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Introduction to Gangs

Gangs are responsible for much of the violent crimes in the U.S. and
worldwide
One of the main concerns of a gang is its territory
This territory is marked and defended
Graffiti (tagging) is often used to claim or maintain territory

Figure: Graffiti gang war in Los Angeles, California. Figure adopted from
www.workhorsevisuals.com
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Lattice Model Summary

We consider two gangs, let’s say red and blue
Initially, agents are uniformly distributed over a toroidal lattice
Agents have some probability of tagging the lattice site which they
currently occupy
Agents then are forced to move to one of the four neighboring sites

) The total number of agents in each gang is conserved
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Our Discrete Model
We base our model on the assumption that gangs claim territory by
tagging
Each gang preferentially avoids areas marked by the other gang
Gang members do not interact directly

Multiple agents may occupy the same site
Agents interact only through the graffiti field
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Discrete Dynamics

The densitity of agents of gangs A and B at site (x , y) at time t are
denoted by ⇢

A

(x , y , t) and ⇢
B

(x , y , t)

The density of graffiti of gang A and B at site (x , y) at time t are ⇠
A

(x , y , t)
and ⇠

B

(x , y , t)

The probability of an agent from gang A to move to a neighbouring site is

M

A

(x1 ! x2, y1 ! y2, t) : =
e

��⇠
B

(x2,y2,t)

P
(x̃,ỹ)⇠(x1,y1)

e

��⇠
B

(x̃,ỹ,t)

� is parameter that symbolizes the avoidance of graffiti belonging to the
other gang.
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Discrete Equations

According to our discrete model, employing this notation, we find:
The expected density of gang A agents at site (x , y) 2 S at time t + �t is

⇢
A

(x , y , t + �t) =⇢
A

(x , y , t) +
X

(x̃,ỹ)⇠(x,y)

⇢
A

(x̃ , ỹ , t)M
A

(x̃ ! x , ỹ ! y , t)

� ⇢
A

(x , y , t)
X

(x̃,ỹ)⇠(x,y)

M

A

(x ! x̃ , y ! ỹ , t)

The graffiti evolution is given by

⇠
A

(x , y , t + �t) = ⇠
A

(x , y , t)� �t · � · ⇠
A

(x , y , t) + �t · � · ⇢
A

(x , y , t),
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Simulations of Gang Dynamics: Well-Mixed Phase

� = 1 ⇥ 10�6:
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Figure: Temporal evolution of the densities for a well-mixed phase.
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Segregated Phase: Agent Density

� = 2 ⇥ 10�5:
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Figure: Temporal evolution of the densities for a segregated phase.
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Segregated Phase: Graffiti Field
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Figure: Temporal evolution of the densities for a segregated phase.
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Probability of Movement for Different Beta Values

� ⇠
B

= ⇠
B

= ⇠
B

= ⇠
B

=
1 ⇥ 105, 0.55 ⇥ 105, 0.5 ⇥ 105, 0.2 ⇥ 105,

Mleft Mright Mup Mdown

1 ⇥ 10�6 0.2392 0.2502 0.2514 0.2591

6.5 ⇥ 10�6 0.1849 0.2478 0.2560 0.3111

2 ⇥ 10�5 0.0898 0.2209 0.2442 0.4449

Table: Probabilities of an agent from gang A moving to a neighbouring site for different
� values.
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Phase Transitions

Phase transitions can be observed in many models for collective
dynamics

Different macroscopic behaviors depending on the parameter values

Think of solid, liquid, and gas phases from physics
Order parameters, Hamiltonians, and energies can be defined to help
track the phase transition

A. Barbaro (CWRU) Model for Territorial Development March 23, 2017 13 / 27



Phase Transitions

Phase transitions can be observed in many models for collective
dynamics

Different macroscopic behaviors depending on the parameter values

Think of solid, liquid, and gas phases from physics
Order parameters, Hamiltonians, and energies can be defined to help
track the phase transition

A. Barbaro (CWRU) Model for Territorial Development March 23, 2017 13 / 27



Phase Transitions in Kinetic Models

In the context of kinetic models, phase transitions come up frequently
These models often exhibit collective dynamics in one parameter regime,
but not in another
The collective dynamics are then considered as a phase
Consider flocking models:

In one regime (e.g. high noise regime), there is very little order in the way
the agents are moving
In another regime (e.g. low noise), the agents align and move together in an
organized way
Polarity can be useful as an order parameter to track the phase
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Phase Transition in the Discrete Model
We use an “‘energy function” to examine the system phases.

The energy at time t is defined as

E(t) = 1
4

✓
1

LN

◆2 X

(x,y)2S

X

(x̃,ỹ)⇠(x,y)
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A

� ⇢
B

) (⇢̃
A

� ⇢̃
B

) .

