Multi-scale hyperbolic relaxation system, kinetic-fluid domain coupling, and singular limit analysis

Jian-Guo Liu
Duke University

Joint with Frédéric Coquel, Shi Jin and Li Wang

Set up of the problem

Jin-Xin hyperbolic relaxation system:

$$
\begin{aligned}
\partial_{t} u^{\epsilon}+\partial_{x} v^{\epsilon} & =0 \\
\partial_{t} v^{\epsilon}+a^{2} \partial_{x} u^{\epsilon} & =\lambda_{\epsilon}(x)\left(f\left(u^{\epsilon}\right)-v^{\epsilon}\right)
\end{aligned}
$$

with a two-scale relaxation rate $(0<\epsilon \ll 1)$:

$$
\lambda_{\epsilon}(x)=\left\{\begin{array}{l}
1, x<0 \\
\frac{1}{\epsilon}, x>0
\end{array}\right.
$$

Domain decomposition method:

- overlap vis non-overlap
- data transmission and derivatives matching
- hamiltonian system vs dissipation system
- steady calculations vs dynamical calculations

Motivation:

- Analysis of Asymptotic Preserving schemes,
- Kinetic-fluid domain coupling, localized kinetic upscaling
- Related to Milne problem in kinetic theory.

Set up of the problem

Assume a sub-characteristic condition:

$$
\left|f^{\prime}(u)\right|<a,
$$

with compactly supported initial data $u_{0}(x) \in L^{\infty}(\mathbb{R}) \cap B V(\mathbb{R})$. For simplest, assume $f(0)=0$ and $v_{0}(x)=f\left(u_{0}(x)\right)$.
We assume either

$$
0<C_{0} \leq f^{\prime}(u), \quad \text { for all } u \in \mathbb{R}
$$

or

$$
f^{\prime}(u) \leq-C_{0}<0, \quad \text { for all } u \in \mathbb{R}
$$

Under this assumption, no shock wave can stick to the interface.

A decoupled zero ϵ limit system

When $f^{\prime}\left(u\left(t, 0^{+}\right)\right)<0$,

$$
\left\{\begin{array}{l}
\partial_{t} u+\partial_{x} f(u)=0, \quad x>0, t>0, \\
u(0, x)=u_{0}(x),
\end{array}\right.
$$

and set $v(t, x)=f(u(t, x))$.

$$
\left\{\begin{array}{l}
\partial_{t} u+\partial_{x} v=0, \quad x<0, t>0, \\
\partial_{t} v+a^{2} \partial_{x} u=f(u)-v, \\
v\left(t, 0^{-}\right)=v\left(t, 0^{+}\right) \\
u(0, x)=u_{0}(x), v(0, x)=v_{0}(x) .
\end{array}\right.
$$

When $f^{\prime}\left(u\left(t, 0^{+}\right)\right)>0$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} u+\partial_{x} v=0, \quad x<0, t>0, \\
\partial_{t} v+a^{2} \partial_{x} u=f(u)-v, \\
v\left(t, 0^{-}\right)=f\left(u\left(t, 0^{-}\right)\right), \\
u(0, x)=u_{0}(x), v(0, x)=v_{0}(x),
\end{array}\right. \\
& \left\{\begin{array}{l}
\partial_{t} u+\partial_{x} f(u)=0, \quad x>0, t>0, \\
u\left(t, 0^{+}\right)=u\left(t, 0^{-}\right), \\
u(0, x)=u_{0}(x),
\end{array}\right.
\end{aligned}
$$

and set $v(t, x)=f(u(t, x))$.
We will only analyze these two cases.

