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Unbiased dispersal

Evolution of Dispersal

How should organisms move “optimally" in heterogeneous
environments?
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Unbiased dispersal

Previous works

Levin 76; Hastings 83; Holt 85; McPeek and Holt 92; Holt and
McPeek 1996; Dockery et al. 1998; Kirkland et al. 2006; Abrams
2007; Armsworth and Roughgarden 2008; Amarasekare 2010

Surveys: Johnson and Gaines 1990; Clobert et al. 2001; Levin,
Muller-Landau, Nathan and Chave 2003; Bowler and Benton
2005; Holyoak et al. 2005; Amarasekare 2008
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Unbiased dispersal

Evolution game theory

Game theory: John von Neumann (28), John Nash (50)

Evolutionary game theory: John Maynard Smith and Price (73)

Evolutionary stable strategy (ESS): A strategy such that, if all the
members of a population adopt it, no mutant strategy can invade

“Optimal" movement strategy: Dispersal strategies that are
evolutionarily stable
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Unbiased dispersal

Unbiased dispersal

Hastings (TPB, 83); Dockery et al. (JMB, 98)

ut =

d1∆u +

u[m(x)− u − v ] in Ω× (0,∞),

vt =

d2∆v +

v [m(x)− u − v ] in Ω× (0,∞),

∂u
∂n = ∂v

∂n = 0 on ∂Ω× (0,∞).

(1)

u(x , t), v(x , t): densities at x ∈ Ω ⊂ RN

m(x): intrinsic growth rate of species

d1,d2: dispersal rates (strategies)

No-flux boundary condition
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Unbiased dispersal

Hasting’s approach

Suppose that u (resident species) is at equilibrium:

d1∆u∗ + u∗[m(x)− u∗] = 0 in Ω,

∂u∗
∂n = 0 on ∂Ω.

(2)

Question. Can mutant v grow when it is rare?

Stability of (u, v) = (u∗,0): Let Λ(d1,d2) denote the smallest
eigenvalue of

d2∆ϕ+ (m − u∗)ϕ+ λϕ = 0 in Ω,

∇ϕ · n = 0 on ∂Ω.
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Unbiased dispersal

Evolution of slow dispersal

Theorem
(Hastings 1983) Suppose that m(x) is non-constant, positive and
continuous in Ω̄. If d1 < d2, then (u∗,0) is stable; if d1 > d2, (u∗,0) is
unstable.

Λ(d1,d1) = 0

Λ(d1,d2) is increasing in d2

No dispersal rate is evolutionarily stable: Any mutant with a
smaller dispersal rate can invade!
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Unbiased dispersal

Ideal free distribution (IFD)

Fretwell and Lucas (70)

How should organisms distribute in heterogeneous habitat?

Assumption 1: Animals are "ideal" in assessment of habitat

Assumption 2: Animals are capable of moving "freely"

Prediction: Animals aggregate proportionately to the amount of
resources
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Unbiased dispersal

Unbiased dispersal

Logistic model

ut = d∆u + u [m(x)− u] in Ω× (0,∞)

∂u
∂n = 0 on ∂Ω× (0,∞)

(3)

If u(x ,0) is positive, u(x , t)→ u∗(x) as t →∞

Does u reach an IFD at equilibrium? That is,

m(x)

u∗(x)
= constant?
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Unbiased dispersal

Heterogeneous environment

Logistic model

d∆u∗ + u∗(m(x)− u∗) = 0 in Ω,

∂u∗
∂n = 0 on ∂Ω

(4)

No ideal free distribution: m/u∗ 6≡ constant. Integrating (4) in Ω,∫
Ω

u∗(m − u∗) = 0.

If m/u∗ were a constant, then m ≡ u∗. By (4),

∆m = 0 in Ω, ∇m · n = 0 on ∂Ω,

which implies that m must be a constant. Contradiction!
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Unbiased dispersal

Two competing species

Dockery et al. (98)

ut = d1∆u + u(m − u − v) in Ω× (0,∞),

vt = d2∆v + v(m − u − v) in Ω× (0,∞),

∂u
∂n = ∂v

∂n = 0 on ∂Ω× (0,∞).

(5)

Theorem
If d1 < d2, (u∗,0) is globally asymptotically stable.

Evolution of slow dispersal: Why?
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Unbiased dispersal

Why smaller dispersal rate?

