Existence of global weak solutions to implicitly constituted kinetic models of incompressible homogeneous dilute polymers

Endre Süli

Mathematical Institute, University of Oxford

joint work with J.W. Barrett, Imperial College London, and Miroslav Bulíček and Josef Málek, Charles University Prague

To Eitan Tadmor, on the occasion of his 60th birthday.

Viscoelastic fluids

Gareth McKinley's Non-Newtonian Fluid Dynamics Group, MIT

Jonathan Rothstein's Non-Newtonian Fluids Dynamics Lab, University of Massachusetts

Statement of the model

- $\Omega \subset \mathbb{R}^d$, d = 2,3: bounded open Lipschitz domain,
- T: length of the time interval of interest, and
- $Q := \Omega \times (0,T)$: the associated space-time domain.

イロト 不得 トイヨト イヨト

э

Statement of the model

- $\Omega \subset \mathbb{R}^d$, d = 2,3: bounded open Lipschitz domain,
- T: length of the time interval of interest, and
- $Q := \Omega \times (0,T)$: the associated space-time domain.

Consider the following system of nonlinear PDEs:

$$\rho(\boldsymbol{u}_t + \operatorname{div}(\boldsymbol{u} \otimes \boldsymbol{u})) - \operatorname{div} \boldsymbol{\mathsf{T}} = \rho \boldsymbol{f}$$
 in Q ,

$$\operatorname{div} \boldsymbol{u} = 0 \qquad \qquad \operatorname{in} \boldsymbol{Q},$$

$$\boldsymbol{u}(\cdot,0) = \boldsymbol{u}_0(\cdot) \qquad \quad \text{in } \Omega,$$

and the boundary condition

$$\boldsymbol{u} = 0$$
 on $\partial \Omega \times (0, T)$.

イロト 不得 トイヨト イヨト

3 / 31

э

(1)

$$\mathbf{T} = -p\mathbf{I} + \mathbf{S}_v + \mathbf{S}_e,$$

where

• $p: Q \to \mathbb{R}$ is the pressure;

$$\mathbf{T} = -p\mathbf{I} + \mathbf{S}_v + \mathbf{S}_e,$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where

- $p: Q \to \mathbb{R}$ is the pressure;
- $\mathbf{S}_{v}: Q \rightarrow \mathbb{R}^{d \times d}_{sym}$ is the viscous part of the deviatoric stress;

$$\mathbf{T} = -p\mathbf{I} + \mathbf{S}_v + \mathbf{S}_e,$$

where

- $p: Q \to \mathbb{R}$ is the pressure;
- $S_v: Q \to \mathbb{R}^{d \times d}_{sym}$ is the viscous part of the deviatoric stress;

• $S_e: Q \to \mathbb{R}^{d \times d}_{sym}$ is the elastic part of the deviatoric stress.

$$\mathbf{T} = -p\mathbf{I} + \mathbf{S}_v + \mathbf{S}_e,$$

where

- $p: Q \to \mathbb{R}$ is the pressure;
- $\mathbf{S}_{v}: Q \to \mathbb{R}^{d imes d}_{sym}$ is the viscous part of the deviatoric stress;

 \mathbf{S}_{v} and $\mathbf{D}(\boldsymbol{u}) := \frac{1}{2}(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^{T})$ are assumed to be related via a maximal monotone graph described by the implicit relation:

$$\mathbf{G}(\mathbf{S}_{\nu},\mathbf{D}(\boldsymbol{u}))=\mathbf{0}, \tag{2}$$

where $\mathbf{G}: \mathbb{R}^{d \times d}_{sym} \times \mathbb{R}^{d \times d}_{sym} \to \mathbb{R}^{d \times d}_{sym}$ is a continuous mapping.

• $S_e: Q \to \mathbb{R}^{d \times d}_{sym}$ is the elastic part of the deviatoric stress.

• Newtonian (Navier–Stokes) fluids: $\mathbf{S}_{v} = 2\mu_{*}\mathbf{D}(\boldsymbol{u})$, with $\mu_{*} > 0$;

Examples of $G(S_v, D(u)) = 0$

- Newtonian (Navier–Stokes) fluids: $\mathbf{S}_{v} = 2\mu_{*}\mathbf{D}(\boldsymbol{u})$, with $\mu_{*} > 0$;
- Power-law fluids: $\mathbf{S}_v = 2\mu_* |\mathbf{D}(\boldsymbol{u})|^{r-2} \mathbf{D}(\boldsymbol{u}), \ 1 \leq r < \infty;$

• Newtonian (Navier–Stokes) fluids: $S_v = 2\mu_* D(u)$, with $\mu_* > 0$;

- Power-law fluids: $\mathbf{S}_v = 2\mu_* |\mathbf{D}(\boldsymbol{u})|^{r-2} \mathbf{D}(\boldsymbol{u}), \ 1 \leq r < \infty;$
- Generalized power-law fluids: $\mathbf{S}_{v} = 2\tilde{\mu}(|\mathbf{D}(\boldsymbol{u})|^{2})\mathbf{D}(\boldsymbol{u});$

- Newtonian (Navier–Stokes) fluids: $S_v = 2\mu_* D(u)$, with $\mu_* > 0$;
- Power-law fluids: $\mathbf{S}_v = 2\mu_* |\mathbf{D}(u)|^{r-2} \mathbf{D}(u)$, $1 \le r < \infty$;
- Generalized power-law fluids: $S_v = 2\tilde{\mu}(|\mathbf{D}(u)|^2)\mathbf{D}(u);$
- Stress power-law fluids and generalizations: $\mathbf{D}(\mathbf{u}) = \alpha(|\mathbf{S}_{v}|^{2})\mathbf{S}_{v}$;

