Evolutionarily Stable Dispersal Strategies in Heterogeneous Environments

Yuan Lou

Department of Mathematics
Mathematical Biosciences Institute
Ohio State University
Columbus, OH 43210, USA

Talk Outline

(1) Unbiased dispersal
(2) Balanced dispersal
(3) Biased dispersal
4. Fitness-dependent dispersal

Evolution of Dispersal

- How should organisms move "optimally" in heterogeneous environments?

Previous works

- Levin 76; Hastings 83; Holt 85; McPeek and Holt 92; Holt and McPeek 1996; Dockery et al. 1998; Kirkland et al. 2006; Abrams 2007; Armsworth and Roughgarden 2008; Amarasekare 2010

Previous works

- Levin 76; Hastings 83; Holt 85; McPeek and Holt 92; Holt and McPeek 1996; Dockery et al. 1998; Kirkland et al. 2006; Abrams 2007; Armsworth and Roughgarden 2008; Amarasekare 2010
- Surveys: Johnson and Gaines 1990; Clobert et al. 2001; Levin, Muller-Landau, Nathan and Chave 2003; Bowler and Benton 2005; Holyoak et al. 2005; Amarasekare 2008

Evolution game theory

- Game theory: John von Neumann (28), John Nash (50)

Evolution game theory

- Game theory: John von Neumann (28), John Nash (50)
- Evolutionary game theory: John Maynard Smith and Price (73)

Evolution game theory

- Game theory: John von Neumann (28), John Nash (50)
- Evolutionary game theory: John Maynard Smith and Price (73)
- Evolutionary stable strategy (ESS): A strategy such that, if all the members of a population adopt it, no mutant strategy can invade

Evolution game theory

- Game theory: John von Neumann (28), John Nash (50)
- Evolutionary game theory: John Maynard Smith and Price (73)
- Evolutionary stable strategy (ESS): A strategy such that, if all the members of a population adopt it, no mutant strategy can invade
- "Optimal" movement strategy: Dispersal strategies that are evolutionarily stable

Unbiased dispersal

Hastings (TPB, 83); Dockery et al. (JMB, 98)

$$
\begin{array}{lll}
u_{t}= & u[m(x)-u-v] & \text { in } \Omega \times(0, \infty), \\
v_{t}= & v[m(x)-u-v] & \text { in } \Omega \times(0, \infty), \tag{1}
\end{array}
$$

- $u(x, t), v(x, t)$: densities at $x \in \Omega \subset R^{N}$

Unbiased dispersal

Hastings (TPB, 83); Dockery et al. (JMB, 98)

$$
\begin{array}{lll}
u_{t}= & u[m(x)-u-v] & \text { in } \Omega \times(0, \infty), \\
v_{t}= & v[m(x)-u-v] & \text { in } \Omega \times(0, \infty), \tag{1}
\end{array}
$$

- $u(x, t), v(x, t)$: densities at $x \in \Omega \subset R^{N}$
- $m(x)$: intrinsic growth rate of species

Unbiased dispersal

Hastings (TPB, 83); Dockery et al. (JMB, 98)

$$
\begin{array}{ll}
u_{t}=d_{1} \Delta u+u[m(x)-u-v] & \text { in } \Omega \times(0, \infty), \\
v_{t}=d_{2} \Delta v+v[m(x)-u-v] & \text { in } \Omega \times(0, \infty), \tag{1}
\end{array}
$$

- $u(x, t), v(x, t)$: densities at $x \in \Omega \subset R^{N}$
- $m(x)$: intrinsic growth rate of species
- d_{1}, d_{2} : dispersal rates (strategies)

Unbiased dispersal

Hastings (TPB, 83); Dockery et al. (JMB, 98)

$$
\begin{align*}
& u_{t}=d_{1} \Delta u+u[m(x)-u-v] \quad \text { in } \Omega \times(0, \infty), \\
& v_{t}=d_{2} \Delta v+v[m(x)-u-v] \quad \text { in } \Omega \times(0, \infty), \tag{1}\\
& \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 \quad \text { on } \partial \Omega \times(0, \infty)
\end{align*}
$$

- $u(x, t), v(x, t)$: densities at $x \in \Omega \subset R^{N}$
- $m(x)$: intrinsic growth rate of species
- d_{1}, d_{2} : dispersal rates (strategies)
- No-flux boundary condition

Hasting's approach

Suppose that u (resident species) is at equilibrium:

$$
\begin{align*}
& d_{1} \Delta u^{*}+u^{*}\left[m(x)-u^{*}\right]=0 \quad \text { in } \Omega, \\
& \frac{\partial u^{*}}{\partial n}=0 \text { on } \partial \Omega . \tag{2}
\end{align*}
$$

Question. Can mutant v grow when it is rare?

Hasting's approach

Suppose that u (resident species) is at equilibrium:

$$
\begin{align*}
& d_{1} \Delta u^{*}+u^{*}\left[m(x)-u^{*}\right]=0 \quad \text { in } \Omega, \\
& \frac{\partial u^{*}}{\partial n}=0 \quad \text { on } \partial \Omega . \tag{2}
\end{align*}
$$

Question. Can mutant v grow when it is rare?

- Stability of $(u, v)=\left(u^{*}, 0\right)$: Let $\Lambda\left(d_{1}, d_{2}\right)$ denote the smallest eigenvalue of

$$
\begin{aligned}
& d_{2} \Delta \varphi+\left(m-u^{*}\right) \varphi+\lambda \varphi=0 \quad \text { in } \Omega \\
& \nabla \varphi \cdot n=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

Evolution of slow dispersal

Theorem

(Hastings 1983) Suppose that $m(x)$ is non-constant, positive and continuous in $\bar{\Omega}$. If $d_{1}<d_{2}$, then $\left(u^{*}, 0\right)$ is stable; if $d_{1}>d_{2},\left(u^{*}, 0\right)$ is unstable.

Evolution of slow dispersal

Theorem

(Hastings 1983) Suppose that $m(x)$ is non-constant, positive and continuous in $\bar{\Omega}$. If $d_{1}<d_{2}$, then $\left(u^{*}, 0\right)$ is stable; if $d_{1}>d_{2},\left(u^{*}, 0\right)$ is unstable.

