity P°(t,y) = u®(t, X (¢,y)) for e = 1072.
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WKB analysis of Bohmian trajectories Post-caustic behavior

Figure : The quantity P¢(t,y) along the Bohmian trajectories X¢(¢,y).
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WKB analysis of Bohmian trajectories Post-caustic behavior

Open questions

@ What is the limit of X©(¢,y), P¢(¢,y) after caustic onset?
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Open questions

@ What is the limit of X©(¢,y), P¢(¢,y) after caustic onset?

© We can compute j5(¢) for ¢ > T* (using FIO’s and stationary phase
techniques for the solution of Schrédinger’s equation) but what
about Y, ,?
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WKB analysis of Bohmian trajectories Post-caustic behavior

Open questions

@ What is the limit of X©(¢,y), P¢(¢,y) after caustic onset?

© We can compute j5(¢) for ¢ > T* (using FIO’s and stationary phase
techniques for the solution of Schrédinger’s equation) but what
about Y, ,?

© Which system of equations do the classical limit densities p and J
satisfy for t > T*?
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