- Newtonian (Navier–Stokes) fluids: $S_v = 2\mu_* D(u)$, with $\mu_* > 0$;
- Power-law fluids: $\mathbf{S}_v = 2\mu_* |\mathbf{D}(\boldsymbol{u})|^{r-2} \mathbf{D}(\boldsymbol{u}), \ 1 \leq r < \infty;$
- Generalized power-law fluids: $\mathbf{S}_{\nu} = 2\tilde{\mu}(|\mathbf{D}(\boldsymbol{u})|^2)\mathbf{D}(\boldsymbol{u});$
- Stress power-law fluids and generalizations: $\mathbf{D}(\mathbf{u}) = \alpha(|\mathbf{S}_{v}|^{2})\mathbf{S}_{v};$
- Fluids with the viscosity depending on the shear rate and shear stress

$$\mathbf{S}_{\nu} = 2\hat{\boldsymbol{\mu}}(|\mathbf{D}(\boldsymbol{u})|^2, |\mathbf{S}_{\nu}|^2)\mathbf{D}(\boldsymbol{u});$$

- Newtonian (Navier–Stokes) fluids: $\mathbf{S}_{v} = 2\mu_* \mathbf{D}(\boldsymbol{u})$, with $\mu_* > 0$;
- Power-law fluids: $\mathbf{S}_v = 2\mu_* |\mathbf{D}(\boldsymbol{u})|^{r-2} \mathbf{D}(\boldsymbol{u}), \ 1 \leq r < \infty;$
- Generalized power-law fluids: $\mathbf{S}_{v} = 2\tilde{\mu}(|\mathbf{D}(\boldsymbol{u})|^{2})\mathbf{D}(\boldsymbol{u});$
- Stress power-law fluids and generalizations: $\mathbf{D}(\mathbf{u}) = \alpha(|\mathbf{S}_{v}|^{2})\mathbf{S}_{v};$
- Fluids with the viscosity depending on the shear rate and shear stress

$$\mathbf{S}_{v} = 2\hat{\boldsymbol{\mu}}(|\mathbf{D}(\boldsymbol{u})|^{2}, |\mathbf{S}_{v}|^{2})\mathbf{D}(\boldsymbol{u});$$

• Activated fluids, such as Bingham and Herschel-Bulkley fluids:

$$|\mathsf{S}_{v}| \leq \tau_{*} \Leftrightarrow \mathsf{D}(\boldsymbol{u}) = \mathbf{0} \text{ and } |\mathsf{S}_{v}| > \tau_{*} \Leftrightarrow \mathsf{S}_{v} = rac{\tau_{*}\mathsf{D}(\boldsymbol{u})}{|\mathsf{D}(\boldsymbol{u})|} + 2v(|\mathsf{D}(\boldsymbol{u})|^{2})\mathsf{D}(\boldsymbol{u}).$$

(ロ) (同) (E) (E) (E) (O)(C)

- Newtonian (Navier–Stokes) fluids: $S_v = 2\mu_* D(u)$, with $\mu_* > 0$;
- Power-law fluids: $\mathbf{S}_v = 2\mu_* |\mathbf{D}(\boldsymbol{u})|^{r-2} \mathbf{D}(\boldsymbol{u}), \ 1 \leq r < \infty;$
- Generalized power-law fluids: $\mathbf{S}_{v} = 2\tilde{\mu}(|\mathbf{D}(\boldsymbol{u})|^{2})\mathbf{D}(\boldsymbol{u});$
- Stress power-law fluids and generalizations: $\mathbf{D}(\mathbf{u}) = \alpha(|\mathbf{S}_{v}|^{2})\mathbf{S}_{v};$
- Fluids with the viscosity depending on the shear rate and shear stress

$$\mathbf{S}_{v} = 2\hat{\boldsymbol{\mu}}(|\mathbf{D}(\boldsymbol{u})|^{2}, |\mathbf{S}_{v}|^{2})\mathbf{D}(\boldsymbol{u});$$

• Activated fluids, such as Bingham and Herschel-Bulkley fluids:

$$|\mathsf{S}_{v}| \leq \tau_{*} \Leftrightarrow \mathsf{D}(\boldsymbol{u}) = \mathbf{0} \text{ and } |\mathsf{S}_{v}| > \tau_{*} \Leftrightarrow \mathsf{S}_{v} = \frac{\tau_{*}\mathsf{D}(\boldsymbol{u})}{|\mathsf{D}(\boldsymbol{u})|} + 2v(|\mathsf{D}(\boldsymbol{u})|^{2})\mathsf{D}(\boldsymbol{u}).$$

i.e.
$$2\mathbf{v}(|\mathbf{D}(\boldsymbol{u})|^2)(\boldsymbol{\tau}_*+(|\mathbf{S}_{\boldsymbol{v}}|-\boldsymbol{\tau}_*)_+)\mathbf{D}(\boldsymbol{u})=(|\mathbf{S}_{\boldsymbol{v}}|-\boldsymbol{\tau}_*)_+\mathbf{S}_{\boldsymbol{v}}, \quad \boldsymbol{\tau}_*>0.$$