Logistic model

d∆u∗ + u∗(m(x)− u∗) = 0 in Ω,

∂u∗
∂n = 0 on ∂Ω.

(6)

It can be shown that
lim
d→0

m(x)

u∗(x)
= 1.

The smaller d is, the closer m/u∗ to constant; i.e., the distribution
of the species is closer to IFD for smaller dispersal rate
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Unbiased dispersal

Q: Are there dispersal strategies that can produce ideal free
distribution?

Yuan Lou (Ohio State) NC State 2013 15 / 43



Balanced dispersal

Single species

Cantrell, Cosner, L (MBE, 10)

ut = d1∇ · [∇u − u∇P(x)] + u[m(x)− u] in Ω× (0,∞)

[∇u − u∇P(x)] · n = 0 on ∂Ω× (0,∞)
(7)

P(x) = ln m(x) can produce ideal free distribution
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Balanced dispersal

Balanced dispersal

If P(x) = ln m(x), then u ≡ m is a positive solution of

d1∇ · [∇u − u∇P(x)] + u[m(x)− u] = 0 in Ω

[∇u − u∇P(x)] · n = 0 on ∂Ω
(8)

Ideal free distribution: m ≡ u

“Balanced dispersal": McPeek and Holt 1992

∇u − u∇P = ∇m −m∇(ln m) = 0

Is the strategy P = ln m an ESS?
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Balanced dispersal

Two species model

ut = d1∇ · [∇u − u∇P] + u(m − u − v) in Ω× (0,∞)

vt = d2∇ · [∇v − v∇Q] + v(m − u − v) in Ω× (0,∞)

[∇u − u∇P] · n = [∇v − v∇Q] · n = 0 on ∂Ω× (0,∞)

(9)

If P = ln m, (m,0) is a steady state.

Is (m,0) asymptotically stable? (⇔ Is P = ln m an ESS?)
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Balanced dispersal

Stability of (m, 0)

Original system:

ut = d1∇ · [∇u − u∇ ln m] + u(m − u − v),

vt = d2∇ · [∇v − v∇Q] + v(m − u − v).
(10)

Perturbation of (m(x),0):

(u, v) = (m,0) + (εϕ(x)e−λt , εψ(x)e−λt )

Equations for (ϕ,ψ, λ):

d1∇ · [∇ϕ− ϕ∇ ln m]−mϕ−mψ = −λϕ,

d2∇ · [∇ψ − ψ∇Q] = −λψ.
(11)
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Balanced dispersal

Stability of (m, 0)

Eigenvalue problem for the stability of (m,0):

− d2∇ · [∇ψ − ψ∇Q] = λψ in Ω,

[∇ψ − ψ∇Q] = 0 on ∂Ω.

(λ, ψ) = (0,eQ) is a solution

Bad news: Zero is the smallest eigenvalue; i.e., (m,0) is neutrally
stable
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Balanced dispersal

Evolutionary stable strategy

Cantrell et. al (10); Averill, Munther, L (JBD, 2012)

Theorem

Suppose that m ∈ C2(Ω̄), is non-constant and positive in Ω̄. If P = ln m
and Q − ln m is non-constant, then (m,0) is globally stable.

P = lnm is an ESS:

It can resist the invasion of any other strategy

It can displace any other strategy

Yuan Lou (Ohio State) NC State 2013 21 / 43
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Balanced dispersal

Proof

Define

E(t) =

∫
Ω

[u(x , t) + v(x , t)−m(x) ln u(x , t)] dx .

Then dE/dt ≤ 0 for all t ≥ 0.

Three or more competing species: Gejji et al. (BMB 2012);
Munther and L. (DCDS-A 2012)
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Balanced dispersal

Other dispersal strategies which can produce ideal free distribution:

(Mark Lewis)
ut = d∆

( u
m

)
+ u[m(x)− u] (12)

(Dan Ryan)

ut = d∇ ·
[
mf (m,m)∇

( u
m

)]
+ u[m(x)− u], (13)

where f (m(x1),m(x2)) is the probability moving from x1 to x2
which satisfies

D2f (m,m)− D1f (m,m) =
f (m,m)

m
.
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Balanced dispersal

Single species

Cosner, Davilla and Martinez (JBD, 11)

ut =

∫
Ω

k(x , y)u(y , t) dy −u(x , t)
∫

Ω
k(y , x) dy + u[m(x)−u] (14)