- $\Lambda\left(d_{1}, d_{1}\right)=0$

Evolution of slow dispersal

Theorem

(Hastings 1983) Suppose that $m(x)$ is non-constant, positive and continuous in $\bar{\Omega}$. If $d_{1}<d_{2}$, then $\left(u^{*}, 0\right)$ is stable; if $d_{1}>d_{2},\left(u^{*}, 0\right)$ is unstable.

- $\Lambda\left(d_{1}, d_{1}\right)=0$
- $\Lambda\left(d_{1}, d_{2}\right)$ is increasing in d_{2}

Evolution of slow dispersal

Theorem

(Hastings 1983) Suppose that $m(x)$ is non-constant, positive and continuous in $\bar{\Omega}$. If $d_{1}<d_{2}$, then $\left(u^{*}, 0\right)$ is stable; if $d_{1}>d_{2},\left(u^{*}, 0\right)$ is unstable.

- $\Lambda\left(d_{1}, d_{1}\right)=0$
- $\Lambda\left(d_{1}, d_{2}\right)$ is increasing in d_{2}
- No dispersal rate is evolutionarily stable: Any mutant with a smaller dispersal rate can invade!

Ideal free distribution (IFD)

Fretwell and Lucas (70)

Ideal free distribution (IFD)

Fretwell and Lucas (70)

- How should organisms distribute in heterogeneous habitat?

Ideal free distribution (IFD)

Fretwell and Lucas (70)

- How should organisms distribute in heterogeneous habitat?
- Assumption 1: Animals are "ideal" in assessment of habitat

Ideal free distribution (IFD)

Fretwell and Lucas (70)

- How should organisms distribute in heterogeneous habitat?
- Assumption 1: Animals are "ideal" in assessment of habitat
- Assumption 2: Animals are capable of moving "freely"

Ideal free distribution (IFD)

Fretwell and Lucas (70)

- How should organisms distribute in heterogeneous habitat?
- Assumption 1: Animals are "ideal" in assessment of habitat
- Assumption 2: Animals are capable of moving "freely"
- Prediction: Animals aggregate proportionately to the amount of resources

Ideal free distribution (IFD)

- Milinski (79)

Ideal free distribution (IFD)

- Milinski (79)

Unbiased dispersal

- Logistic model

$$
\begin{align*}
& u_{t}=d \Delta u+u[m(x)-u] \quad \text { in } \Omega \times(0, \infty) \\
& \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega \times(0, \infty) \tag{3}
\end{align*}
$$

Unbiased dispersal

- Logistic model

$$
\begin{align*}
& u_{t}=d \Delta u+u[m(x)-u] \quad \text { in } \Omega \times(0, \infty) \\
& \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega \times(0, \infty) \tag{3}
\end{align*}
$$

- If $u(x, 0)$ is positive, $u(x, t) \rightarrow u^{*}(x)$ as $t \rightarrow \infty$

Unbiased dispersal

- Logistic model

$$
\begin{align*}
& u_{t}=d \Delta u+u[m(x)-u] \quad \text { in } \Omega \times(0, \infty) \\
& \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega \times(0, \infty) \tag{3}
\end{align*}
$$

- If $u(x, 0)$ is positive, $u(x, t) \rightarrow u^{*}(x)$ as $t \rightarrow \infty$
- Does u reach an IFD at equilibrium? That is,

$$
\frac{m(x)}{u^{*}(x)}=\text { constant? }
$$

Heterogeneous environment

Logistic model

$$
\begin{equation*}
d \Delta u^{*}+u^{*}\left(m(x)-u^{*}\right)=0 \quad \text { in } \Omega \tag{4}
\end{equation*}
$$

Heterogeneous environment

Logistic model

$$
\begin{align*}
& d \Delta u^{*}+u^{*}\left(m(x)-u^{*}\right)=0 \quad \text { in } \Omega, \\
& \frac{\partial u^{*}}{\partial n}=0 \quad \text { on } \partial \Omega \tag{4}
\end{align*}
$$

- No ideal free distribution: $m / u^{*} \not \equiv$ constant.

Heterogeneous environment

Logistic model

$$
\begin{align*}
& d \Delta u^{*}+u^{*}\left(m(x)-u^{*}\right)=0 \quad \text { in } \Omega, \\
& \frac{\partial u^{*}}{\partial n}=0 \quad \text { on } \partial \Omega \tag{4}
\end{align*}
$$

- No ideal free distribution: $m / u^{*} \not \equiv$ constant. Integrating (4) in Ω,

$$
\int_{\Omega} u^{*}\left(m-u^{*}\right)=0
$$

Heterogeneous environment

Logistic model

$$
\begin{align*}
& d \Delta u^{*}+u^{*}\left(m(x)-u^{*}\right)=0 \quad \text { in } \Omega, \\
& \frac{\partial u^{*}}{\partial n}=0 \quad \text { on } \partial \Omega \tag{4}
\end{align*}
$$

- No ideal free distribution: $m / u^{*} \not \equiv$ constant. Integrating (4) in Ω,

$$
\int_{\Omega} u^{*}\left(m-u^{*}\right)=0
$$

If m / u^{*} were a constant, then $m \equiv u^{*}$.

Heterogeneous environment

Logistic model

$$
\begin{align*}
& d \Delta u^{*}+u^{*}\left(m(x)-u^{*}\right)=0 \quad \text { in } \Omega \\
& \frac{\partial u^{*}}{\partial n}=0 \quad \text { on } \partial \Omega \tag{4}
\end{align*}
$$

- No ideal free distribution: $m / u^{*} \not \equiv$ constant. Integrating (4) in Ω,

$$
\int_{\Omega} u^{*}\left(m-u^{*}\right)=0
$$

If m / u^{*} were a constant, then $m \equiv u^{*}$. By (4),

$$
\Delta m=0 \quad \text { in } \Omega, \quad \nabla m \cdot n=0 \quad \text { on } \partial \Omega,
$$

which implies that m must be a constant. Contradiction!

Two competing species

Dockery et al. (98)

$$
\begin{aligned}
& u_{t}=d_{1} \Delta u+u(m-u-v) \quad \text { in } \Omega \times(0, \infty), \\
& v_{t}=d_{2} \Delta v+v(m-u-v) \quad \text { in } \Omega \times(0, \infty), \\
& \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 \quad \text { on } \partial \Omega \times(0, \infty)
\end{aligned}
$$

Two competing species

Dockery et al. (98)

$$
\begin{aligned}
& u_{t}=d_{1} \Delta u+u(m-u-v) \quad \text { in } \Omega \times(0, \infty), \\
& v_{t}=d_{2} \Delta v+v(m-u-v) \quad \text { in } \Omega \times(0, \infty), \\
& \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 \quad \text { on } \partial \Omega \times(0, \infty)
\end{aligned}
$$

Theorem
If $d_{1}<d_{2},\left(u^{*}, 0\right)$ is globally asymptotically stable.