Coupled system for general flux f (characteristic)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} u+\partial_{x} v=0, x<0, t>0 \\
\partial_{t} v+a^{2} \partial_{x} u=f(u)-v, \\
v\left(t, 0^{-}\right)=f\left(u\left(t, 0^{+}\right)\right), \\
u(0, x)=u_{0}(x), v(0, x)=v_{0}(x)
\end{array}\right. \\
& \left\{\begin{array}{l}
\partial_{t} u+\partial_{x} f(u)=0, x>0, t>0 \\
v(t, x)=f(u(t, x)), \\
u\left(t, 0^{+}\right): B L N \\
u(0, x)=u_{0}(x)
\end{array}\right.
\end{aligned}
$$

Bardos-Lerous-Nédélec condition: for all k between $u\left(t, 0^{-}\right)$and $u\left(t, 0^{+}\right)$.

$$
\operatorname{sgn}\left(u\left(t, 0^{+}\right)-u\left(t, 0^{-}\right)\right)\left(f\left(u\left(t, 0^{+}\right)\right)-f(k)\right) \leq 0
$$

If $f^{\prime}>0$, then BLN reduced to $u\left(t, 0^{+}\right)=u\left(t, 0^{-}\right)$
If $f^{\prime}<0$, then BLN is always hold.
Hence, when $f^{\prime} \neq 0$, this system is reduced to the previous decoupled system.

Connection profile for general flux f (characteristic)

The connection profile is given by

$$
a^{2} \frac{d}{d y} \mathcal{U}(t, y)=f(\mathcal{U}(t, y))-v\left(t, 0^{+}\right), y>0, \quad \mathcal{U}(t, 0)=u\left(t, 0^{-}\right)
$$

and it is possible to connected to a middle value $u\left(t, 0^{m}\right)$ with $f\left(u\left(t, 0^{m}\right)\right)=f\left(u\left(t, 0^{+}\right)\right)$and there is a stationary shock at the end of profile connecting $u\left(t, 0^{m}\right)$ and $u\left(t, 0^{+}\right)$.

Example:
Take $f(u)=\frac{1}{2} u^{2}, a=1, u(t, x) \equiv\left\{\begin{array}{ll}1 & \text { for } x \leq \delta \\ -1 & \text { for } x>\delta\end{array}, \delta \geq 0\right.$ $v(t, x)=f(u(t, x), \mathcal{U}(t, y) \equiv 1$ is an exact solution to the zero ϵ-limit coupled system.

Vasseur's result on coupled kinetic and Burgers' eq

Perthame-Tadmor kinetic model with a two-scale relaxation rate

$$
\begin{gathered}
\partial_{t} f^{\epsilon}+\xi \partial_{x} f^{\epsilon}=\lambda_{\epsilon}(x)\left(\mathcal{M} f^{\epsilon}-f^{\epsilon}\right) \\
u=\int_{\mathbb{R}} f d \xi, \quad \mathcal{M} f:=M(u, \xi):=\mathbf{1}_{\{0 \leq \xi \leq u\}}-\mathbf{1}_{\{u \leq \xi \leq 0\}}
\end{gathered}
$$

compatibility condition

$$
0 \leq \operatorname{Sign}(\xi) f(\xi) \leq 1
$$

For $0<u^{+}<L, f_{0} \in L^{\infty}(\mathbb{R},[-L, L])$
Initial data case I:

$$
f_{0}(x, \xi) \geq\left\{\begin{array}{ll}
M\left(u^{+}, \xi\right), & \text { for } x<0, \\
M\left(-u^{+}, \xi\right), & \text { for } x>0,
\end{array} \quad \xi \in[-L, L]\right.
$$

Initial data case II:

$$
\begin{cases}\text { Supp } f_{0} \in\left[-L, u^{+}-\eta\right], & \text { for } x<0, \\ f_{0}=M\left(-u^{+}, \xi\right), & \text { for } x>0, \xi \in[-L, L]\end{cases}
$$

