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Classical Particle Systems

A system of N classical particles is governed by an equation of the form

dX

dt
= V (X) ,

where X denotes a point in the N -particle phase space and V (X) is the
vector-field that governs the particle dynamics. For example, if the particles
are governed by a Hamiltonian system

dpi

dt
= −

∂H

∂qi
,

dqi

dt
=

∂H

∂pi
, for i = 1, · · · , N ,

where H(p1, q1, · · · , pN , qN), then X = (p1, q1, · · · , pN , qN) and

V (X) =

(
−

∂H

∂q1
,

∂H

∂p1
, · · · , −

∂H

∂qN

,
∂H

∂pN

)
.



Liouville Equation

Most particle systems have more particles than we can afford to simulate.
Moreover, most particle systems exhibit chaotic dynamics. This means
that it would be impossible to track its orbits accurately for all but short
times even if we could afford to simulate the system. However, often we
do not want to track orbits accurately. Rather, we want to track robust
phenomena that arise from the collective behavior of many particles. By
robust phenomena, we mean phenomena that will arise in most members
of an ensemble of solutions. Therefore it is natural to consider probability
densities F(X, t) over the N -particle phase space. These are governed
by the Liouville equation

∂tF + ∇X ·
(
V (X)F

)
= 0 .

The idea is to simulate a smaller particle system that exhibits the same
robust phenomena as captured by an approximation to F(X, t). We call
the smaller system a coarsening of the original.



Coarsening

We coarsen the N -particle system into an n-particle system through an
aggregation mapping a(X). We think of N as the number of particles in
the physical system we are modeling and n as the number of particles in a
simulation of that system. If we set x = a(X) and let ∂a(X) denote the
Jacobian of a(X) then by the chain rule

dx

dt
= ∂a(X)V (X) .

This is not a closed system for x. We will use the Liouville equation to
derive a closed system for x. The first step is to build an approximate
evolution equation for the reduced pobability density f(x, t) defined by

f(x, t) =

∫
δ
(
x − a(X)

)
F(X, t) dX .

The second step is to identify an evolution for x that corresponds to this
evolution equation for f(x, t).



Evolution of the Reduced Density

We see from the Liouville equation and the definition of f(x, t) that the
evolution of f(x, t) is governed by

∂tf(x, t) +

∫
δ
(
x − a(X)

)
∇X ·

(
V (X)F(X, t)

)
dX = 0 .

Because for any vector-valued U(X) we have the divergence identity
∫

δ
(
x− a(X)

)
∇X ·U(X) dX = ∇x ·

∫
δ
(
x− a(X)

)
∂a(X)U(X) dX ,

we can express the evolution equation for f(x, t) in the divergence form

∂tf(x, t) + ∇x ·

∫
δ
(
x − a(X)

)
∂a(X)V (X)F(X, t) dX = 0 .

Notice that this form does not require ∂a(X) to exist everywhere. In order
to close this equation we must express F(X, t) in terms of f(x, t).



Reference Density

We will construct an expression for F(X, t) in terms of f(x, t) with the
aid of a reference density. Let G(X) be a positive probability density that
satisfies the stationary Liouville equation

∇X ·
(
V (X)G(X)

)
= 0 .

For example, if V (X) is Hamiltonian then G(X) might be a Gibbs density

G(X) =
1

Z(β)
exp

(
− βH(X)

)
, Z(β) =

∫
exp

(
− βH(X)

)
dX ,

where β can be obtained from the initial data by setting

1

Z(β)

∫
H(X) exp

(
− βH(X)

)
dX =

∫
H(X)F(X, 0) dX .

Here we are assuming that all other conserved quantities are initially zero.
In that case the reference density is the thermal equilibrium associated
with the initial probability density F(X, 0). There are other choices of β.



An Entropy-Based Closure

If we minimize the relative entropy
∫

F log

(
F

G

)
dX ,

subject to the constraint
∫

δ
(
x − a(X)

)
F dX = f(x, t) ,

then we obtain (steps are skipped) the so-called entropy-based closure

F(X, t) = G(X)
f(a(X), t)

g(a(X))
,

where g(x) is the positive probability density given by

g(x) =
∫

δ
(
x − a(X)

)
G(X) dX .



