
Existence of global weak solutions to
implicitly constituted kinetic models of

incompressible homogeneous dilute polymers

Endre Süli
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Statement of the model

Ω⊂ Rd , d = 2,3: bounded open Lipschitz domain,

T : length of the time interval of interest, and

Q := Ω× (0,T ): the associated space-time domain.

Consider the following system of nonlinear PDEs:

ρ(ut +div(u⊗u))−divTTT = ρf in Q,

divu= 0 in Q, (1)

u(·,0) = u0(·) in Ω,

and the boundary condition

u= 0 on ∂Ω× (0,T ).
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We assume that the Cauchy stress TTT is decomposed as

TTT =−pIII+SSSv +SSSe,

where

p : Q→ R is the pressure;

SSSv : Q→ Rd×d
sym is the viscous part of the deviatoric stress;

SSSv and DDD(u) := 1
2(∇u+(∇u)T) are assumed to be related via

a maximal monotone graph described by the implicit relation:

GGG(SSSv,DDD(u)) = 0, (2)

where GGG : Rd×d
sym ×Rd×d

sym → Rd×d
sym is a continuous mapping.

SSSe : Q→ Rd×d
sym is the elastic part of the deviatoric stress.
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Examples of GGG(SSSv,DDD(u)) = 0

Newtonian (Navier–Stokes) fluids: SSSv = 2µ∗DDD(u), with µ∗ > 0;

Power-law fluids: SSSv = 2µ∗|DDD(u)|r−2 DDD(u), 1≤ r < ∞;

Generalized power-law fluids: SSSv = 2µ̃(|DDD(u)|2)DDD(u);

Stress power-law fluids and generalizations: DDD(u) = α(|SSSv|2)SSSv;
Fluids with the viscosity depending on the shear rate and shear stress

SSSv = 2µ̂(|DDD(u)|2, |SSSv|2)DDD(u);

Activated fluids, such as Bingham and Herschel–Bulkley fluids:

|SSSv| ≤ τ∗⇔DDD(u) = 0 and |SSSv|> τ∗⇔ SSSv =
τ∗DDD(u)

|DDD(u)|
+2ν(|DDD(u)|2)DDD(u).

i.e. 2ν(|DDD(u)|2)(τ∗+(|SSSv|− τ∗)+)DDD(u) = (|SSSv|− τ∗)+SSSv, τ∗ > 0.
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Examples of SSSv(= τ) vs. DDD(u)(= γ)
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We identify the implicit relation (2) with a graph A ⊂ Rd×d
sym ×Rd×d

sym , i.e.,

GGG(SSS,DDD) = 0 ⇐⇒ (DDD,SSS) ∈ A .

We assume that, for some r ∈ (1,∞), A is a maximal monotone r-graph:

(A1) A includes the origin; i.e., (0,0) ∈ A ;

(A2) A is a monotone graph; i.e.,

(SSS1−SSS2) · (DDD1−DDD2)≥ 0 for all (DDD1,SSS1),(DDD2,SSS2) ∈ A ;

(A3) A is a maximal monotone graph; i.e., for any (DDD,SSS) ∈ Rd×d
sym ×Rd×d

sym ,

if (S̃SS−SSS) · (D̃DD−DDD)≥ 0 for all (D̃DD,S̃SS) ∈ A , then (DDD,SSS) ∈ A ;

(A4) A is an r-graph; i.e., there exist positive constants C1, C2 such that

SSS ·DDD≥C1(|DDD|r + |SSS|r
′
)−C2 for all (DDD,SSS) ∈ A .
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Definition of SSSe: kinetic theory of polymers

Large number of internal degrees of freedom −→ statistical physics.

R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager:
Dynamics of Polymeric Liquids, Vol. II: Kinetic Theory. Wiley, 1987.

P.G. de Gennes:
Scaling Concepts in Polymer Physics. CUP, 1992.

H.C. Öttinger:
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M. Doi:
Introduction to Polymer Physics. OUP, 1995.

T. Kawakatsu:
Statistical Physics of Polymers. Springer, 2004.
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Definition of SSSe: kinetic theory of polymers

Let Di ⊂ Rd , i = 1, . . . ,K, be bounded open balls centred at 0.