Definition: k(x , y) is an ideal free dispersal strategy if∫
Ω

k(x , y)m(y) dy = m(x)

∫
Ω

k(y , x) dy , x ∈ Ω. (15)

Example: k(x , y) = mτ (x)mτ−1(y).

m(x) is an equilibrium of (14)⇔ k(x , y) satisfies (15).
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Balanced dispersal

Two species model

Cantrell, Cosner, L and Ryan (Canadian Appl. Math. Quart., in press)

ut =

∫
Ω

k(x , y)u(y , t) dy − u(x , t)
∫

Ω
k(y , x) dy + u[m(x)− u − v ],

vt =

∫
Ω

k∗(x , y)v(y , t) dy − v(x , t)
∫

Ω
k∗(y , x) dy + v [m(x)− u − v ].

(16)

Theorem

Suppose that both k and k∗ are continuous and positive in Ω̄× Ω̄, k is
an ideal free dispersal strategy and k∗ is not an ideal dispersal
strategy. Then, (m(x),0) of (16) is globally stable in C(Ω̄)× C(Ω̄) for
all positive initial data.
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Balanced dispersal

A key ingredient

Let h : Ω̄× Ω̄→ [0,∞) be a continuous function. Then the following
two statements are equivalent:

i

∫
Ω

h(x , y) dy =

∫
Ω

h(y , x) dy for all x ∈ Ω .

ii

∫
Ω

∫
Ω

h(x , y)
f (x)− f (y)

f (y)
dx dy ≥ 0 for any f ∈ C(Ω), f > 0 on Ω.
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Balanced dispersal

Summary

Balanced dispersal strategies are generally evolutionarily stable

What happens if dispersal strategies are unbalanced?
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Biased dispersal

Single species

Biased dispersal: Organisms can sense and respond to local
environmental cues

Belgacem and Cosner (Canadian Appl. Math Quart. 1995)

ut = d1∇ · [∇u − αu∇m] + u(m − u) in Ω× (0,∞),

[∇u − αu∇m] · n = 0 on ∂Ω× (0,∞)
(17)
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Biased dispersal

Biased vs unbiased

Cantrell, Cosner and L. (Math. Bios., 06)

ut = d1∇ · [∇u − αu∇m] + u(m − u − v) in Ω× (0,∞),

vt = d2∆v + v(m − u − v) in Ω× (0,∞),

[∇u − αu∇m] · n = ∇v · n = 0 on ∂Ω× (0,∞)
(18)
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Biased dispersal

Weak advection

Cantrell, Cosner and L. (Proc. Roy Soc. Edin, 07)

Theorem

Suppose that m ∈ C2(Ω̄), positive, non-constant.

If d1 = d2, α > 0
small and Ω is convex, (u∗,0) is globally stable

For some non-convex Ω and m(x), (0, v∗) is globally stable

Yuan Lou (Ohio State) NC State 2013 30 / 43
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Biased dispersal

Strong advection

Cantrell et al. (07); Chen, Hambrock, L (JMB, 08)

Theorem

Suppose that m ∈ C2(Ω̄), positive, non-constant. For any d1 and d2, if
α is large, both (u∗,0) and (0, v∗) are unstable, and system (18) has a
stable positive steady state.

Strong advection can induce coexistence of competing species

Yuan Lou (Ohio State) NC State 2013 31 / 43
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Biased dispersal

Aggregation

Theorem
Let (u, v) be a positive steady state of system (18). As α→∞,
v(x)→ v∗ and

u(x) = e−α[m(x0)−m(x)] ·
{

2
N
2 [m(x0)− v∗(x0)] + o(1)

}
,

where x0 is a local maximum of m such that m(x0)− v∗(x0) > 0.

Chen and L (Indiana Univ. Math J, 08): m has a unique local
maximum

Lam and Ni (DCDS-A, 10): m finite many local maxima, N = 1

Lam (SIMA, 12): m finite many local maxima, N ≥ 1

Yuan Lou (Ohio State) NC State 2013 32 / 43
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Biased dispersal

Consider

ut = d∇ · [∇u − αu∇m] + u(m − u − v) in Ω× (0,∞),

vt = d∇ · [∇v − βv∇m] + v(m − u − v) in Ω× (0,∞),

[∇u − αu∇m] · n = [∇v − βv∇m] · n = 0 on ∂Ω

(19)

Question. Can we find some advection rate which is evolutionarily
stable?