This implies that
∫

δ
(
x − a(X)

)
∂a(X)V (X)F(X, t) dX

=

∫
δ
(
x − a(X)

)
∂a(X)V (X)G(X) dX

f(x, t)

g(x)
,

which implies the evolution equation for f(x, t) has the form

∂tf + ∇x ·
(
v(x) f

)
= 0 ,

where v(x) is the reduced vector-field given by

v(x) =
1

g(x)

∫
δ
(
x − a(X)

)
∂a(X)V (X)G(X) dX .

The coarsened n-particle system is therefore governed by

dx

dt
= v(x) .

Moreover, it can be checked that g(x) satisfies ∇x ·
(
v(x) g(x)

)
= 0.



Remark. This closure depends largely upon the reference density G(X).
The same closure is obtained by minimizing any functional of the form

∫
G(X) η

(
F(X, t)

G(X)

)
dX ,

subject to the constraint
∫

δ
(
x − a(X)

)
F(X, t) dX = f(x, t) ,

where η(z) is continuously differentiable and strictly convex over R+ with
η(1) = η′(1) = 0. For example, for any p ∈ R we could have chosen

η(z) =





zp − 1 − p(z − 1)

p (p − 1)
for p 6= 0,1,

z − 1 − log(z) for p = 0,

z log(z) − z + 1 for p = 1.

The case p = 1 is equivalent to the entropy functional we used originally.



Hamiltonian Case

Suppose the N -particle dynamics has the Hamiltonian form

dX

dt
= J(X)∇XH(X) ,

where the skew-symmetric matrix J(X) gives the symplectic structure and
H(X) is the Hamiltonian. Then the coarsened system associated with the
Gibbs density will have the Hamiltonian form

dx

dt
= j(x)∇xh(x) ,

where the skew-symmetric matrix j(x) gives the symplectic structure and
the Hamiltonian h(x) is determined from the relation

exp
(
− βh(x)

)
=

∫
δ
(
x − a(X)

)
exp

(
− βH(X)

)
dX ,

provided the mapping a(X) satisfies j(a(X))∂a(X) = ∂a(X)J(X).



Remark. This Hamiltonian example can be extended easily to the more
general Lie-Poisson setting. Because most classical N -particle systems
fall into the Hamiltonian setting, we do not give this extension here.

Remark. This example illustrates how statistical information can enter the
coarsened system. In this case it enters through β, which appears in the
formula for the coarsened Hamiltonian h(x) at the bottom of the last page.
Because β is essentially reciprocal temperature, this might be related to
the quantum statistical potential (QSP) approach in the quantum setting.

Remark. A quantum analog of the foregoing classical formalism can be
carried out in the Heisenberg density matrix setting. It is less clear how an
analogous formalism might be carried out in the Wigner equation setting.



Mori-Zwanzig Framework

We can improve the foregoing closure within the so-called Mori-Zwanzig
framework. We begin by decomposing F(X, t) as

F(X, t) = G(X)
f(a(X), t)

g(a(X))
+ F̃ (X, t) .

Here F̃(X, t) is the deviation of F(X, t) from the entropy-based closure.
The evolution equation for f(x, t) then has the form

∂tf +∇x ·
(
v(x)f

)
+∇x ·

∫
δ
(
x−a(X)

)
∂a(X)V (X) F̃(X, t) dX = 0 ,

where v(x) is obtained from the entropy-based closure, which is recovered
by setting F̃(X, t) = 0. The idea is to solve the evolution equation for
F̃(X, t) in terms of f(x, t) in order to eliminate F̃(X, t) from this equation.



The evolution equation for the deviation F̃(X, t) is

∂tF̃ + P̃∇X ·
(
V (X)F̃

)
= −P̃G(X)V (X) · ∇X

(
f(a(X), t)

g(a(X))

)
,

where P̃ = I − P and P is the projection operator that acts formally on
any function W (X) as

PW (X) =
G(X)

g(a(X))

∫
δ
(
a(X) − a(X ′)

)
W (X ′) dX ′ .

The right-hand side of the evolution equation for F̃ (X, t) can be written as

R̃(X, t) = −G(X)
(
∂a(X)V (X) − v(a(X))

)
· ∇x

(
f(a(X), t)

g(a(X))

)
.