Examples of $S_v(=\tau)$ vs. $D(u)(=\gamma)$

Rheological Models

E ∽ Q (?) 6 / 31 We identify the implicit relation (2) with a graph $\mathcal{A} \subset \mathbb{R}^{d \times d}_{sym} \times \mathbb{R}^{d \times d}_{sym}$, i.e.,

$$\mathbf{G}(\mathbf{S},\mathbf{D}) = \mathbf{0} \iff (\mathbf{D},\mathbf{S}) \in \mathcal{A}.$$

We assume that, for some $r \in (1, \infty)$, \mathcal{A} is a maximal monotone r-graph: (A1) \mathcal{A} includes the origin; i.e., $(0,0) \in \mathcal{A}$; (A2) \mathcal{A} is a monotone graph; i.e.,

$$(\mathbf{S}_1 - \mathbf{S}_2) \cdot (\mathbf{D}_1 - \mathbf{D}_2) \ge 0$$
 for all $(\mathbf{D}_1, \mathbf{S}_1), (\mathbf{D}_2, \mathbf{S}_2) \in \mathcal{A}$;

(A3) \mathcal{A} is a maximal monotone graph; i.e., for any $(\mathbf{D}, \mathbf{S}) \in \mathbb{R}^{d \times d}_{sym} \times \mathbb{R}^{d \times d}_{sym}$,

if
$$(\tilde{\mathbf{S}} - \mathbf{S}) \cdot (\tilde{\mathbf{D}} - \mathbf{D}) \ge 0$$
 for all $(\tilde{\mathbf{D}}, \tilde{\mathbf{S}}) \in \mathcal{A}$, then $(\mathbf{D}, \mathbf{S}) \in \mathcal{A}$;

(A4) \mathcal{A} is an r-graph; i.e., there exist positive constants C_1 , C_2 such that $\mathbf{S} \cdot \mathbf{D} \ge C_1(|\mathbf{D}|^r + |\mathbf{S}|^{r'}) - C_2$ for all $(\mathbf{D}, \mathbf{S}) \in \mathcal{A}$. K. R. Rajagopal. On implicit constitutive theories. Appl. Math., 2003.

- K. R. Rajagopal. On implicit constitutive theories for fluids. J. Fluid Mech., 2006.
- K. R. Rajagopal and A. R. Srinivasa. On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys., 2008.

M. Bulíček, P. Gwiazda, J. Málek, and A. Swierczewska-Gwiazda. Adv. Calc. Var., 2009.

 M. Bulíček, J. Málek, and K. R. Rajagopal. Indiana Univ. Math. J., 2007.

- M. Bulíček, J. Málek, and K. R. Rajagopal. SIAM J. Math. Anal., 2009.
- M. Bulíček, P. Gwiazda, J. Málek, and A. Swierczewska-Gwiazda. SIAM J. Math. Anal., 2012.

Large number of internal degrees of freedom \longrightarrow statistical physics.

Large number of internal degrees of freedom \rightarrow statistical physics.

R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager: Dynamics of Polymeric Liquids, Vol. II: Kinetic Theory. Wiley, 1987.

イロト 不得 トイヨト イヨト

P.G. de Gennes:

Scaling Concepts in Polymer Physics. CUP, 1992.

H.C. Öttinger:

Stochastic Processes in Polymeric Fluids. Springer, 1996.

M. Doi:

Introduction to Polymer Physics. OUP, 1995.

T. Kawakatsu:

Statistical Physics of Polymers. Springer, 2004.

Let $D_i \subset \mathbb{R}^d$, i = 1, ..., K, be bounded open balls centred at **0**.

シック 単 本田 * 本田 * 本国 * 本日 *

Let $D_i \subset \mathbb{R}^d$, i = 1, ..., K, be bounded open balls centred at **0**. Consider the *Maxwellian* $M(q) := M_1(q_1) \cdots M_K(q_K)$, with $q_i \in D_i$, where

$$M_i(q_i) := \frac{e^{-U_i(\frac{1}{2}|q_i|^2)}}{\int_{D_i} e^{-U_i(\frac{1}{2}|p_i|^2)} dp_i}, \qquad i = 1, \dots, K.$$

 \mathbf{S}_{e} is defined by the *Kramers expression*:

$$\mathbf{S}_{e}(x,t) := k_{B} \operatorname{T} \sum_{i=1}^{K} \int_{D} M(\boldsymbol{q}) \nabla_{\boldsymbol{q}_{i}} \widehat{\boldsymbol{\psi}}(x,\boldsymbol{q},t) \otimes \boldsymbol{q}_{i} \, \mathrm{d}\boldsymbol{q},$$

where
$$\boldsymbol{q} = (\boldsymbol{q}_1^{\mathrm{T}}, \dots, \boldsymbol{q}_K^{\mathrm{T}})^{\mathrm{T}} \in \boldsymbol{D}_1 \times \dots \times \boldsymbol{D}_K =: \boldsymbol{D}$$
 and

$$\widehat{\Psi} := \Psi/M$$

is the normalized probability density function, that is the solution of a Fokker–Planck equation.