The coupled zero ϵ limit system

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} f+\xi \partial_{x} f=\mathcal{M} f-f, x<0, \xi \in \mathbb{R} \\
f\left(t, 0_{-}, \xi\right)=F\left(t, 0_{+}, \xi\right), \xi \leq 0 \\
f(0, x, \xi)=f_{0}(x, \xi)
\end{array}\right. \\
& \left\{\begin{array}{l}
\xi \partial_{y} F=\mathcal{M} F-F, y>0, \xi \in \mathbb{R} \\
F\left(t, 0_{+}, \xi\right)=f\left(t, 0_{-}, \xi\right), \xi \geq 0 \\
\int_{\mathbb{R}} \xi F(t, y, \xi) d \xi=\frac{1}{2} u\left(t, 0_{+}\right)^{2}, y>0
\end{array}\right. \\
& \left\{\begin{array}{l}
\partial_{t} u+\frac{1}{2} \partial_{x} u^{2}=0, x>0, t>0 \\
v(t, x)=f(u(t, x)), \\
u\left(t, 0^{+}\right): \begin{array}{l}
\text { BRN}
\end{array} \\
u(0, x)=u_{0}(x)
\end{array}\right.
\end{aligned}
$$

Vasseur's Results: Well-posedness and stability of the limit system; Convergence to the limit system for the two class of initial data.

Existence and stability for the ϵ system

For any $\epsilon>0$ and $T>0$, there is a unique weak solution $\left(u^{\epsilon}, v^{\epsilon}\right)$ in $L^{1}\left((0, T), L^{1}(\mathbb{R})\right)$ and satisfies the following a priori estimates:
(i) $\left\|u^{\epsilon}(t, \cdot)\right\|_{L^{\infty}(\mathbb{R})} \leq C,\left\|v^{\epsilon}(t, \cdot)\right\|_{L^{\infty}(\mathbb{R})} \leq C$;
(ii) $T V\left(v^{\epsilon}(t, \cdot)\right) \leq C$;
(iii) $T V_{\{x<0\}}\left(u^{\epsilon}(t, \cdot)\right) \leq C(1+T)$,
$T V_{\{x>0\}}\left(u^{\epsilon}(t, \cdot)\right) \leq C\left(1+\frac{T}{\epsilon}\right) ;$
(iv) $\left\|u^{\epsilon}-f^{-1}\left(v^{\epsilon}\right)\right\|_{L^{1}\left((0, T) ; L^{2}\left(\mathbb{R}_{\chi}^{+}\right)\right)} \leq C_{T} \sqrt{\epsilon} ;$
for all time $T>0$ while

$$
\begin{aligned}
& \text { (v) } \int_{\mathbb{R}}\left|u^{\epsilon}\left(t_{2}, x\right)-u^{\epsilon}\left(t_{1}, x\right)\right| d x \leq C\left|t_{2}-t_{1}\right|, \quad 0 \leq t_{1} \leq t_{2} \leq T \\
& \int_{\mathbb{R}}\left|v^{\epsilon}\left(t_{2}, x\right)-v^{\epsilon}\left(t_{1}, x\right)\right| d x \leq C\left|t_{2}-t_{1}\right|
\end{aligned}
$$

Outline of the proof

- Smoothing the data $u_{0, \delta}(x)=\rho_{\delta} * u_{0}(x), \lambda_{\epsilon, \delta}(x)=\rho_{\delta} * \lambda_{\epsilon}(x)$. We skip subscripts ϵ, δ below for clearlity in expression.
- Use the characteristic variables,

$$
r_{ \pm}(t, x)=a u(t, x) \pm v(t, x)
$$

one has L^{1}-contraction:

$$
\begin{aligned}
& \int_{|x|<M}\left(\left|r_{+}-\bar{r}_{+}\right|+\left|r_{-}-\bar{r}_{-}\right|\right) d x \\
& \quad \leq \int_{|x|<M+a t}\left(\left|\left(r_{+}\right)_{0}-\left(\bar{r}_{+}\right)_{0}\right|+\left|\left(r_{-}\right)_{0}-\left(\bar{r}_{-}\right)_{0}\right|\right)(x) d x .
\end{aligned}
$$

for any two classical solutions ($u^{\epsilon, \delta}, v^{\epsilon, \delta}$) and ($\bar{u}^{\epsilon, \delta}, \bar{v}^{\epsilon, \delta}$), vanishing outside the cone $\bigcup_{t \geq 0}[-(M+a t),(M+a t)]$.