This shows that the evolution of F̃(X, t) is driven both by the gradient of
the ratio of f(x, t) to its equilibrium g(x) and by the difference between
the coarsened vector-field v(a(X)) and ∂a(X)V (X).



We can formally solve the evolution equation for F̃(X, t) as

F̃ (t) = exp
(
−tÃ

)
F̃ in +

∫ t

0
exp

(
−(t − t′)Ã

)
R̃(t′) dt′ ,

where we have suppressed the dependence on X in all terms, F̃ in is the
initial-data for F̃(t), and the operator Ã is defined by

ÃW = P̃∇X ·
(
V (X)P̃W

)
.

If the operator exp
(
−tÃ

)
is represented by a kernel S(X, X ′, t) then

F̃(X, t) can be expressed as

F̃ (X, t) =

∫
S(X, X ′, t) F̃ in(X ′) dX ′

+

∫ t

0

∫
S(X, X ′, t − t′) R̃(X ′, t′) dX ′ dt′ .

The Mori-Zwanzig evolution equation for f(x, t) is obtained by placing this
expression for F̃ (X, t) into the equation for ∂tf(x, t) given two slides ago.



When the foregoing expression for F̃(X, t) is placed into the equation for
∂tf(x, t) given three slides ago while using the fact that

∫
δ
(
x − a(X)

)
∂a(X)V (X) F̃ (X, t) dX

=
∫

δ
(
x − a(X)

) (
∂a(X)V (X) − v(x)

)
F̃ (X, t) dX ,

the equation for ∂tf(x, t) becomes

∂tf + ∇x ·
(
v(x)f

)

+ ∇x ·

∫∫
δ
(
x − a(X)

) (
∂a(X)V (X) − v(x)

)

S(X, X ′, t) F̃ in(X ′) dX ′ dX

+ ∇x ·

∫ ∫ t

0

∫
δ
(
x − a(X)

) (
∂a(X)V (X) − v(x)

)

S(X, X ′, t − t′) R̃(X ′, t′) dX ′ dt′ dX ,

where R̃(X, t) was given in terms of f(x, t) two slides ago.



Remark. This Mori-Zwanzig evolution equation is different than the one
introduced by them because we use a reference probability density G(X).
They used a uniform reference measure, which corresponds to taking the
infinite temperature limit with the Gibbs density. We recover their equation
by setting G(X) = 1 and requiring a(X) to satisfy

g(x) =

∫
δ
(
x − a(X)

)
dX < ∞ for every x.

Remark. The Mori-Zwanzig evolution equation makes no approximations.
It is formally equivalent to the original problem through the appearance of
the kernel S(X, X ′, t) in the two new terms. These are memory terms.
The first has memory of the initial-data F̃ in(X), while the second has
memory of f(x, t′) over times t′ in (0, t). The Mori-Zwanzig framework
suggests we should approximate the actions of S(X, X ′, t) in these terms.



Markov Approximation

We now assume that the dynamics represented by S(X, X ′, t) forgets its
past fast enough that we can use the so-called Markov approximation

F̃ (X, t) =
∫

K(X, X ′) R̃(X ′, t) dX ′ ,

where the kernel K(X, X ′) acts on a sufficiently large class of R̃(X) as
∫

K(X, X ′) R̃(X ′) dX ′ = lim
t→∞

∫ t

0

∫
S(X, X ′, t − t′) R̃(X ′) dX ′ dt′

= lim
t→∞

∫ t

0

∫
S(X, X ′, t′) R̃(X ′) dX ′ dt′ .

The class of R̃(X) for which this limit has to be established must include
the form of R̃(X, t) that appears on the right-hand side of the evolution
equation for F̃(X, t). This limit cannot be computed generally.



If the Markov approximation for F̃ (X, t) is placed into the equation for
∂tf(x, t) then that equation becomes

∂tf + ∇x ·
(
v(x)f

)
= ∇x ·

[∫
k(x, x′)g(x′)∇x′

(
f(x′, t)

g(x′)

)
dx′

]
,

where the matrix-valued kernel k(x, x′) is given by

k(x, x′)g(x′) =
∫∫

δ
(
x − a(X)

) (
∂a(X)V (X) − v(x)

)

K(X, X ′)G(X ′)
(
∂a(X ′)V (X ′) − v(x′)

)T

δ
(
x′ − a(X ′)

)
dX dX ′ .