Fokker–Planck equation

The function $\widehat{\psi} = \psi/M$ satisfies the *Fokker–Planck equation*:

 $(M\widehat{\psi})_t + \operatorname{div}(M\widehat{\psi}\boldsymbol{u}) + \operatorname{div}_{\boldsymbol{q}}(M\widehat{\psi}(\nabla\boldsymbol{u})\boldsymbol{q}) = \triangle(M\widehat{\psi}) + \operatorname{div}_{\boldsymbol{q}}\boldsymbol{A}(M\nabla_{\boldsymbol{q}}\widehat{\psi}) \quad (3)$

in $O \times (0,T)$, with $O := \Omega \times D$, subject to the boundary conditions:

$$\begin{split} M \nabla \widehat{\psi} \cdot \boldsymbol{n} &= 0 & \text{on } \partial \Omega \times D \times (0,T), \\ (M \widehat{\psi} (\nabla \boldsymbol{u}) \boldsymbol{q}_i - \boldsymbol{A}_i (M \nabla_{\boldsymbol{q}} \widehat{\psi})) \cdot \boldsymbol{n}_i &= 0 & \text{on } \Omega \times \partial \bar{D}_i \times (0,T), \end{split}$$

for all i = 1, ..., K, and the initial condition

$$\widehat{\boldsymbol{\Psi}}(x, \boldsymbol{q}, 0) = \widehat{\boldsymbol{\Psi}}_0(x, \boldsymbol{q})$$
 in O .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

 $A \in \mathbb{R}_{symm}^{K \times K}$: Rouse matrix (symmetric, positive definite).

J.W. Barrett & E. Süli (M3AS, 21 (2011), 1211-1289):

Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: Finitely extensible nonlinear bead-spring chains

J.W. Barrett & E. Süli (M3AS, 22 (2012), 1-84):

Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type bead-spring chains

J.W. Barrett & E. Süli (J. Differential Equations, 253 (2012), 3610–3677): Existence of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers with variable density and viscosity

J.W. Barrett & E. Süli (M3AS, 21 (2011), 1211–1289):

Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: Finitely extensible nonlinear bead-spring chains

J.W. Barrett & E. Süli (M3AS, 22 (2012), 1-84):

Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type bead-spring chains

J.W. Barrett & E. Süli (J. Differential Equations, 253 (2012), 3610–3677): Existence of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers with variable density and viscosity

M. Bulíček, J. Málek & E. Süli (Communications in PDE, 38 (2013), 882–924): Existence of global weak solutions to implicitly constituted kinetic models of incompressible homogeneous flows of dilute polymers DOI: 10.1080/03605302.2012.742104

イロト 不得 トイヨト イヨト

Assumptions on the data

For the Maxwellian M we assume that

$$M \in C_0(\overline{D}) \cap C^{0,1}_{\operatorname{loc}}(D), \quad \text{and } M > 0 \text{ on } D.$$
 (4)

For the initial velocity u_0 we assume that

$$\boldsymbol{u}_0 \in L^2_{0,\mathrm{div}}(\Omega). \tag{5}$$

For $\widehat{\psi}_0 := \psi_0 / M$ we assume, with $\mathcal{O} := \Omega \times D$, that

$$\widehat{\Psi}_0 \ge 0$$
 a.e. in \mathcal{O} , $\widehat{\Psi}_0 \log \widehat{\Psi}_0 \in L^1_M(\mathcal{O})$, (6)

and that the initial marginal probability density function

$$\int_{D} M(\boldsymbol{q}) \,\widehat{\boldsymbol{\Psi}}_{0}(\cdot, \boldsymbol{q}) \,\mathrm{d}\boldsymbol{q} \in L^{\infty}(\Omega). \tag{7}$$

Theorem

For $d \in \{2,3\}$ let $D_i \subset \mathbb{R}^d$, i = 1, ..., K, be bounded open balls centred at the origin in \mathbb{R}^d , let $\Omega \subset \mathbb{R}^d$ be a bounded open Lipschitz domain and suppose $\mathbf{f} \in L^{r'}(0,T; W_{0,\text{div}}^{-1,r'}(\Omega))$, $r \in (1,\infty)$. Assume that \mathcal{A} , given by \mathbf{G} , is a maximal monotone r-graph satisfying $(\mathbf{A1}) - (\mathbf{A4})$, the Maxwellian $M : D \to \mathbb{R}$ satisfies (4), and $(u_0, \widehat{\psi}_0)$ satisfy (5)–(7).

Then, there exist $(\boldsymbol{u},\boldsymbol{S}_{v},\boldsymbol{S}_{e},\widehat{\boldsymbol{\psi}})$ such that

$$\begin{split} & \boldsymbol{u} \in L^{\infty}(0,T;L^{2}_{0,\mathrm{div}}(\Omega)^{d}) \cap L^{r}(0,T;W^{1,r}_{0}(\Omega)^{d}) \cap W^{1,r^{*}}(0,T;W^{-1,r^{*}}_{0,\mathrm{div}}(\Omega)), \\ & \boldsymbol{\mathsf{S}}_{v} \in L^{r'}(0,T;L^{r'}(\Omega)^{d \times d}), \qquad \boldsymbol{\mathsf{S}}_{e} \in L^{2}(0,T;L^{2}(\Omega)^{d \times d}), \\ & \widehat{\boldsymbol{\psi}} \in L^{\infty}(Q;L^{1}_{M}(D)) \cap L^{2}(0,T;W^{1,1}_{M}(\mathcal{O})), \qquad \widehat{\boldsymbol{\psi}} \geq 0 \ a.e. \ in \ \mathcal{O} \times (0,T), \\ & \boldsymbol{\mathcal{M}} \widehat{\boldsymbol{\psi}} \in W^{1,1}(0,T;W^{-1,1}(\mathcal{O})), \qquad \widehat{\boldsymbol{\psi}} \log \widehat{\boldsymbol{\psi}} \in L^{\infty}(0,T;L^{1}_{M}(\mathcal{O})), \end{split}$$

where

$$r^* := \min\left\{r', 2, \left(1 + \frac{2}{d}\right)r\right\}$$
 and $r' := \frac{r}{r-1}$.