Consider the Maxwellian M(q) := M1(q1) · · ·MK(qK), with qi ∈ Di, where

Mi(qi) :=
e−Ui(

1
2 |qi|2)∫

Di
e−Ui(

1
2 |pi|2)dpi

, i = 1, . . . ,K.
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SSSe is defined by the Kramers expression:

SSSe(x, t) := kBT
K

∑
i=1

∫
D

M(q)∇qiψ̂(x,q, t)⊗qi dq,

where q = (qT
1 , . . . ,q

T
K)

T ∈ D1×·· ·×DK =: D and

ψ̂ := ψ/M

is the normalized probability density function, that is the solution of a
Fokker–Planck equation.
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Fokker–Planck equation

The function ψ̂ = ψ/M satisfies the Fokker–Planck equation:

(M ψ̂)t +div(M ψ̂u)+divq (M ψ̂(∇u)q) =4(M ψ̂)+divqA(M ∇qψ̂) (3)

in O× (0,T ), with O := Ω×D, subject to the boundary conditions:

M ∇ψ̂ ·n= 0 on ∂Ω×D× (0,T ),

(M ψ̂(∇u)qi−Ai(M ∇qψ̂)) ·ni = 0 on Ω×∂D̄i× (0,T ),

for all i = 1, . . . ,K, and the initial condition

ψ̂(x,q,0) = ψ̂0(x,q) in O.

A ∈ RK×K
symm: Rouse matrix (symmetric, positive definite).
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J.W. Barrett & E. Süli (M3AS, 21 (2011), 1211–1289):
Existence and equilibration of global weak solutions to kinetic models
for dilute polymers I: Finitely extensible nonlinear bead-spring chains

J.W. Barrett & E. Süli (M3AS, 22 (2012), 1–84):
Existence and equilibration of global weak solutions to kinetic
models for dilute polymers II: Hookean-type bead-spring chains
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Assumptions on the data

For the Maxwellian M we assume that

M ∈C0(D)∩C0,1
loc (D), and M > 0 on D. (4)

For the initial velocity u0 we assume that

u0 ∈ L2
0,div(Ω). (5)

For ψ̂0 := ψ0/M we assume, with O := Ω×D, that

ψ̂0 ≥ 0 a.e. in O, ψ̂0 log ψ̂0 ∈ L1
M(O), (6)

and that the initial marginal probability density function∫
D

M(q) ψ̂0(·,q)dq ∈ L∞(Ω). (7)
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Theorem

For d ∈ {2,3} let Di ⊂ Rd , i = 1, . . . ,K, be bounded open balls centred at
the origin in Rd , let Ω⊂ Rd be a bounded open Lipschitz domain and

suppose f ∈ Lr′(0,T ;W−1,r′
0,div (Ω)), r ∈ (1,∞). Assume that A , given by GGG,

is a maximal monotone r-graph satisfying (A1) – (A4), the Maxwellian
M : D→ R satisfies (4), and (u0, ψ̂0) satisfy (5)–(7).

Then, there exist (u,SSSv,SSSe, ψ̂) such that

u ∈ L∞(0,T ;L2
0,div(Ω)d)∩Lr(0,T ;W 1,r

0 (Ω)d)∩W 1,r∗(0,T ;W−1,r∗
0,div (Ω)),

SSSv ∈ Lr′(0,T ;Lr′(Ω)d×d), SSSe ∈ L2(0,T ;L2(Ω)d×d),

ψ̂ ∈ L∞(Q;L1
M(D))∩L2(0,T ;W 1,1

M (O)), ψ̂≥ 0 a.e. in O× (0,T ),

M ψ̂ ∈W 1,1(0,T ;W−1,1(O)), ψ̂ log ψ̂ ∈ L∞(0,T ;L1
M(O)),

where
r∗ := min

{
r′,2,

(
1+ 2

d

)
r
}

and r′ := r
r−1 .
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Theorem (Continued...)

Moreover, (1) is satisfied in the following sense:∫ T

0
〈ut ,w〉dt +

∫ T

0

(
− (u⊗u,∇w)+(SSSv,∇w)

)
dt

=
∫ T

0

(
− (SSSe,∇w)+ 〈f ,w〉

)
dt for all w ∈ L∞(0,T ;W 1,∞

0,div(Ω)),

where
(SSSv(x, t),DDD(u(x, t))) ∈ A for a.e. (x, t) ∈ Q,

and SSSe is given by the Kramers expression

SSSe(x, t) = kBT
K

∑
i=1

∫
D

M ∇qiψ̂(x,q, t)⊗qi dq for a.e. (x, t) ∈ Q.
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Theorem (Continued...)