Yuan Lou (Ohio State) NC State 2013 33 / 43



Biased dispersal

Hasting’s approach revisited

Suppose that species u is at equilibrium:

d∇ · [∇u∗ − αu∗∇m] + u∗[m(x)− u∗] = 0 in Ω,

[∇u∗ − αu∗∇m] · n = 0 on ∂Ω.
(20)

Question. Can species v grow when it is rare?

Stability of (u, v) = (u∗,0): Let Λ(α, β) denote the smallest
eigenvalue of

d∇ · [∇ϕ− βϕ∇m] + (m − u∗)ϕ+ λϕ = 0 in Ω,

[∇ϕ− βϕ∇m] · n = 0 on ∂Ω.
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Biased dispersal

Adaptive Dynamics

Question: Is there an ESS? That is, there exists some α∗ > 0 such that

Λ(α∗, β) > 0, ∀β 6= α∗

Step 1. Find α∗ such that

∂Λ

∂β
(α∗, α∗) = 0.

Such α∗ is called evolutionarily singular strategy.

Step 2. If α∗ is an evolutionarily singular strategy, determine the
sign of

∂2Λ

∂β2 (α∗, α∗)
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Biased dispersal

K.-Y. Lam and L. (2012)

Theorem

Suppose that m > 0, C2(Ω̄),

1 <
maxΩ̄ m
minΩ̄ m

≤ 3 + 2
√

2.

Given any γ > 0, if d is small, there exists exactly exactly one
evolutionarily singular strategy, denoted as α∗, in (0, γ].

As d → 0, α∗ → η∗, where η∗ is the unique positive root of∫
Ω

e−ηm(1− ηm)m|∇m|2 = 0.

For some functions m satisfying maxΩ̄ m
minΩ̄ m > 3 + 2

√
2, there are at

least 3 evolutionarily singular strategies.
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Biased dispersal

Theorem
Suppose that Ω is convex and

‖∇ln(m)‖L∞ ≤
α0

diam(Ω)
,

where α0 ≈ 0.814, then for small d, α = α∗, β 6= α∗ and β ≈ α∗, (u∗,0)
is asymptotically stable.

maxΩ̄ m
minΩ̄ m ≤ eα0 ≈ 2.257 < 3 + 2

√
2.

For some function m satisfying maxΩ̄ m
minΩ̄ m > 3 + 2

√
2, there exists

some evolutionarily singular strategy which is not an ESS.
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Biased dispersal

One ingredient of the proof is the following celebrated theorem of
Payne and Weinberger:

Theorem

Suppose that Ω is a convex domain in RN . Let µ2 denote the second
eigenvalue of the Laplacian with Neumann boundary condition. Then

µ2 ≥
(

π

diam(Ω)

)2

.
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Fitness-dependent dispersal

Single species

Dispersal up the gradient of fitness: Armsworth and Roughgarden
2005, 2008; Abrams 2007; Amarasekare 2010

Cosner (TPB 2005); Cantrell, Cosner, L. (JDE 2008); Cosner and
Winkler (2013)

ut = d∇ · [∇u − αu∇(m− u)] + u(m − u) in Ω× (0,∞),

[∇u − αu∇(m− u)] · n = 0 on ∂Ω× (0,∞)
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Fitness-dependent dispersal

Fitness-dependent vs unbiased dispersal

Cantrell, Cosner, L. and Xie (JDE 2013); L. Tao and Winkler
(2013)

ut = d1∇ · [∇u − αu∇(m− u− v)] + u(m − u − v),

vt = d2∆v + v(m − u − v) in Ω× (0,∞),

[∇u − αu∇(m− u− v)] · n = ∇v · n = 0 on ∂Ω× (0,∞)
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Fitness-dependent dispersal

Recent developments

Convergent stable strategy, evolution of two traits: Gejji et al,
BMB, 2012

Directed movement in periodic environment: Kawasaki et al.,
BMB, 2012

Multi-trophic level models: X.-F. Wang and Y.-P. Wu 2002; D.
DeAngelis et al. Am. Nat, 2011; Wu and L, SIAP 2011

Dispersal in random environments: Evans et al. JMB 2012; S.
Schreiber, Am. Nat, in press
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