Theorem (Continued...)

Moreover, (1) is satisfied in the following sense:

$$\begin{split} \int_0^T \langle \boldsymbol{u}_t, \boldsymbol{w} \rangle \, \mathrm{d}t + \int_0^T \left(-\left(\boldsymbol{u} \otimes \boldsymbol{u}, \nabla \boldsymbol{w} \right) + \left(\boldsymbol{\mathsf{S}}_{\boldsymbol{v}}, \nabla \boldsymbol{w} \right) \right) \mathrm{d}t \\ &= \int_0^T \left(-\left(\boldsymbol{\mathsf{S}}_e, \nabla \boldsymbol{w} \right) + \langle \boldsymbol{f}, \boldsymbol{w} \rangle \right) \mathrm{d}t \qquad \text{for all } \boldsymbol{w} \in L^\infty(0, T; W^{1,\infty}_{0,\mathrm{div}}(\Omega)), \end{split}$$

where

$$(\mathbf{S}_{v}(x,t),\mathbf{D}(\boldsymbol{u}(x,t))) \in \mathcal{A}$$
 for a.e. $(x,t) \in Q$

and S_e is given by the Kramers expression

$$\mathbf{S}_{e}(x,t) = k_{B} \operatorname{T} \sum_{i=1}^{K} \int_{D} M \nabla_{\boldsymbol{q}_{i}} \widehat{\boldsymbol{\psi}}(x,\boldsymbol{q},t) \otimes \boldsymbol{q}_{i} \, \mathrm{d}\boldsymbol{q} \quad \text{for a.e. } (x,t) \in Q.$$

4 ロ ト 4 団 ト 4 王 ト 4 王 ト 5 9 9 9 9 9 16 / 21

Theorem (Continued...)

In addition, the Fokker–Planck eqn (3) is satisfied in the following sense:

$$\begin{split} \int_{0}^{T} \left[\langle (M \,\widehat{\psi})_{t}, \varphi \rangle - (M \,\boldsymbol{u} \widehat{\psi}, \nabla \varphi)_{\mathcal{O}} - (M \,\widehat{\psi}(\nabla \boldsymbol{u}) \boldsymbol{q}, \nabla_{\boldsymbol{q}} \varphi)_{\mathcal{O}} \right] \mathrm{d}t \\ &+ \int_{0}^{T} \left[(M \nabla \widehat{\psi}, \nabla \varphi)_{\mathcal{O}} + (M \,\boldsymbol{A} \nabla_{\boldsymbol{q}} \widehat{\psi}, \nabla_{\boldsymbol{q}} \varphi)_{\mathcal{O}} \right] \mathrm{d}t = 0 \\ & for all \ \varphi \in L^{\infty}(0, T; W^{1, \infty}(\mathcal{O})), \end{split}$$

and the initial data are attained strongly in $L^2(\Omega)^d imes L^1_M(\mathcal{O})$, i.e.,

$$\lim_{t\to 0_+} \|\boldsymbol{u}(\cdot,t) - \boldsymbol{u}_0(\cdot)\|_2^2 + \|\widehat{\boldsymbol{\psi}}(\cdot,t) - \widehat{\boldsymbol{\psi}}_0(\cdot)\|_{L^1_M(\mathcal{O})} = 0.$$

・ロ・・(型・・(型・・(型・))
のへの

Theorem (Continued...)

Further, for $t \in (0,T)$ the following energy inequality holds in a weak sense:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(k \int_{O} M \widehat{\psi} \log \widehat{\psi} \, \mathrm{d}x \, \mathrm{d}q + \frac{1}{2} \|\boldsymbol{u}\|_{2}^{2} \right) + (\mathbf{S}_{\nu}, \mathbf{D}(\boldsymbol{u})) + 4k \left(M \nabla \sqrt{\widehat{\psi}}, \nabla \sqrt{\widehat{\psi}} \right)_{O} \\
+ 4k \left(M \boldsymbol{A} \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}}, \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}} \right)_{O} \leq \langle \boldsymbol{f}, \boldsymbol{u} \rangle, \quad \text{with } k := k_{B} \mathrm{T}.$$

・ロト ・回ト ・ヨト ・ヨト

æ

STEP 1. Truncate $\widehat{\psi}$ in the Kramers expression and in the drag term in the FP equation by replacing $\widehat{\psi}$ with $T_{\ell}(\widehat{\psi})$, preserving the energy inequality.

STEP 1. Truncate $\widehat{\psi}$ in the Kramers expression and in the drag term in the FP equation by replacing $\widehat{\psi}$ with $T_{\ell}(\widehat{\psi})$, preserving the energy inequality.

・ロト ・同ト ・ヨト ・ヨト

3

STEP 2. We form a Galerkin approximation of the velocity and the probability density function, resulting in a system of ODEs in t.

STEP 1. Truncate $\widehat{\psi}$ in the Kramers expression and in the drag term in the FP equation by replacing $\widehat{\psi}$ with $T_{\ell}(\widehat{\psi})$, preserving the energy inequality.

STEP 2. We form a Galerkin approximation of the velocity and the probability density function, resulting in a system of ODEs in t.

STEP 3. The sequence of Galerkin approximations satisfies an energy inequality, uniformly in the number of Galerkin basis functions and the truncation parameter ℓ .