Outline of the proof

- Uniform L^{1} estimate for the time derivative $s_{ \pm}=a \partial_{t} u \pm \partial_{t} v$

$$
\left\{\begin{array}{l}
\partial_{t} s_{-}-a \partial_{x} s_{-}=-\lambda_{\epsilon, \delta}(x) \mathcal{R}\left(s_{-}, s_{+}\right), \\
\partial_{t} s_{+}+a \partial_{x} s_{+}=\lambda_{\epsilon, \delta}(x) \mathcal{R}\left(s_{-}, s_{+}\right)
\end{array}\right.
$$

with

$$
\begin{equation*}
\mathcal{R}\left(s_{-}, s_{+}\right)=f^{\prime}(u) \frac{s_{-}+s_{+}}{2 a}-\frac{s_{+}-s_{-}}{2} \tag{8}
\end{equation*}
$$

The sub-characteristic condition implies

$$
\begin{aligned}
& \partial_{s_{-}} \mathcal{R}\left(s_{-}, s_{+}\right)>0, \partial_{s_{+}} \mathcal{R}\left(s_{-}, s_{+}\right)<0 \\
& \int_{|x|<M}\left(\left|s_{+}(t, x)\right|+\left|s_{-}(t, x)\right|\right) d x \\
& \quad \leq \int_{|x|<M+a t}\left(\left|s_{+}(0, x)\right|+\left|s_{-}(0, x)\right|\right) d x
\end{aligned}
$$

Outline of the proof

- BV estimate of $v^{\epsilon, \delta}$ immediately follows from $\partial_{x} v=-\partial_{t} u$.
- Entropy dissipation estimate. For Chen-Levermore-Liu entropy pair Φ, Ψ,

$$
\begin{gathered}
\partial_{v v} \Phi(u, v) \geq C, \Phi(0,0)=0, \partial_{v} \Phi(u, f(u))=0, \forall u \in \mathbb{R}, \\
\partial_{t} \Phi(u, v)+\partial_{x} \Psi(u, v)=\lambda_{\epsilon, \delta}(x) \partial_{v} \Phi(u, v)(f(u)-v) . \\
\partial_{t} \Phi(u, v)+\partial_{x} \Psi(u, v)=-\lambda_{\epsilon, \delta}(x) \partial_{v v} \Phi\left(u, \theta_{1}\right) f^{\prime}\left(\theta_{2}\right)^{2}\left|f^{-1}(v)-u\right|^{2}
\end{gathered}
$$

for some θ_{1} in between v and $f(u)$ and θ_{2} in between u and $f^{-1}(v)$

Strong convergence in $L^{1}((0, T) \times \mathbb{R})$

For any $T>0,\left(u^{\epsilon}, v^{\epsilon}\right)$ converges to (u, v) in $L^{1}((0, T) \times \mathbb{R})$.

- (u, v) is a weak solution in $\left.(0, T) \times \mathbb{R}_{x}^{-}\right)$.
- u is an entropy solution in $\left.(0, T) \times \mathbb{R}_{x}^{+}\right)$and $v=f(u)$ a.e.
- $u_{t}+v_{x}=0$ in $\mathcal{D}^{\prime}((0, T) \times \mathbb{R})$.
- $(u, v) \in B V((0, T) \times \mathbb{R})$. For a.e. $t>0$, there exist left and right traces $u\left(t, 0^{-}\right), u\left(t, 0^{+}\right)$, and $v\left(t, 0^{-}\right)=v\left(t, 0^{+}\right)$.
- L^{1} contraction:

$$
\begin{gathered}
\frac{1}{2 a}\left\|\left(r_{+}-\bar{r}_{+}\right)(t, .)\right\|_{L^{1}\left(\mathbb{R}_{x}^{-}\right)}+\frac{1}{2 a}\left\|\left(r_{-}-\bar{r}_{-}\right)(t, \cdot)\right\|_{L^{1}\left(\mathbb{R}_{x}^{-}\right)} \\
+\|(u-\bar{u})(t, .)\|_{L^{1}\left(\mathbb{R}_{x}^{+}\right)} \leq\left\|u_{0}-\bar{u}_{0}\right\|_{L^{1}\left(\mathbb{R}_{x}\right)}
\end{gathered}
$$

and the estimates reduced from ϵ-system.