Two competing species

Dockery et al. (98)

$$
\begin{aligned}
& u_{t}=d_{1} \Delta u+u(m-u-v) \quad \text { in } \Omega \times(0, \infty), \\
& v_{t}=d_{2} \Delta v+v(m-u-v) \quad \text { in } \Omega \times(0, \infty), \\
& \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 \quad \text { on } \partial \Omega \times(0, \infty)
\end{aligned}
$$

Theorem
If $d_{1}<d_{2},\left(u^{*}, 0\right)$ is globally asymptotically stable.

- Evolution of slow dispersal: Why?

Why smaller dispersal rate?

- Logistic model

Why smaller dispersal rate?

- Logistic model

$$
\begin{align*}
& d \Delta u^{*}+u^{*}\left(m(x)-u^{*}\right)=0 \quad \text { in } \Omega, \\
& \frac{\partial u^{*}}{\partial n}=0 \quad \text { on } \partial \Omega . \tag{6}
\end{align*}
$$

Why smaller dispersal rate?

- Logistic model

$$
\begin{align*}
& d \Delta u^{*}+u^{*}\left(m(x)-u^{*}\right)=0 \quad \text { in } \Omega, \\
& \frac{\partial u^{*}}{\partial n}=0 \quad \text { on } \partial \Omega . \tag{6}
\end{align*}
$$

- It can be shown that

$$
\lim _{d \rightarrow 0} \frac{m(x)}{u^{*}(x)}=1
$$

Why smaller dispersal rate?

- Logistic model

$$
\begin{align*}
& d \Delta u^{*}+u^{*}\left(m(x)-u^{*}\right)=0 \quad \text { in } \Omega, \\
& \frac{\partial u^{*}}{\partial n}=0 \quad \text { on } \partial \Omega . \tag{6}
\end{align*}
$$

- It can be shown that

$$
\lim _{d \rightarrow 0} \frac{m(x)}{u^{*}(x)}=1
$$

- The smaller d is, the closer m / u^{*} to constant; i.e., the distribution of the species is closer to IFD for smaller dispersal rate

Q: Are there dispersal strategies that can produce ideal free distribution?

Single species

Cantrell, Cosner, L (MBE, 10)

Single species

Cantrell, Cosner, L (MBE, 10)

$$
u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla P(x)]+u[m(x)-u] \quad \text { in } \Omega \times(0, \infty)
$$

Single species

Cantrell, Cosner, L (MBE, 10)

$$
\begin{align*}
& u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla P(x)]+u[m(x)-u] \quad \text { in } \Omega \times(0, \infty) \\
& {[\nabla u-u \nabla P(x)] \cdot n=0 \quad \text { on } \partial \Omega \times(0, \infty)} \tag{7}
\end{align*}
$$

Single species

Cantrell, Cosner, L (MBE, 10)

$$
\begin{align*}
& u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla P(x)]+u[m(x)-u] \quad \text { in } \Omega \times(0, \infty) \\
& {[\nabla u-u \nabla P(x)] \cdot n=0 \quad \text { on } \partial \Omega \times(0, \infty)} \tag{7}
\end{align*}
$$

- $P(x)=\ln m(x)$ can produce ideal free distribution

Balanced dispersal

- If $P(x)=\ln m(x)$, then $u \equiv m$ is a positive solution of

Balanced dispersal

- If $P(x)=\ln m(x)$, then $u \equiv m$ is a positive solution of

$$
\begin{align*}
& d_{1} \nabla \cdot[\nabla u-u \nabla P(x)]+u[m(x)-u]=0 \quad \text { in } \Omega \\
& {[\nabla u-u \nabla P(x)] \cdot n=0 \quad \text { on } \partial \Omega} \tag{8}
\end{align*}
$$

Balanced dispersal

- If $P(x)=\ln m(x)$, then $u \equiv m$ is a positive solution of

$$
\begin{align*}
& d_{1} \nabla \cdot[\nabla u-u \nabla P(x)]+u[m(x)-u]=0 \quad \text { in } \Omega \\
& {[\nabla u-u \nabla P(x)] \cdot n=0 \quad \text { on } \partial \Omega} \tag{8}
\end{align*}
$$

- Ideal free distribution: $m \equiv u$

Balanced dispersal

- If $P(x)=\ln m(x)$, then $u \equiv m$ is a positive solution of

$$
\begin{align*}
& d_{1} \nabla \cdot[\nabla u-u \nabla P(x)]+u[m(x)-u]=0 \quad \text { in } \Omega \\
& {[\nabla u-u \nabla P(x)] \cdot n=0 \quad \text { on } \partial \Omega} \tag{8}
\end{align*}
$$

- Ideal free distribution: $m \equiv u$
- "Balanced dispersal": McPeek and Holt 1992

$$
\nabla u-u \nabla P=\nabla m-m \nabla(\ln m)=0
$$

Balanced dispersal

- If $P(x)=\ln m(x)$, then $u \equiv m$ is a positive solution of

$$
\begin{align*}
& d_{1} \nabla \cdot[\nabla u-u \nabla P(x)]+u[m(x)-u]=0 \quad \text { in } \Omega \\
& {[\nabla u-u \nabla P(x)] \cdot n=0 \quad \text { on } \partial \Omega} \tag{8}
\end{align*}
$$

- Ideal free distribution: $m \equiv u$
- "Balanced dispersal": McPeek and Holt 1992

$$
\nabla u-u \nabla P=\nabla m-m \nabla(\ln m)=0
$$

- Is the strategy $P=\ln m$ an ESS?