0 1 2 3 4 5

Time ×10 4

0

0.2

0.4

0.6

0.8

1
E

n
e
rg

y

Energy vs. Time

β = 0

β = 0.000001

β = 0.0000065

β = 0.000015

β = 0.00002

The system has high energy in segregated phase.
The system has low energy in well-mixed phase.
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Phase Transitions for Different Mass Values
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Figure: The energy at the final time step against � for different lattice sizes and number
of agents.
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Phase Transitions for Different Ratio Values
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Deriving the Macroscopic Model from the Microscopic
Recall the probability of movement from site x1 to site x2:

M

A

(x1 ! x2, y1 ! y2, t) : =
e

��⇠
B

(x2,y2,t)

P
(x̃,ỹ)⇠(x1,y1)

e

��⇠
B

(x̃,ỹ,t)
.

We know the density of agents at site (x , y) at time t + �t :

⇢
A

(x , y , t + �t) =⇢
A

(x , y , t) +
X

(x̃,ỹ)⇠(x,y)

⇢
A

(x̃ , ỹ , t)M
A

(x̃ ! x , ỹ ! y , t)

� ⇢
A

(x , y , t)
X

(x̃,ỹ)⇠(x,y)

M

A

(x ! x̃ , y ! ỹ , t)

We also have the density of the graffiti for each gang at site (x , y) at time
t + �t :

⇠
A

(x , y , t + �t) = ⇠
A

(x , y , t)� �t · � · ⇠
A

(x , y , t) + �t · � · ⇢
A

(x , y , t)

Our goal now is to find macroscopic equations which govern the evolution
of these four quantities over time.
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(x̃,ỹ)⇠(x1,y1)

e

��⇠
B

(x̃,ỹ,t)
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Deriving a Macroscopic Version of the Graffiti Density

Evolution of the graffiti density:

⇠
A

(x , y , t + �t) = ⇠
A

(x , y , t)� �t · � · ⇠
A

(x , y , t) + �t · � · ⇢
A

(x , y , t)

Obtain a discrete derivative on the left-hand side:

⇠
A

(x , y , t + �t)� ⇠
A

(x , y , t)

�t

= ��⇠
A

(x , y , t) + �⇢
A

(x , y , t)

Simply taking �t ! 0, we have our two macroscopic equations:

@⇠
A

@t

(x , y , t) = �⇢
A

(x , y , t)� �⇠
A

(x , y , t)

@⇠
B

@t

(x , y , t) = �⇢
B

(x , y , t)� �⇠
B

(x , y , t)
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Deriving a Macroscopic Version of the Agent Density
The derivation of the equations for the agent density are more
complicated
Considering the discrete equations:

M

A

(x1 ! x2, y1 ! y2, t) :=
e

��⇠
B

(x2,y2,t)

P
(x̃,ỹ)⇠(x1,y1)

e

��⇠
B

(x̃,ỹ,t)

⇢
A

(x , y , t + �t) = ⇢
A

(x , y , t) +
X

(x̃,ỹ)⇠(x,y)

⇢
A

(x̃ , ỹ , t)M
A

(x̃ ! x , ỹ ! y , t)

� ⇢
A

(x , y , t)
X

(x̃,ỹ)⇠(x,y)

M

A

(x ! x̃ , y ! ỹ , t)
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Deriving a Macroscopic Version of the Agent Density

We formally derive a macroscopic version
Taylor expansion

To circumnavigate the complication arising from the neighbors’
neighbors, we employ the discrete spatial Laplacian in two dimensions:

�f (x , y , t) =
1
l

2

2

4
X

(x̃,ỹ)⇠(x,y)

f (x̃ , ỹ , t)� 4f (x , y , t)

3

5+O(l2),

We apply the discrete Laplacian several times to get rid of the
dependence on the neighboring points.
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Continuum Equations

The full system of continuum equations is

@⇠
A

@t

(x , y , t) = �⇢
A

(x , y , t)� �⇠
A

(x , y , t)

@⇠
B

@t

(x , y , t) = �⇢
B

(x , y , t)� �⇠
B

(x , y , t)

@⇢
A

@t

(x , y , t) =
D

4
r ·

h
r⇢

A

(x , y , t) + 2�
�
⇢

A

(x , y , t)r⇠
B

(x , y , t)
�i

@⇢
B

@t
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B
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Linear Stability Analysis

We linearize our model by considering a perturbation of the equilibrium
solution
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ikx
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Solving for eigenvalue ↵, we find the following four eigenvalues:
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Critical � for Continuum Model

↵1,↵2, and ↵3 are always negative
However, ↵4 is positive for

� � 1
2( �� )

p
⇢̄

A

⇢̄
B

,

This defines a critical � for the continuum system
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Comparing Discrete and Continuous Critical �
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Figure: Critical � comparision.
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Future Work

Numerical solution of the coupled system:
how does it compare to the discrete model’s evolution?

Analysis of coupled system:
energy, stability, coarsening rates, etc.
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Thank you for your attention!
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