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1. Introduction

The Poisson–Nernst–Planck (PNP) system, i = 1, · · · ,m,
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I The Nernst-Planck equation (drift and di↵usion)

I The Poisson equation (charge and potential)

I Extensively used in the modeling of semiconductors⇤, the
membrane transport in biological ion channels†, etc.

⇤

e.g., P. Makowich., C. Ringhofer. and C. Schmeiser. Springer, New York, 1990.
†

e.g., R. Eisenberg. Contemp. Phys., 39, 1998.



1. Introduction cont’d

I Theoretical results
I The existence and stability of the steady-state solution,

Jerome(1985), etc.
I Hard to solve analytically due to the nonlinear coupling

I Numerical development (main advance)
I Many algorithms, including finite di↵erence and finite element

methods, are designed in various applications/settings
specifically to overcome di�culties such as discontinuous
coe�cients, singular charges, geometric singularities, etc‡.

I In spite of many existing computational studies, rigorous
numerical analysis seems to be still lacking.

‡

e.g., a review by G. Wei., Q. Zheng., Z. Chen. and K. Xia. SIAM Rev., 54(2012).



1. Introduction cont’d

Main mathematical features of the system:

1. conservation of ions,
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3. dissipation of the free energy
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1. Introduction cont’d

Motivation:

I Nonlinear Fokker-Planck (NFP) equations
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( (x) + H 0(c))). (2)

I With external  , a direct discontinuous Galerkin (DDG)
method introduced§ satisfies dissipation of free energy
discretely.

I If the potential  is governed by the Poisson equation,
f (c) = c and H(c) = c log c , then NFP becomes the PNP
system with single species.

Main objective:

I Develop and analyze a high order DDG method.

I Maintain mathematical features discretely.

I Solution remains faithful for long time simulations,
§

H. Liu and ZW, J. Sci. Comput., 62 (2015), no. 3, 803–830



2.1 Numerical Scheme: reformulation

We reformulate the PNP system as follows

@
t

c
i

= @
x

(c
i

@
x

p
i

), i = 1, · · · ,m, (3a)

p
i

= q
i

 + log c
i

, (3b)

�@2
x

 =
mX

i=1

q
i

c
i

+ ⇢0(x), (3c)

subject to initial data c
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(x) satisfying compatibility
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2.1 Numerical Scheme: the DDG method

With V
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Ref: Liu and Yan (SINUM2009, CICP2010).



2.2 Properties: semi-discrete

Theorem

1. The semi-discrete scheme is conservative in the sense that
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2.2 Fully discrete scheme

Using Forward Euler method in time, we have
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2.2 Properties: fully discrete

Theorem

1. The fully discrete scheme is conservative
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2.2 Properties: fully discrete cont’d

I The free energy dissipation law is also established for any
strong stability preserving Runge-Kutta methods in time

I Preservation of steady states:
I with initial data c0
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2.3 Implementations: Computing unique  

I Due to the Neumann Boundary condition,  is unique up to
an additive constant.

I In order to compute a particular  
h
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given, and define
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2.3 Implementations: Reconstruction of cih

I Our algorithm requires c
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being positive point-wise, which is
hard to achieve for high order approximation
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2.3 Implementations: Algorithm

The algorithm can be summarized in following steps.

1. (Initialization) Project c in
i
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to obtain c0
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(x).

2. (Reconstruction) From cn
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(x), apply, if necessary, the
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3. (Poisson solver) Solve Poisson equation to obtain  n

h
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to the modified boundary fluxes

4. (Projection) Obtain pn
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.

5. (Update) Solve NP equation to update cn+1
ih

with some
Runge-Kutta ODE solver.

6. Repeat steps 2-5 until final time T .



3. Example 1: Cell average and convergence test
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3. Example 1: Cell average and convergence test cont’d

Table: Error table at T = 0.1

(k ,�0,�1) h c1 error order c2 error order  error order

(1, 2,�)

0.2 0.0232 – 0.0312 – 0.0033 –
0.1 0.0037 2.50 0.0059 2.26 0.0009 1.86
0.05 0.0006 2.44 0.0012 2.19 0.0002 1.87
0.025 0.0001 2.36 0.0002 2.13 6.98e-5 1.90

(2, 4, 1/12)

0.2 0.0028 – 0.0030 – 0.0012 –
0.1 0.0001 3.64 0.0002 3.44 0.0001 3.46
0.05 1.39e-5 3.49 2.27e-5 3.34 9.14e-6 3.38
0.025 1.48e-6 3.23 2.42e-6 3.23 9.24e-7 3.31

(3, 15, 1/4)

0.2 0.0030 – 0.0029 – 0.0011 –
0.1 0.0002 4.07 0.0002 3.93 7.41e-5 4.39
0.05 1.75e-5 4.24 1.68e-5 4.01 5.41e-6 4.64
0.025 6.44e-7 4.76 8.33e-7 4.33 1.19e-7 5.50

All cell average are positive at T = 100



3. Example 2: Mass and free energy
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where q1 and q2 are set to be 1 and �1, respectively, with initial
conditions

c in1 (x) = 1 + ⇡ sin(⇡x), c in2 (x) = 4� 2x ,



3. Example 2: Mass and free energy dissipation cont’d
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3. Example 3: Non-monovalent and nonzero ⇢0
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3. Example 3: Non-monovalent and nonzero ⇢0 cont’d
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4. Summary and Future Work

Summary

I An arbitrary high order DDG method for the PNP system

I Both semi-discrete and fully DDG schemes (later with the
Euler forward time discretization) are shown to satisfy mass
conservation and discrete free energy dissipation

I The method also preserves the steady states.

I For proper choices of (�0,�1), we numerically confirm that
each cell average remains positive in long time.

Future work

I Multi-dimensional extension

I New ideas on preserving positivity of numerical cell average
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