Two species model

$$
u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla P]+u(m-u-v) \text { in } \Omega \times(0, \infty)
$$

Two species model

$$
\begin{array}{ll}
u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla P]+u(m-u-v) & \text { in } \Omega \times(0, \infty) \\
v_{t}=d_{2} \nabla \cdot[\nabla v-v \nabla Q]+v(m-u-v) & \text { in } \Omega \times(0, \infty)
\end{array}
$$

Two species model

$$
\begin{array}{ll}
u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla P]+u(m-u-v) & \text { in } \Omega \times(0, \infty) \\
v_{t}=d_{2} \nabla \cdot[\nabla v-v \nabla Q]+v(m-u-v) & \text { in } \Omega \times(0, \infty) \tag{9}
\end{array}
$$

$[\nabla u-u \nabla P] \cdot n=[\nabla v-v \nabla Q] \cdot n=0 \quad$ on $\partial \Omega \times(0, \infty)$

Two species model

$$
\begin{array}{ll}
u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla P]+u(m-u-v) & \text { in } \Omega \times(0, \infty) \\
v_{t}=d_{2} \nabla \cdot[\nabla v-v \nabla Q]+v(m-u-v) & \text { in } \Omega \times(0, \infty) \tag{9}\\
{[\nabla u-u \nabla P] \cdot n=[\nabla v-v \nabla Q] \cdot n=0} & \text { on } \partial \Omega \times(0, \infty)
\end{array}
$$

- If $P=\ln m,(m, 0)$ is a steady state.

Two species model

$$
\begin{array}{ll}
u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla P]+u(m-u-v) & \text { in } \Omega \times(0, \infty) \\
v_{t}=d_{2} \nabla \cdot[\nabla v-v \nabla Q]+v(m-u-v) & \text { in } \Omega \times(0, \infty) \tag{9}\\
{[\nabla u-u \nabla P] \cdot n=[\nabla v-v \nabla Q] \cdot n=0} & \text { on } \partial \Omega \times(0, \infty)
\end{array}
$$

- If $P=\ln m,(m, 0)$ is a steady state.
- Is $(m, 0)$ asymptotically stable? $(\Leftrightarrow$ Is $P=\ln m$ an ESS?)

Stability of $(m, 0)$

- Original system:

$$
\begin{aligned}
& u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla \ln m]+u(m-u-v), \\
& v_{t}=d_{2} \nabla \cdot[\nabla v-v \nabla Q]+v(m-u-v)
\end{aligned}
$$

Stability of $(m, 0)$

- Original system:

$$
\begin{align*}
& u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla \ln m]+u(m-u-v), \\
& v_{t}=d_{2} \nabla \cdot[\nabla v-v \nabla Q]+v(m-u-v) \tag{10}
\end{align*}
$$

- Perturbation of $(m(x), 0)$:

$$
(u, v)=(m, 0)+\left(\epsilon \varphi(x) e^{-\lambda t}, \epsilon \psi(x) e^{-\lambda t}\right)
$$

Stability of $(m, 0)$

- Original system:

$$
\begin{align*}
& u_{t}=d_{1} \nabla \cdot[\nabla u-u \nabla \ln m]+u(m-u-v) \\
& v_{t}=d_{2} \nabla \cdot[\nabla v-v \nabla Q]+v(m-u-v) \tag{10}
\end{align*}
$$

- Perturbation of $(m(x), 0)$:

$$
(u, v)=(m, 0)+\left(\epsilon \varphi(x) e^{-\lambda t}, \epsilon \psi(x) e^{-\lambda t}\right)
$$

- Equations for (φ, ψ, λ) :

$$
\begin{align*}
& d_{1} \nabla \cdot[\nabla \varphi-\varphi \nabla \ln m]-m \varphi-m \psi=-\lambda \varphi, \tag{11}\\
& d_{2} \nabla \cdot[\nabla \psi-\psi \nabla Q]=-\lambda \psi
\end{align*}
$$

Stability of $(m, 0)$

Stability of $(m, 0)$

- Eigenvalue problem for the stability of $(m, 0)$:

$$
\begin{gathered}
-d_{2} \nabla \cdot[\nabla \psi-\psi \nabla Q]=\lambda \psi \quad \text { in } \Omega \\
{[\nabla \psi-\psi \nabla Q]=0 \quad \text { on } \partial \Omega}
\end{gathered}
$$

Stability of $(m, 0)$

- Eigenvalue problem for the stability of $(m, 0)$:

$$
\begin{gathered}
-d_{2} \nabla \cdot[\nabla \psi-\psi \nabla Q]=\lambda \psi \quad \text { in } \Omega \\
{[\nabla \psi-\psi \nabla Q]=0 \quad \text { on } \partial \Omega}
\end{gathered}
$$

- $(\lambda, \psi)=\left(0, e^{Q}\right)$ is a solution

Stability of $(m, 0)$

- Eigenvalue problem for the stability of $(m, 0)$:

$$
\begin{gathered}
-d_{2} \nabla \cdot[\nabla \psi-\psi \nabla Q]=\lambda \psi \quad \text { in } \Omega \\
{[\nabla \psi-\psi \nabla Q]=0 \quad \text { on } \partial \Omega}
\end{gathered}
$$

- $(\lambda, \psi)=\left(0, e^{Q}\right)$ is a solution
- Bad news: Zero is the smallest eigenvalue; i.e., $(m, 0)$ is neutrally stable

Evolutionary stable strategy

Cantrell et. al (10); Averill, Munther, L (JBD, 2012)
Theorem
Suppose that $m \in C^{2}(\bar{\Omega})$, is non-constant and positive in $\bar{\Omega}$. If $P=\ln m$ and $Q-\operatorname{In} m$ is non-constant, then $(m, 0)$ is globally stable.
$P=\operatorname{lnm}$ is an ESS:

- It can resist the invasion of any other strategy

Evolutionary stable strategy

Cantrell et. al (10); Averill, Munther, L (JBD, 2012)
Theorem
Suppose that $m \in C^{2}(\bar{\Omega})$, is non-constant and positive in $\bar{\Omega}$. If $P=\ln m$ and $Q-\operatorname{In} m$ is non-constant, then $(m, 0)$ is globally stable.
$P=\operatorname{lnm}$ is an ESS:

- It can resist the invasion of any other strategy
- It can displace any other strategy

Proof

Proof

- Define

$$
E(t)=\int_{\Omega}[u(x, t)+v(x, t)-m(x) \ln u(x, t)] d x
$$

Then $d E / d t \leq 0$ for all $t \geq 0$.

Proof

- Define

$$
E(t)=\int_{\Omega}[u(x, t)+v(x, t)-m(x) \ln u(x, t)] d x
$$

Then $d E / d t \leq 0$ for all $t \geq 0$.