In addition, the Fokker–Planck eqn (3) is satisfied in the following sense:∫ T

0

[
〈(M ψ̂)t ,ϕ〉− (Muψ̂,∇ϕ)O− (M ψ̂(∇u)q,∇qϕ)O

]
dt

+
∫ T

0

[
(M ∇ψ̂,∇ϕ)O +(MA∇qψ̂,∇qϕ)O

]
dt = 0

for all ϕ ∈ L∞(0,T ;W 1,∞(O)),

and the initial data are attained strongly in L2(Ω)d×L1
M(O), i.e.,

lim
t→0+
‖u(·, t)−u0(·)‖2

2 +‖ψ̂(·, t)− ψ̂0(·)‖L1
M(O) = 0.
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Theorem (Continued...)

Further, for t ∈ (0,T ) the following energy inequality holds in a weak sense:

d
dt

(
k
∫

O
M ψ̂ log ψ̂ dxdq+ 1

2‖u‖
2
2

)
+(SSSv,DDD(u))+4k

(
M ∇

√
ψ̂,∇

√
ψ̂

)
O

+4k
(

MA∇q

√
ψ̂,∇q

√
ψ̂

)
O
≤ 〈f ,u〉, with k := kBT.
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Proof

STEP 1. Truncate ψ̂ in the Kramers expression and in the drag term in the
FP equation by replacing ψ̂ with T`(ψ̂), preserving the energy inequality.

STEP 2. We form a Galerkin approximation of the velocity and the
probability density function, resulting in a system of ODEs in t.

STEP 3. The sequence of Galerkin approximations satisfies an energy
inequality, uniformly in the number of Galerkin basis functions and the
truncation parameter `.

STEP 4. We extract weakly (and weak*) convergent subsequences, and
pass to the limits in the Galerkin approximations.

STEP 5. We require strongly convergent sequences for passage to limit in
` in the various nonlinear terms. This is the most difficult step to realize.
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weak convergence −→ strong convergence

d
dt

(
k
∫

O
M ψ̂

` log ψ̂
` dxdq+ 1

2‖u
`‖2

2

)
+(SSS`

v,DDD(u`))+4k
(

M ∇

√
ψ̂`,∇

√
ψ̂`

)
O

+4k
(

MA∇q

√
ψ̂`,∇q

√
ψ̂`

)
O
≤ 〈f ,u`〉, with k := kBT.

Velocity:
strong convergence immediate by Aubin–Lions–Simon compactness theorem.

Probability density function: (much more difficult)
I Vitali’s convergence theorem (a.e. convergence + L1 equi-integrability);
I Weak lower semicontinuity of convex functions (Feireisl & Novotný);
I Murat–Tartar Div–Curl lemma;
I Uniform interior estimates on Ω×D× (0,T ), obtained by function

space interpolation from the energy inequality.
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I Murat–Tartar Div–Curl lemma;
I Uniform interior estimates on Ω×D× (0,T ), obtained by function

space interpolation from the energy inequality.

20 / 31



weak convergence −→ strong convergence

d
dt

(
k
∫

O
M ψ̂

` log ψ̂
` dxdq+ 1

2‖u
`‖2

2

)
+(SSS`

v,DDD(u`))+4k
(

M ∇

√
ψ̂`,∇

√
ψ̂`

)
O

+4k
(

MA∇q

√
ψ̂`,∇q

√
ψ̂`

)
O
≤ 〈f ,u`〉, with k := kBT.

Velocity:
strong convergence immediate by Aubin–Lions–Simon compactness theorem.

Probability density function: (much more difficult)

I Vitali’s convergence theorem (a.e. convergence + L1 equi-integrability);
I Weak lower semicontinuity of convex functions (Feireisl & Novotný);
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I Murat–Tartar Div–Curl lemma;
I Uniform interior estimates on Ω×D× (0,T ), obtained by function

space interpolation from the energy inequality.

20 / 31



weak convergence −→ strong convergence

d
dt

(
k
∫

O
M ψ̂

` log ψ̂
` dxdq+ 1

2‖u
`‖2

2

)
+(SSS`

v,DDD(u`))+4k
(

M ∇

√
ψ̂`,∇

√
ψ̂`

)
O

+4k
(

MA∇q

√
ψ̂`,∇q

√
ψ̂`

)
O
≤ 〈f ,u`〉, with k := kBT.

Velocity:
strong convergence immediate by Aubin–Lions–Simon compactness theorem.

Probability density function: (much more difficult)
I Vitali’s convergence theorem (a.e. convergence + L1 equi-integrability);
I Weak lower semicontinuity of convex functions (Feireisl & Novotný);
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STEP 6. Identification of SSSe: the sequence of truncated Kramers
expressions SSS`

e converges to SSSe strongly in Lq(0,T ;Lq(Ω)d×d), q ∈ [1,2).