Matched asymptotic analysis

- Blow-up: $y=\frac{x}{\epsilon},\left(\mathcal{U}^{\epsilon, \delta}, \mathcal{V}^{\epsilon, \delta}\right)(t, y)=\left(u^{\epsilon, \delta}, v^{\epsilon, \delta}\right)(t, \epsilon y)$,

$$
a^{2} \partial_{y} \mathcal{U}^{\epsilon, \delta}=\epsilon \lambda_{\epsilon, \delta}(\epsilon y)\left(f\left(\mathcal{U}^{\epsilon, \delta}\right)-\mathcal{V}^{\epsilon, \delta}\right)-\epsilon \partial_{t} \mathcal{V}^{\epsilon, \delta}
$$

- For any $L>0, T V_{(-L, L)}\left(\mathcal{U}^{\epsilon, \delta}(t, \cdot)\right) \leq C L$
- Let $\delta \rightarrow 0$, then let $\epsilon \rightarrow 0,\left(\mathcal{U}^{\epsilon, \delta}(t, \cdot), \mathcal{V}^{\epsilon, \delta}(t, \cdot)\right)$ converges to $(\mathcal{U}(t, \cdot), \mathcal{V}(t, \cdot))$ in $L_{\text {loc }}^{1}\left(\mathbb{R}_{y}\right)$ for any given $t>0$ and satisfy

$$
\partial_{y} \mathcal{V}=0, \quad a^{2} \partial_{y} \mathcal{U}=\mathbf{1}_{\{y>0\}}(f(\mathcal{U})-\mathcal{V}), \text { in } \mathcal{D}^{\prime}(-L, L)
$$

- $\mathcal{U}(t, \cdot), \mathcal{V}(t, \cdot)$ Lipschitz; admit $\mathcal{U}(t, \pm \infty), \mathcal{V}(t, \pm \infty)$;

$$
\begin{aligned}
\mathcal{V}(t, y) & =\mathcal{V}(t,+\infty)=\mathcal{V}(t,-\infty), y \in \mathbb{R} ; \\
\mathcal{U}(t, y) & =\mathcal{U}(t,-\infty), \quad y \leq 0 ; f(\mathcal{U}(t,+\infty))=\mathcal{V}(t,-\infty) ; \\
& a^{2} d_{y} \mathcal{U}(t, y)=f(\mathcal{U}(t, y))-\mathcal{V}(t,+\infty), \quad y>0
\end{aligned}
$$

If $\mathcal{U}(t, \cdot)$ is not locally constant for $y>0$, then it is strictly monotone for $y>0$ and $f^{\prime}(\mathcal{U}(t,+\infty))<0$.

Matched asymptotic analysis

- For a.e. $t>0, \mathcal{V}$ and v perfectly match

$$
\mathcal{V}(t, y)=v\left(t, 0^{-}\right)=v\left(t, 0^{+}\right), \text {for all } y \in \mathbb{R}
$$

\mathcal{U} and u are linked according to

$$
\mathcal{U}(t, y)=u\left(t, 0^{-}\right), \quad y<0
$$

Defining $R_{ \pm}(t, y)=a \mathcal{U}(t, y) \pm \mathcal{V}(t, y)$, then

$$
\begin{aligned}
& \frac{1}{2}\left(\left|R_{+}(t, y)-\ell\right|-\left|R_{-}(t, y)-h(\ell)\right|\right) \\
& \quad \geq \operatorname{sgn}\left(u\left(t, 0^{+}\right)-k\right)\left(f\left(u\left(t, 0^{+}\right)\right)-f(k)\right), \quad y>0
\end{aligned}
$$

for any $\ell \in R$ s.t. $k=(\ell+h(\ell)) / 2 a$ verifies $|k|<\left\|u_{0}\right\|_{L^{\infty}(\mathbb{R})}$.