- Three or more competing species: Gejji et al. (BMB 2012); Munther and L. (DCDS-A 2012)

Other dispersal strategies which can produce ideal free distribution:

- (Mark Lewis)

$$
\begin{equation*}
u_{t}=d \Delta\left(\frac{u}{m}\right)+u[m(x)-u] \tag{12}
\end{equation*}
$$

Other dispersal strategies which can produce ideal free distribution:

- (Mark Lewis)

$$
\begin{equation*}
u_{t}=d \Delta\left(\frac{u}{m}\right)+u[m(x)-u] \tag{12}
\end{equation*}
$$

- (Dan Ryan)

$$
\begin{equation*}
u_{t}=d \nabla \cdot\left[m f(m, m) \nabla\left(\frac{u}{m}\right)\right]+u[m(x)-u] \tag{13}
\end{equation*}
$$

where $f\left(m\left(x_{1}\right), m\left(x_{2}\right)\right)$ is the probability moving from x_{1} to x_{2} which satisfies

$$
D_{2} f(m, m)-D_{1} f(m, m)=\frac{f(m, m)}{m}
$$

Single species

- Cosner, Davilla and Martinez (JBD, 11)

$$
u_{t}=\int_{\Omega} k(x, y) u(y, t) d y-u(x, t) \int_{\Omega} k(y, x) d y+u[m(x)-u]
$$

Single species

- Cosner, Davilla and Martinez (JBD, 11)

$$
\begin{equation*}
u_{t}=\int_{\Omega} k(x, y) u(y, t) d y-u(x, t) \int_{\Omega} k(y, x) d y+u[m(x)-u] \tag{14}
\end{equation*}
$$

- Definition: $k(x, y)$ is an ideal free dispersal strategy if

$$
\begin{equation*}
\int_{\Omega} k(x, y) m(y) d y=m(x) \int_{\Omega} k(y, x) d y, \quad x \in \Omega \tag{15}
\end{equation*}
$$

Single species

- Cosner, Davilla and Martinez (JBD, 11)

$$
\begin{equation*}
u_{t}=\int_{\Omega} k(x, y) u(y, t) d y-u(x, t) \int_{\Omega} k(y, x) d y+u[m(x)-u] \tag{14}
\end{equation*}
$$

- Definition: $k(x, y)$ is an ideal free dispersal strategy if

$$
\begin{equation*}
\int_{\Omega} k(x, y) m(y) d y=m(x) \int_{\Omega} k(y, x) d y, \quad x \in \Omega \tag{15}
\end{equation*}
$$

- Example: $k(x, y)=m^{\tau}(x) m^{\tau-1}(y)$.

Single species

- Cosner, Davilla and Martinez (JBD, 11)

$$
\begin{equation*}
u_{t}=\int_{\Omega} k(x, y) u(y, t) d y-u(x, t) \int_{\Omega} k(y, x) d y+u[m(x)-u] \tag{14}
\end{equation*}
$$

- Definition: $k(x, y)$ is an ideal free dispersal strategy if

$$
\begin{equation*}
\int_{\Omega} k(x, y) m(y) d y=m(x) \int_{\Omega} k(y, x) d y, \quad x \in \Omega \tag{15}
\end{equation*}
$$

- Example: $k(x, y)=m^{\tau}(x) m^{\tau-1}(y)$.
- $m(x)$ is an equilibrium of $(14) \Leftrightarrow k(x, y)$ satisfies (15).

Two species model

Cantrell, Cosner, L and Ryan (Canadian Appl. Math. Quart., in press)

$$
\begin{align*}
u_{t} & =\int_{\Omega} k(x, y) u(y, t) d y-u(x, t) \int_{\Omega} k(y, x) d y+u[m(x)-u-v], \\
v_{t} & =\int_{\Omega} k^{*}(x, y) v(y, t) d y-v(x, t) \int_{\Omega} k^{*}(y, x) d y+v[m(x)-u-v] . \tag{16}
\end{align*}
$$

Two species model

Cantrell, Cosner, L and Ryan (Canadian Appl. Math. Quart., in press)

$$
\begin{align*}
u_{t} & =\int_{\Omega} k(x, y) u(y, t) d y-u(x, t) \int_{\Omega} k(y, x) d y+u[m(x)-u-v], \\
v_{t} & =\int_{\Omega} k^{*}(x, y) v(y, t) d y-v(x, t) \int_{\Omega} k^{*}(y, x) d y+v[m(x)-u-v] . \tag{16}
\end{align*}
$$

Theorem

Suppose that both k and k^{*} are continuous and positive in $\bar{\Omega} \times \bar{\Omega}, k$ is an ideal free dispersal strategy and k^{*} is not an ideal dispersal strategy. Then, $(m(x), 0)$ of (16) is globally stable in $C(\bar{\Omega}) \times C(\bar{\Omega})$ for all positive initial data.

A key ingredient

Let $h: \bar{\Omega} \times \bar{\Omega} \rightarrow[0, \infty)$ be a continuous function. Then the following two statements are equivalent:

A key ingredient

Let $h: \bar{\Omega} \times \bar{\Omega} \rightarrow[0, \infty)$ be a continuous function. Then the following two statements are equivalent:
(1) $\int_{\Omega} h(x, y) d y=\int_{\Omega} h(y, x) d y$ for all $x \in \Omega$.

A key ingredient

Let $h: \bar{\Omega} \times \bar{\Omega} \rightarrow[0, \infty)$ be a continuous function. Then the following two statements are equivalent:
(1) $\int_{\Omega} h(x, y) d y=\int_{\Omega} h(y, x) d y$ for all $x \in \Omega$.
(1) $\int_{\Omega} \int_{\Omega} h(x, y) \frac{f(x)-f(y)}{f(y)} d x d y \geq 0$ for any $f \in C(\bar{\Omega}), f>0$ on $\bar{\Omega}$.

Summary

Summary

- Balanced dispersal strategies are generally evolutionarily stable

Summary

- Balanced dispersal strategies are generally evolutionarily stable
- What happens if dispersal strategies are unbalanced?