STEP 7. The initial data are attained strongly in L2(Ω)d×L1
M(O), i.e.,

lim
t→0+
‖u(·, t)−u0(·)‖2

2 +‖ψ̂(·, t)− ψ̂0(·)‖L1
M(O) = 0.

STEP 8. Identification of SSSv: by a parabolic Acerbi–Fusco type
Lipschitz-truncation of Diening, Ružička & Wolf (2010) and STEP 6:

lim
`→∞

∫
Q

∣∣(SSS`
v−SSS∗(DDD(u))) ·DDD(u`−u)

∣∣α dxdt = 0 ∀α ∈ (0,1).

SSS∗ is a measurable selection such that for any DDD we have (SSS∗(DDD),DDD) ∈ A .
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Thus, for a subsequence,

(SSS`
v−SSS∗(DDD(u))) ·DDD(u`−u)→ 0 almost everywhere in Q.

Moreover, using the energy inequality, we see that∫
Q

∣∣(SSS`
v−SSS∗(DDD(u))) ·DDD(u`−u)

∣∣ dxdt ≤C.

We apply Chacon’s Biting Lemma to find a nondecreasing countable
sequence of measurable sets Q1 ⊂ ·· · ⊂ Qk ⊂ Qk+1 ⊂ ·· · ⊂ Q such that

lim
k→∞

|Q\Qk| → 0

and such that for any k there is a subsequence such that

(SSS`
v−SSS∗(DDD(u))) ·DDD(u`−u) converges weakly in L1(Qk).
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By Vitali’s theorem we then deduce that

(SSS`
v−SSS∗(DDD(u))) ·DDD(u`−u)→ 0 strongly in L1(Qk).

The weak convergence of (SSS`
v) to SSSv and (DDD(u`)) to DDD(u) implies that

lim
`→∞

(SSS`
v,DDD(u`))Qk = (SSSv,DDD(u))Qk .

The assumption that A is a maximal monotone r-graph then implies that

(SSSv,DDD(u)) ∈ A a.e. in Qk, k = 1,2, . . . .

Finally, by a diagonal procedure and limk→∞ |Q\Qk| → 0 we deduce that

(SSSv,DDD(u)) ∈ A a.e. in Q = Ω× (0,T ).

�
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Open problems

The extension of these results to implicitly constituted kinetic models
with variable density, density-dependent viscosity and drag is open.

Special case:
For Navier–Stokes–Fokker–Planck systems with variable density and
density-dependent dynamic viscosity and drag the existence of global
weak solutions was shown in

I Barrett & Süli (Journal of Differential Equations, 2012).

The numerical analysis of implicitly constituted kinetic models of
polymers is open.

Special cases:
I Barrett & Süli (M2AN, 2012)
I Diening, Kreuzer & Süli (SIAM J. Numer. Anal., 2013)
I Kreuzer & Süli (In preparation, 2014).
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2D/4D: Flow around a cylinder

Standard benchmark problem: flow around a cylinder

Assume Stokes flow, parabolic inflow BCs on ux, no-slip
on stationary walls and cylinder

Steady state solution (computed on 8 processors):

ux :

uy :

p :
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2D/4D: Flow around a cylinder: extra stress tensor

(SSSe)11 :

(SSSe)12 :

(SSSe)22 :
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2D/4D: Flow around a cylinder: probability density fn.

(a) (b)

Figure : Configuration space cross-sections of ψ for x in (r,θ)-coordinates:
(a) wake of cylinder, and (b) between cylinder and wall.
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2D/4D: Flow around a cylinder: probability density fn.
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3D/6D: Flow past a ball in a channel

Pressure-drop-driven flow past a ball in hexahedral channel.
P2/P1 mixed FEM for (Navier–)Stokes equation on a mesh with
3045 tetrahedral elements and 51989 Gaussian quadrature points.
Fokker–Planck equation solved using heterogenous ADI method in 6D
domain Ω×D. 51989 3D solves per time step in q = (q1,q2,q3) ∈ D
and 1800 3D solves per time-step in x = (x,y,z) ∈Ω.
Computed using 120 processors; 45s/time step; 10 time steps;
∆t = 0.05; λ = 0.5.
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3D/6D: Flow past a ball in a channel: elastic part of the Cauchy stress

(SSSe)11 (SSSe)12 (SSSe)13

(SSSe)22 (SSSe)23 (SSSe)33
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HAPPY BIRTHDAY, EITAN!
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