Matched asymptotic analysis

- For a.e. $t>0$, the following Kružkov inequalities hold

$$
\begin{aligned}
& \operatorname{sgn}(\mathcal{U}(t,+\infty)-k)(f(\mathcal{U}(t,+\infty))-f(k)) \\
& \quad \geq \operatorname{sgn}\left(u\left(t, 0^{+}\right)-k\right)\left(f\left(u\left(t, 0^{+}\right)\right)-f(k)\right)
\end{aligned}
$$

for all $k \in\left[\mathcal{U}(t,+\infty), u\left(t, 0^{+}\right)\right\rceil$. In particular, we have:

$$
f(\mathcal{U}(t,+\infty))=f\left(u\left(t, 0^{+}\right)\right)=v\left(t, 0^{-}\right)
$$

hence

$$
\mathcal{U}(t,+\infty)=u\left(t, 0^{+}\right)
$$

Theorem:

1. There exists a unique solution $\left(u^{\epsilon}, v^{\epsilon}\right)$ to the original two-scale problem.
2. There exists a unique solution $(u, v) \in L^{\infty} \cap B V\left(\mathbb{R}^{+} \times \mathbb{R}\right)$ for the zero- ϵ limit system and satisfying L^{1}-contraction,

$$
\begin{aligned}
\frac{1}{2 a} \| r_{+}^{1}(t, \cdot) & -r_{+}^{2}(t, \cdot)\left\|_{L^{1}\left(\mathbb{R}_{x}^{-}\right)}+\frac{1}{2 a}\right\| r_{-}^{1}(t, \cdot)-r_{-}^{2}(t, \cdot) \|_{L^{1}\left(\mathbb{R}_{x}^{-}\right)} \\
& +\left\|u^{1}(t, \cdot)-u^{2}(t, \cdot)\right\|_{L^{1}\left(\mathbb{R}_{x}^{+}\right)} \leq\left\|u_{0}^{1}-u_{0}^{2}\right\|_{L^{1}\left(\mathbb{R}_{x}\right)}
\end{aligned}
$$

for any two solutions $\left(u^{1}, v^{1}\right)$ and $\left(u^{2}, v^{2}\right)$. Here $r_{ \pm}^{i}=\left(a u^{i} \pm v^{i}\right)(t, x), i=1,2$.
3. For any $T>0,\left(u^{\epsilon}, v^{\epsilon}\right)$ converges strongly to (u, v) in $L^{1}((0, T) \times \mathbb{R})$.

Numerical example 1

Let $f\left(u^{\epsilon}\right)=\frac{1}{4}\left(e^{-u^{\epsilon}}-1\right)$, with initial condition $u^{\epsilon}(x, 0)=\sin (\pi x)^{3}$. In this case, $f^{\prime}(u)<0$, so there will be an interface layer at the interface $x=0$.

Figure: $T=0.5, \Delta x=0.04, \Delta t=0.02$.

Figure: $T=0.5, \Delta x=0.01, \Delta t=0.005$.

$$
u^{\epsilon}(x, 0)= \begin{cases}1, & \text { if }-1 \leq x \leq 0.2 \\ -1, & \text { if } 0.2<x \leq 1\end{cases}
$$

Figure: A shock from the right region passing through the interface.

$$
u^{\epsilon}(x, 0)= \begin{cases}-1, & \text { if }-1 \leq x \leq 0.2 \\ 1, & \text { if } 0.2<x \leq 1\end{cases}
$$

Figure: Rarefaction wave

Numerical example 2

Now we consider the case $f^{\prime}(u)>0$. Let $f\left(u^{\epsilon}\right)=\frac{1}{4}\left(e^{u^{\epsilon}}-1\right)$, initial condition $u^{\epsilon}(x, 0)=\sin (\pi x)^{3}$.

Figure: $T=0.6, \Delta x=0.04, \Delta t=0.02$.

Figure: $T=0.5, \Delta x=0.01, \Delta t=0.005$.

$$
u^{\epsilon}(x, 0)= \begin{cases}-1, & \text { if }-1 \leq x \leq-0.2 \\ 1, & \text { if }-0.2<x \leq 1 .\end{cases}
$$

Figure: A contact discontinuity passing through the interface.

THANK YOU