Single species

Single species

- Biased dispersal: Organisms can sense and respond to local environmental cues

Single species

- Biased dispersal: Organisms can sense and respond to local environmental cues
- Belgacem and Cosner (Canadian Appl. Math Quart. 1995)

Single species

- Biased dispersal: Organisms can sense and respond to local environmental cues
- Belgacem and Cosner (Canadian Appl. Math Quart. 1995)

$$
u_{t}=d_{1} \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla \mathbf{m}]+u(m-u) \text { in } \Omega \times(0, \infty),
$$

Single species

- Biased dispersal: Organisms can sense and respond to local environmental cues
- Belgacem and Cosner (Canadian Appl. Math Quart. 1995)

$$
\begin{align*}
& u_{t}=d_{1} \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla \mathbf{m}]+u(m-u) \text { in } \Omega \times(0, \infty), \tag{17}\\
& {[\nabla u-\alpha \mathbf{u} \nabla \mathbf{m}] \cdot n=0 \text { on } \partial \Omega \times(0, \infty)}
\end{align*}
$$

Biased vs unbiased

Biased vs unbiased

- Cantrell, Cosner and L. (Math. Bios., 06)

Biased vs unbiased

- Cantrell, Cosner and L. (Math. Bios., 06)

Biased vs unbiased

- Cantrell, Cosner and L. (Math. Bios., 06)

$$
u_{t}=d_{1} \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla \mathbf{m}]+u(m-u-v) \text { in } \Omega \times(0, \infty),
$$

Biased vs unbiased

- Cantrell, Cosner and L. (Math. Bios., 06)

$$
\begin{aligned}
& u_{t}=d_{1} \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla \mathbf{m}]+u(m-u-v) \text { in } \Omega \times(0, \infty), \\
& v_{t}=d_{2} \Delta v+v(m-u-v) \quad \text { in } \Omega \times(0, \infty)
\end{aligned}
$$

Biased vs unbiased

- Cantrell, Cosner and L. (Math. Bios., 06)

$$
\begin{align*}
& u_{t}=d_{1} \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla \mathbf{m}]+u(m-u-v) \text { in } \Omega \times(0, \infty), \\
& v_{t}=d_{2} \Delta v+v(m-u-v) \quad \text { in } \Omega \times(0, \infty), \\
& {[\nabla u-\alpha \mathbf{u} \nabla \mathbf{m}] \cdot n=\nabla v \cdot n=0 \text { on } \partial \Omega \times(0, \infty)} \tag{18}
\end{align*}
$$

Weak advection

Cantrell, Cosner and L. (Proc. Roy Soc. Edin, 07)

Theorem
Suppose that $m \in C^{2}(\bar{\Omega})$, positive, non-constant.

Weak advection

Cantrell, Cosner and L. (Proc. Roy Soc. Edin, 07)

Theorem
Suppose that $m \in C^{2}(\bar{\Omega})$, positive, non-constant. If $d_{1}=d_{2}, \alpha>0$ small and Ω is convex, $\left(u^{*}, 0\right)$ is globally stable

Weak advection

Cantrell, Cosner and L. (Proc. Roy Soc. Edin, 07)

Theorem

Suppose that $m \in C^{2}(\bar{\Omega})$, positive, non-constant. If $d_{1}=d_{2}, \alpha>0$ small and Ω is convex, $\left(u^{*}, 0\right)$ is globally stable

- For some non-convex Ω and $m(x),\left(0, v^{*}\right)$ is globally stable

Strong advection

Cantrell et al. (07); Chen, Hambrock, L (JMB, 08)

Strong advection

Cantrell et al. (07); Chen, Hambrock, L (JMB, 08)
Theorem
Suppose that $m \in C^{2}(\bar{\Omega})$, positive, non-constant.

Strong advection

Cantrell et al. (07); Chen, Hambrock, L (JMB, 08)

Theorem

Suppose that $m \in C^{2}(\bar{\Omega})$, positive, non-constant. For any d_{1} and d_{2}, if α is large, both $\left(u^{*}, 0\right)$ and $\left(0, v^{*}\right)$ are unstable, and system (18) has a stable positive steady state.

Strong advection

Cantrell et al. (07); Chen, Hambrock, L (JMB, 08)
Theorem
Suppose that $m \in C^{2}(\bar{\Omega})$, positive, non-constant. For any d_{1} and d_{2}, if α is large, both $\left(u^{*}, 0\right)$ and $\left(0, v^{*}\right)$ are unstable, and system (18) has a stable positive steady state.

- Strong advection can induce coexistence of competing species

Aggregation

Theorem
Let (u, v) be a positive steady state of system (18). As $\alpha \rightarrow \infty$, $v(x) \rightarrow v^{*}$ and

$$
u(x)=e^{-\alpha\left[m\left(x_{0}\right)-m(x)\right]} \cdot\left\{2^{\frac{N}{2}}\left[m\left(x_{0}\right)-v^{*}\left(x_{0}\right)\right]+o(1)\right\},
$$

where x_{0} is a local maximum of m such that $m\left(x_{0}\right)-v^{*}\left(x_{0}\right)>0$.

Aggregation

Theorem
Let (u, v) be a positive steady state of system (18). As $\alpha \rightarrow \infty$, $v(x) \rightarrow v^{*}$ and

$$
u(x)=e^{-\alpha\left[m\left(x_{0}\right)-m(x)\right]} \cdot\left\{2^{\frac{N}{2}}\left[m\left(x_{0}\right)-v^{*}\left(x_{0}\right)\right]+o(1)\right\},
$$

where x_{0} is a local maximum of m such that $m\left(x_{0}\right)-v^{*}\left(x_{0}\right)>0$.

- Chen and L (Indiana Univ. Math J, 08): m has a unique local maximum

Aggregation

Theorem
Let (u, v) be a positive steady state of system (18). As $\alpha \rightarrow \infty$, $v(x) \rightarrow v^{*}$ and

$$
u(x)=e^{-\alpha\left[m\left(x_{0}\right)-m(x)\right]} \cdot\left\{2^{\frac{N}{2}}\left[m\left(x_{0}\right)-v^{*}\left(x_{0}\right)\right]+o(1)\right\},
$$

where x_{0} is a local maximum of m such that $m\left(x_{0}\right)-v^{*}\left(x_{0}\right)>0$.