STEP 1. Truncate $\widehat{\psi}$ in the Kramers expression and in the drag term in the FP equation by replacing $\widehat{\psi}$ with $T_{\ell}(\widehat{\psi})$, preserving the energy inequality.

STEP 2. We form a Galerkin approximation of the velocity and the probability density function, resulting in a system of ODEs in t.

STEP 3. The sequence of Galerkin approximations satisfies an energy inequality, uniformly in the number of Galerkin basis functions and the truncation parameter ℓ .

STEP 4. We extract weakly (and weak*) convergent subsequences, and pass to the limits in the Galerkin approximations.

STEP 1. Truncate $\widehat{\psi}$ in the Kramers expression and in the drag term in the FP equation by replacing $\widehat{\psi}$ with $T_{\ell}(\widehat{\psi})$, preserving the energy inequality.

STEP 2. We form a Galerkin approximation of the velocity and the probability density function, resulting in a system of ODEs in t.

STEP 3. The sequence of Galerkin approximations satisfies an energy inequality, uniformly in the number of Galerkin basis functions and the truncation parameter ℓ .

STEP 4. We extract weakly (and weak*) convergent subsequences, and pass to the limits in the Galerkin approximations.

STEP 5. We require strongly convergent sequences for passage to limit in ℓ in the various nonlinear terms. This is the most difficult step to realize.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(k \int_{O} M \widehat{\psi}^{\ell} \log \widehat{\psi}^{\ell} \, \mathrm{d}x \, \mathrm{d}q + \frac{1}{2} \|\boldsymbol{u}^{\ell}\|_{2}^{2} \right) + (\mathbf{S}_{v}^{\ell}, \mathbf{D}(\boldsymbol{u}^{\ell})) + 4k \left(M \nabla \sqrt{\widehat{\psi}^{\ell}}, \nabla \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \\
+ 4k \left(M \boldsymbol{A} \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}}, \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \leq \langle \boldsymbol{f}, \boldsymbol{u}^{\ell} \rangle, \quad \text{with } k := k_{B} \mathrm{T}.$$

・ロト・日本・日本・日本・日本・日本

20 / 31

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \left(k \int_{O} M \widehat{\psi}^{\ell} \log \widehat{\psi}^{\ell} \, \mathrm{d}x \mathrm{d}\boldsymbol{q} + \frac{1}{2} \|\boldsymbol{u}^{\ell}\|_{2}^{2} \right) + (\mathbf{S}_{v}^{\ell}, \mathbf{D}(\boldsymbol{u}^{\ell})) + 4k \left(M \nabla \sqrt{\widehat{\psi}^{\ell}}, \nabla \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \\ &+ 4k \left(M \boldsymbol{A} \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}}, \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \leq \langle \boldsymbol{f}, \boldsymbol{u}^{\ell} \rangle, \qquad \text{with } k := k_{B} \mathrm{T}. \end{aligned}$$

• Velocity:

strong convergence immediate by Aubin-Lions-Simon compactness theorem.

・ロト ・ 一下・ キョト・ キョト

÷.

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \left(k \int_{O} M \widehat{\psi}^{\ell} \log \widehat{\psi}^{\ell} \, \mathrm{d}x \mathrm{d}\boldsymbol{q} + \frac{1}{2} \|\boldsymbol{u}^{\ell}\|_{2}^{2} \right) + (\mathbf{S}_{v}^{\ell}, \mathbf{D}(\boldsymbol{u}^{\ell})) + 4k \left(M \nabla \sqrt{\widehat{\psi}^{\ell}}, \nabla \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \\ &+ 4k \left(M \boldsymbol{A} \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}}, \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \leq \langle \boldsymbol{f}, \boldsymbol{u}^{\ell} \rangle, \qquad \text{with } k := k_{B} \mathrm{T}. \end{aligned}$$

• Velocity:

strong convergence immediate by Aubin-Lions-Simon compactness theorem.

• Probability density function: (much more difficult)

・ロト・4回ト・4回ト・4回ト・4回ト

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \left(k \int_{O} M \widehat{\psi}^{\ell} \log \widehat{\psi}^{\ell} \, \mathrm{d}x \mathrm{d}\boldsymbol{q} + \frac{1}{2} \|\boldsymbol{u}^{\ell}\|_{2}^{2} \right) + (\mathbf{S}_{\nu}^{\ell}, \mathbf{D}(\boldsymbol{u}^{\ell})) + 4k \left(M \nabla \sqrt{\widehat{\psi}^{\ell}}, \nabla \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \\ &+ 4k \left(M \boldsymbol{A} \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}}, \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \leq \langle \boldsymbol{f}, \boldsymbol{u}^{\ell} \rangle, \qquad \text{with } k := k_{B} \mathrm{T}. \end{aligned}$$

• Velocity:

strong convergence immediate by Aubin-Lions-Simon compactness theorem.

- Probability density function: (much more difficult)
 - Vitali's convergence theorem (a.e. convergence $+ L^1$ equi-integrability);

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \left(k \int_{O} M \widehat{\psi}^{\ell} \log \widehat{\psi}^{\ell} \, \mathrm{d}x \mathrm{d}\boldsymbol{q} + \frac{1}{2} \|\boldsymbol{u}^{\ell}\|_{2}^{2} \right) + (\mathbf{S}_{\nu}^{\ell}, \mathbf{D}(\boldsymbol{u}^{\ell})) + 4k \left(M \nabla \sqrt{\widehat{\psi}^{\ell}}, \nabla \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \\ &+ 4k \left(M \boldsymbol{A} \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}}, \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \leq \langle \boldsymbol{f}, \boldsymbol{u}^{\ell} \rangle, \qquad \text{with } k := k_{B} \mathrm{T}. \end{aligned}$$

• Velocity:

strong convergence immediate by Aubin-Lions-Simon compactness theorem.