To be the generator of a Markov process, this equation should preserve
the nonnegativity of its solutions and dissipate all functionals of the form

∫
g(x) η

(
f(x, t)

g(x)

)
dx , where η(z) is strictly convex over R+ .



Whenever these properties hold we can try to identify a Markov process
for which the equation for f(x, t) is the forward Kolmogorov equation. For
example, these properties hold when s(x, x′) = s(x′, x) ≥ 0, where

s(x, x′) = −∇x′ ·
(
∇x · k(x, x′)g(x′)

)T
.

In that case the evolution equation for f(x, t) takes the form

∂tf + ∇x ·
(
v(x)f

)
=

∫
s(x, x′)

(
f(x′, t)

g(x′)
−

f(x, t)

g(x)

)
dx′ .

This is the forward Kolmogorov equation for the Markov process

dx

dt
= v(x) +

dz(t)

dt
,

where z(t) is the jump process associated with scattering kernel s(x, x′).
This coarsened dynamics has characteristics of a Monte Carlo simulation.



Whenever these properties do not hold we can try to replace k(x, x′) with
an appoximation for which they do hold. For example, if k(x, x′) is peaked
along the diagonal x′ = x then we can make the approximation

k(x, x′) ≈ d(x) δ(x − x′) .

where d(x) is the (nonnegative definite) matrix-valued function given by

d(x)g(x) =

∫
k(x, x′)g(x′) dx′ .

The resulting evolution equation then becomes

∂tf + ∇x ·
(
v(x)f

)
= ∇x ·

[
d(x)g(x)∇x

(
f

g(x)

)]
.

This is the forward Kolmogorov equation for the Markov process

dx

dt
= v(x) + ∇x · d(x) + d(x)∇x log(g(x)) +

√
2d(x)

dw(t)

dt
,

where w(t) is a vector of Wiener processes.



In the Hamiltonian case this coarsened dynamics becomes

dx

dt
= j(x)∇xh(x) + ∇x · d(x) − βd(x)∇xh(x) +

√
2d(x)

dw(t)

dt
.

More generally, we might be able to split the kernel k(x, x′) into two parts,
one that gives rise to a jump process and one that gives rise to a diffusion
process. For example, in the Hamiltonian case p might be governed by a
jump process while q might be governed by a diffusion process.

Remark. The evolution equation for f(x, t) should be supplemented by an
initial condition. The simplest such condition is

f(x,0) =
∫

δ
(
x − a(X)

)
F in(X) dX ,

where F in(X) is the initial-data for F(X, t). This initial condition specifies
nonnegative initial-data for every nonnegative F in(X).



Remark. When F̃ in is small then another possible initial condition is

f(x,0) =

∫
δ
(
x − a(X)

)
F in(X) dX

+ ∇x ·

∫∫
δ
(
x − a(X)

) (
∂a(X)V (X) − v(x)

)

K(X, X ′) F̃ in(X ′) dX ′ dX .

This initial condition has the virtue of being more accurate formally, but may
not specify nonnegative initial-data for every nonnegative F in(X).

Remark. Justifying any Markov approximation can be extremely difficult.
It requires showing the dynamics generated by V (X) is either sufficiently
dissipative or sufficiently chaotic so that for t = O(1) we have

∫
S(X, X ′, t) F̃ in(X ′) dX ′ ∼ 0 ,

∫ t

0

∫
S(X, X ′, t − t′) W̃ (X ′, t′) dX ′ dt′ ∼

∫
K(X, X ′) W̃ (X ′, t) dX ′ .



Closing Remarks

Remark. The reference density G(X) was taken to be stationary in the
above discussion. Much of what was done goes through if the reference
density is slowly varying. For example, it could be a slowly modulated
Gibbs density as in the Green-Kubo formalism.

Remark. A similar formalism can be carried out to coarsen a system of N

damped stochastic particles to a system of n damped stochastic particles.
In that case the Markov approximation is easier to justify. This idea was
explored in a one-dimensional setting in the dissertation of J.T. Halbert.

Remark. The fast multipole method provides a framework within which
coarsening mappings can be viewed. It shows that close interactions need
to be modeled by more than Colomb interactions of aggregate particles.