- Chen and L (Indiana Univ. Math J, 08): m has a unique local maximum
- Lam and Ni (DCDS-A, 10): m finite many local maxima, $N=1$

Aggregation

Theorem
Let (u, v) be a positive steady state of system (18). As $\alpha \rightarrow \infty$, $v(x) \rightarrow v^{*}$ and

$$
u(x)=e^{-\alpha\left[m\left(x_{0}\right)-m(x)\right]} \cdot\left\{2^{\frac{N}{2}}\left[m\left(x_{0}\right)-v^{*}\left(x_{0}\right)\right]+o(1)\right\},
$$

where x_{0} is a local maximum of m such that $m\left(x_{0}\right)-v^{*}\left(x_{0}\right)>0$.

- Chen and L (Indiana Univ. Math J, 08): m has a unique local maximum
- Lam and Ni (DCDS-A, 10): m finite many local maxima, $N=1$
- Lam (SIMA, 12): m finite many local maxima, $N \geq 1$

Consider

$$
\begin{align*}
& u_{t}=d \nabla \cdot[\nabla u-\alpha u \nabla m]+u(m-u-v) \text { in } \Omega \times(0, \infty), \\
& v_{t}=d \nabla \cdot[\nabla v-\beta v \nabla m]+v(m-u-v) \text { in } \Omega \times(0, \infty), \tag{19}\\
& {[\nabla u-\alpha u \nabla m] \cdot n=[\nabla v-\beta v \nabla m] \cdot n=0 \text { on } \partial \Omega}
\end{align*}
$$

Question. Can we find some advection rate which is evolutionarily stable?

Hasting's approach revisited

Suppose that species u is at equilibrium:

$$
\begin{align*}
& d \nabla \cdot\left[\nabla u^{*}-\alpha u^{*} \nabla m\right]+u^{*}\left[m(x)-u^{*}\right]=0 \quad \text { in } \Omega, \\
& {\left[\nabla u^{*}-\alpha u^{*} \nabla m\right] \cdot n=0 \quad \text { on } \partial \Omega .} \tag{20}
\end{align*}
$$

Question. Can species v grow when it is rare?

Hasting's approach revisited

Suppose that species u is at equilibrium:

$$
\begin{align*}
& d \nabla \cdot\left[\nabla u^{*}-\alpha u^{*} \nabla m\right]+u^{*}\left[m(x)-u^{*}\right]=0 \quad \text { in } \Omega, \tag{20}\\
& {\left[\nabla u^{*}-\alpha u^{*} \nabla m\right] \cdot n=0 \quad \text { on } \partial \Omega}
\end{align*}
$$

Question. Can species v grow when it is rare?

- Stability of $(u, v)=\left(u^{*}, 0\right)$: Let $\Lambda(\alpha, \beta)$ denote the smallest eigenvalue of

$$
\begin{aligned}
& d \nabla \cdot[\nabla \varphi-\beta \varphi \nabla m]+\left(m-u^{*}\right) \varphi+\lambda \varphi=0 \quad \text { in } \Omega, \\
& {[\nabla \varphi-\beta \varphi \nabla m] \cdot n=0 \quad \text { on } \partial \Omega}
\end{aligned}
$$

Adaptive Dynamics

Question: Is there an ESS? That is, there exists some $\alpha^{*}>0$ such that

$$
\Lambda\left(\alpha^{*}, \beta\right)>0, \quad \forall \beta \neq \alpha^{*}
$$

Adaptive Dynamics

Question: Is there an ESS? That is, there exists some $\alpha^{*}>0$ such that

$$
\Lambda\left(\alpha^{*}, \beta\right)>0, \quad \forall \beta \neq \alpha^{*}
$$

Adaptive Dynamics

Question: Is there an ESS? That is, there exists some $\alpha^{*}>0$ such that

$$
\Lambda\left(\alpha^{*}, \beta\right)>0, \quad \forall \beta \neq \alpha^{*}
$$

- Step 1. Find α^{*} such that

$$
\frac{\partial \Lambda}{\partial \beta}\left(\alpha^{*}, \alpha^{*}\right)=0 .
$$

Such α^{*} is called evolutionarily singular strategy.

Adaptive Dynamics

Question: Is there an ESS? That is, there exists some $\alpha^{*}>0$ such that

$$
\Lambda\left(\alpha^{*}, \beta\right)>0, \quad \forall \beta \neq \alpha^{*}
$$

- Step 1. Find α^{*} such that

$$
\frac{\partial \Lambda}{\partial \beta}\left(\alpha^{*}, \alpha^{*}\right)=0 .
$$

Such α^{*} is called evolutionarily singular strategy.

- Step 2. If α^{*} is an evolutionarily singular strategy, determine the sign of

$$
\frac{\partial^{2} \Lambda}{\partial \beta^{2}}\left(\alpha^{*}, \alpha^{*}\right)
$$

K.-Y. Lam and L. (2012)

Theorem
Suppose that $m>0, C^{2}(\bar{\Omega})$,

$$
1<\frac{\max _{\bar{\Omega}} m}{\min _{\bar{\Omega}} m} \leq 3+2 \sqrt{2} .
$$

Given any $\gamma>0$, if d is small, there exists exactly exactly one evolutionarily singular strategy, denoted as α^{*}, in ($\left.0, \gamma\right]$.

- As $d \rightarrow 0, \alpha^{*} \rightarrow \eta^{*}$, where η^{*} is the unique positive root of

$$
\int_{\Omega} e^{-\eta m}(1-\eta m) m|\nabla m|^{2}=0
$$

- For some functions m satisfying $\frac{\max _{\bar{\Omega}} m}{\min _{\bar{\Omega}} m}>3+2 \sqrt{2}$, there are at least 3 evolutionarily singular strategies.

Theorem

Suppose that Ω is convex and

$$
\|\nabla \ln (m)\|_{L^{\infty}} \leq \frac{\alpha_{0}}{\operatorname{diam}(\Omega)}
$$

where $\alpha_{0} \approx 0.814$, then for small $d, \alpha=\alpha^{*}, \beta \neq \alpha^{*}$ and $\beta \approx \alpha^{*},\left(u^{*}, 0\right)$ is asymptotically stable.

- $\frac{\max _{\bar{\Omega}} m}{\min _{\bar{\Omega}} m} \leq e^{\alpha_{0}} \approx 2.257<3+2 \sqrt{2}$.
- For some function m satisfying $\frac{\max _{\bar{\Omega}} m}{\min _{\bar{\Omega}} m}>3+2 \sqrt{2}$, there exists some evolutionarily singular strategy which is not an ESS.