- Probability density function: (much more difficult)
 - Vitali's convergence theorem (a.e. convergence $+ L^1$ equi-integrability);
 - Weak lower semicontinuity of convex functions (Feireisl & Novotný);

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \left(k \int_{O} M \widehat{\psi}^{\ell} \log \widehat{\psi}^{\ell} \, \mathrm{d}x \mathrm{d}\boldsymbol{q} + \frac{1}{2} \|\boldsymbol{u}^{\ell}\|_{2}^{2} \right) + \left(\mathbf{S}_{\nu}^{\ell}, \mathbf{D}(\boldsymbol{u}^{\ell}) \right) + 4k \left(M \nabla \sqrt{\widehat{\psi}^{\ell}}, \nabla \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \\ &+ 4k \left(M \boldsymbol{A} \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}}, \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \leq \langle \boldsymbol{f}, \boldsymbol{u}^{\ell} \rangle, \qquad \text{with } k := k_{B} \mathrm{T}. \end{aligned}$$

• Velocity:

strong convergence immediate by Aubin-Lions-Simon compactness theorem.

- Probability density function: (much more difficult)
 - Vitali's convergence theorem (a.e. convergence $+ L^1$ equi-integrability);

ヘロト ヘヨト ヘヨト ヘヨト

3

- Weak lower semicontinuity of convex functions (Feireisl & Novotný);
- Murat–Tartar Div–Curl lemma;

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \left(k \int_{O} M \widehat{\psi}^{\ell} \log \widehat{\psi}^{\ell} \, \mathrm{d}x \mathrm{d}\boldsymbol{q} + \frac{1}{2} \|\boldsymbol{u}^{\ell}\|_{2}^{2} \right) + (\mathbf{S}_{v}^{\ell}, \mathbf{D}(\boldsymbol{u}^{\ell})) + 4k \left(M \nabla \sqrt{\widehat{\psi}^{\ell}}, \nabla \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \\ &+ 4k \left(M \boldsymbol{A} \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}}, \nabla_{\boldsymbol{q}} \sqrt{\widehat{\psi}^{\ell}} \right)_{O} \leq \langle \boldsymbol{f}, \boldsymbol{u}^{\ell} \rangle, \qquad \text{with } k := k_{B} \mathrm{T}. \end{aligned}$$

• Velocity:

strong convergence immediate by Aubin-Lions-Simon compactness theorem.

- Probability density function: (much more difficult)
 - Vitali's convergence theorem (a.e. convergence $+ L^1$ equi-integrability);
 - Weak lower semicontinuity of convex functions (Feireisl & Novotný);
 - Murat–Tartar Div–Curl lemma;
 - Uniform interior estimates on Ω × D × (0,T), obtained by function space interpolation from the energy inequality.

STEP 6. Identification of S_e : the sequence of truncated Kramers expressions S_e^{ℓ} converges to S_e strongly in $L^q(0,T;L^q(\Omega)^{d\times d})$, $q \in [1,2)$.

STEP 6. Identification of S_e : the sequence of truncated Kramers expressions S_e^{ℓ} converges to S_e strongly in $L^q(0,T;L^q(\Omega)^{d\times d})$, $q \in [1,2)$.

STEP 7. The initial data are attained strongly in $L^2(\Omega)^d \times L^1_M(O)$, i.e.,

$$\lim_{t \to 0_+} \|\boldsymbol{u}(\cdot,t) - \boldsymbol{u}_0(\cdot)\|_2^2 + \|\widehat{\boldsymbol{\psi}}(\cdot,t) - \widehat{\boldsymbol{\psi}}_0(\cdot)\|_{L^1_M(\mathcal{O})} = 0.$$

STEP 6. Identification of S_e : the sequence of truncated Kramers expressions S_e^{ℓ} converges to S_e strongly in $L^q(0,T;L^q(\Omega)^{d\times d})$, $q \in [1,2)$.

STEP 7. The initial data are attained strongly in $L^2(\Omega)^d \times L^1_M(O)$, i.e.,

$$\lim_{t\to 0_+} \|\boldsymbol{u}(\cdot,t) - \boldsymbol{u}_0(\cdot)\|_2^2 + \|\widehat{\boldsymbol{\psi}}(\cdot,t) - \widehat{\boldsymbol{\psi}}_0(\cdot)\|_{L^1_M(\mathcal{O})} = 0.$$

STEP 8. Identification of S_{v} : by a parabolic Acerbi–Fusco type Lipschitz-truncation of Diening, Ružička & Wolf (2010) and STEP 6:

$$\lim_{\ell \to \infty} \int_{Q} \left| (\mathbf{S}_{\nu}^{\ell} - \mathbf{S}^{*}(\mathbf{D}(\boldsymbol{u}))) \cdot \mathbf{D}(\boldsymbol{u}^{\ell} - \boldsymbol{u}) \right|^{\alpha} \mathrm{d}x \, \mathrm{d}t = 0 \qquad \forall \alpha \in (0, 1).$$

 S^* is a measurable selection such that for any D we have $(S^*(D), D) \in \mathcal{A}$.

(ロ) (部) (注) (注) (注) (こ) (の)

Thus, for a subsequence,

 $(\mathbf{S}_{v}^{\ell} - \mathbf{S}^{*}(\mathbf{D}(\boldsymbol{u}))) \cdot \mathbf{D}(\boldsymbol{u}^{\ell} - \boldsymbol{u}) \rightarrow 0$ almost everywhere in Q.

Moreover, using the energy inequality, we see that

$$\int_{Q} \left| \left(\mathbf{S}_{v}^{\ell} - \mathbf{S}^{*}(\mathbf{D}(\boldsymbol{u})) \right) \cdot \mathbf{D}(\boldsymbol{u}^{\ell} - \boldsymbol{u}) \right| \, \mathrm{d}x \, \mathrm{d}t \leq C.$$

We apply Chacon's Biting Lemma to find a nondecreasing countable sequence of measurable sets $Q_1 \subset \cdots \subset Q_k \subset Q_{k+1} \subset \cdots \subset Q$ such that

$$\lim_{k\to\infty}|Q\setminus Q_k|\to 0$$

and such that for any k there is a subsequence such that

$$(\mathbf{S}_{v}^{\ell} - \mathbf{S}^{*}(\mathbf{D}(\boldsymbol{u}))) \cdot \mathbf{D}(\boldsymbol{u}^{\ell} - \boldsymbol{u})$$
 converges weakly in $L^{1}(Q_{k})$.

By Vitali's theorem we then deduce that

$$(\mathbf{S}_{v}^{\ell} - \mathbf{S}^{*}(\mathbf{D}(\boldsymbol{u}))) \cdot \mathbf{D}(\boldsymbol{u}^{\ell} - \boldsymbol{u}) \to 0$$
 strongly in $L^{1}(Q_{k})$.

The weak convergence of (\mathbf{S}_{v}^{ℓ}) to \mathbf{S}_{v} and $(\mathbf{D}(\boldsymbol{u}^{\ell}))$ to $\mathbf{D}(\boldsymbol{u})$ implies that

$$\lim_{\ell\to\infty} (\mathbf{S}_{\nu}^{\ell}, \mathbf{D}(\boldsymbol{u}^{\ell}))_{Q_k} = (\mathbf{S}_{\nu}, \mathbf{D}(\boldsymbol{u}))_{Q_k}.$$

The assumption that \mathcal{A} is a maximal monotone *r*-graph then implies that

$$(\mathbf{S}_{v}, \mathbf{D}(\boldsymbol{u})) \in \mathcal{A}$$
 a.e. in Q_{k} , $k = 1, 2, \dots$

Finally, by a diagonal procedure and $\lim_{k o \infty} |Q \setminus Q_k| o 0$ we deduce that

$$(\mathbf{S}_{v}, \mathbf{D}(\boldsymbol{u})) \in \mathcal{A}$$
 a.e. in $Q = \Omega \times (0, T)$.

イロン イロン イヨン イヨン 三日

Open problems

• The extension of these results to implicitly constituted kinetic models with variable density, density-dependent viscosity and drag is open.

Open problems

• The extension of these results to implicitly constituted kinetic models with variable density, density-dependent viscosity and drag is open.

Special case:

For Navier–Stokes–Fokker–Planck systems with variable density and density-dependent dynamic viscosity and drag the existence of global weak solutions was shown in

イロト 不得 トイヨト イヨト

Barrett & Süli (Journal of Differential Equations, 2012).

Open problems

• The extension of these results to implicitly constituted kinetic models with variable density, density-dependent viscosity and drag is open.

Special case:

For Navier–Stokes–Fokker–Planck systems with variable density and density-dependent dynamic viscosity and drag the existence of global weak solutions was shown in

- Barrett & Süli (Journal of Differential Equations, 2012).
- The numerical analysis of implicitly constituted kinetic models of polymers is open.

Special cases:

- Barrett & Süli (M2AN, 2012)
- Diening, Kreuzer & Süli (SIAM J. Numer. Anal., 2013)
- Kreuzer & Süli (In preparation, 2014).

2D/4D: Flow around a cylinder

- Standard benchmark problem: flow around a cylinder
- Assume Stokes flow, parabolic inflow BCs on *u_x*, no-slip on stationary walls and cylinder
- Steady state solution (computed on 8 processors):

2D/4D: Flow around a cylinder: extra stress tensor

< □ > < 個 > < 国 > < 国 > < 国 > < 国 > < 回 > <</p>

2D/4D: Flow around a cylinder: probability density fn.

Figure : Configuration space cross-sections of ψ for x in (r, θ) -coordinates: (a) wake of cylinder, and (b) between cylinder and wall.

イロン 不良 とくほう イロン しゅ

2D/4D: Flow around a cylinder: probability density fn.

・ロン・西と・日と・日、 ヨー・

28 / 31

3D/6D: Flow past a ball in a channel

- Pressure-drop-driven flow past a ball in hexahedral channel.
- P_2/P_1 mixed FEM for (Navier–)Stokes equation on a mesh with 3045 tetrahedral elements and 51989 Gaussian quadrature points.
- Fokker–Planck equation solved using heterogenous ADI method in 6D domain Ω × D. 51989 3D solves per time step in q = (q₁,q₂,q₃) ∈ D and 1800 3D solves per time-step in x = (x,y,z) ∈ Ω.
- Computed using 120 processors; 45s/time step; 10 time steps; $\Delta t = 0.05$; $\lambda = 0.5$.

3D/6D: Flow past a ball in a channel: elastic part of the Cauchy stress

(ロ) (四) (注) (注) (三) (の)