One ingredient of the proof is the following celebrated theorem of Payne and Weinberger:

Theorem

Suppose that Ω is a convex domain in R^{N}. Let μ_{2} denote the second eigenvalue of the Laplacian with Neumann boundary condition. Then

$$
\mu_{2} \geq\left(\frac{\pi}{\operatorname{diam}(\Omega)}\right)^{2} .
$$

Single species

Single species

- Dispersal up the gradient of fitness: Armsworth and Roughgarden 2005, 2008; Abrams 2007; Amarasekare 2010

Single species

- Dispersal up the gradient of fitness: Armsworth and Roughgarden 2005, 2008; Abrams 2007; Amarasekare 2010
- Cosner (TPB 2005); Cantrell, Cosner, L. (JDE 2008); Cosner and Winkler (2013)

Single species

- Dispersal up the gradient of fitness: Armsworth and Roughgarden 2005, 2008; Abrams 2007; Amarasekare 2010
- Cosner (TPB 2005); Cantrell, Cosner, L. (JDE 2008); Cosner and Winkler (2013)

$$
u_{t}=d \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla(\mathbf{m}-\mathbf{u})]+u(m-u) \text { in } \Omega \times(0, \infty)
$$

Single species

- Dispersal up the gradient of fitness: Armsworth and Roughgarden 2005, 2008; Abrams 2007; Amarasekare 2010
- Cosner (TPB 2005); Cantrell, Cosner, L. (JDE 2008); Cosner and Winkler (2013)

$$
\begin{aligned}
& u_{t}=d \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla(\mathbf{m}-\mathbf{u})]+u(m-u) \text { in } \Omega \times(0, \infty), \\
& {[\nabla u-\alpha \mathbf{u} \nabla(\mathbf{m}-\mathbf{u})] \cdot n=0 \text { on } \partial \Omega \times(0, \infty)}
\end{aligned}
$$

Fitness-dependent vs unbiased dispersal

Fitness-dependent vs unbiased dispersal

- Cantrell, Cosner, L. and Xie (JDE 2013); L. Tao and Winkler (2013)

Fitness-dependent vs unbiased dispersal

- Cantrell, Cosner, L. and Xie (JDE 2013); L. Tao and Winkler (2013)

Fitness-dependent vs unbiased dispersal

- Cantrell, Cosner, L. and Xie (JDE 2013); L. Tao and Winkler (2013)

$$
u_{t}=d_{1} \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla(\mathbf{m}-\mathbf{u}-\mathbf{v})]+u(m-u-v)
$$

Fitness-dependent vs unbiased dispersal

- Cantrell, Cosner, L. and Xie (JDE 2013); L. Tao and Winkler (2013)

$$
\begin{aligned}
& u_{t}=d_{1} \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla(\mathbf{m}-\mathbf{u}-\mathbf{v})]+u(m-u-v), \\
& v_{t}=d_{2} \Delta v+v(m-u-v) \quad \text { in } \Omega \times(0, \infty)
\end{aligned}
$$

Fitness-dependent vs unbiased dispersal

- Cantrell, Cosner, L. and Xie (JDE 2013); L. Tao and Winkler (2013)

$$
\begin{aligned}
& u_{t}=d_{1} \nabla \cdot[\nabla u-\alpha \mathbf{u} \nabla(\mathbf{m}-\mathbf{u}-\mathbf{v})]+u(m-u-v), \\
& v_{t}=d_{2} \Delta v+v(m-u-v) \quad \text { in } \Omega \times(0, \infty), \\
& {[\nabla u-\alpha \mathbf{u} \nabla(\mathbf{m}-\mathbf{u}-\mathbf{v})] \cdot n=\nabla v \cdot n=0 \text { on } \partial \Omega \times(0, \infty)}
\end{aligned}
$$

Recent developments

- Convergent stable strategy, evolution of two traits: Gejji et al, BMB, 2012

Recent developments

- Convergent stable strategy, evolution of two traits: Gejji et al, BMB, 2012
- Directed movement in periodic environment: Kawasaki et al., BMB, 2012

Recent developments

- Convergent stable strategy, evolution of two traits: Gejji et al, BMB, 2012
- Directed movement in periodic environment: Kawasaki et al., BMB, 2012
- Multi-trophic level models: X.-F. Wang and Y.-P. Wu 2002; D. DeAngelis et al. Am. Nat, 2011; Wu and L, SIAP 2011

Recent developments

- Convergent stable strategy, evolution of two traits: Gejji et al, BMB, 2012
- Directed movement in periodic environment: Kawasaki et al., BMB, 2012
- Multi-trophic level models: X.-F. Wang and Y.-P. Wu 2002; D. DeAngelis et al. Am. Nat, 2011; Wu and L, SIAP 2011
- Dispersal in random environments: Evans et al. JMB 2012; S. Schreiber, Am. Nat, in press

Acknowledgment

Collaborators:

- Steve Cantrell, Chris Cosner (University of Miami)
- Isabel Averill, Richard Hambrock
- Xinfu Chen (University of Pittsburgh)
- King-Yeung Lam (MBI)
- Dan Munther (York University)
- Dan Ryan (NIMBioS)

Acknowledgment

Collaborators:

- Steve Cantrell, Chris Cosner (University of Miami)
- Isabel Averill, Richard Hambrock
- Xinfu Chen (University of Pittsburgh)
- King-Yeung Lam (MBI)
- Dan Munther (York University)
- Dan Ryan (NIMBioS)

Support:

- NSF, Mathematical Biosciences Institute

MBI Emphasis Year on Cancer and Its Environment: 2014-15

- Ecology and Evolution of Cancer
- Metastasis and Angiogenesis
- Cancer and the Immune System
- Tumor Heterogeneity and the Microenvironment
- Treatment, Clinical Trials, Resistance
- Targeting Cancer Cell Proliferation and Metabolism Networks
- Stem Cells, Development, and Cancer

MBI Emphasis Year on Cancer and Its Environment: 2014-15

- Ecology and Evolution of Cancer
- Metastasis and Angiogenesis
- Cancer and the Immune System
- Tumor Heterogeneity and the Microenvironment
- Treatment, Clinical Trials, Resistance
- Targeting Cancer Cell Proliferation and Metabolism Networks
- Stem Cells, Development, and Cancer

Thank you!

