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The fundamental equation
The Schrödinger equation for nuclei and electrons (in atomic unit)

i∂tu = − 1

2M
∆xu−

1

2
∆ru+ V (x, r)u,

where x ∈ Rm the position of nuclei and r ∈ Rn the position of
electrons. After rescaling

iε∂tu = −ε
2

2
∆xu−

1

2
∆ru+ V (x, r)u,

where ε =
√

1/M � 1 (about 1/100 for hydrogen nucleus).



The famous quote

P.A.M. Dirac, 1929
The fundamental laws necessary to the mathematical treatment of
large parts of physics and the whole of chemistry are thus fully
known,



The famous quote

P.A.M. Dirac, 1929
The fundamental laws necessary to the mathematical treatment of
large parts of physics and the whole of chemistry are thus fully
known, and the difficult lies only in the fact that application of these
laws leads to equations that are too complex to be solved.



The solution to the curse of dimensionality

The dimension is too high! Let us try to separate the nucleus and
electron degrees of freedom

iε∂tu = −ε
2

2
∆xu−

1

2
∆ru+ V (x, r)u =: −ε

2

2
∆xu+He(x)u.

Denote Ψk(r;x) as the eigenstates of He(x)

He(x)Ψk(r;x) = Ek(x)Ψk(r;x),

where x enters as a parameter. These are called adiabatic states.

It is a whole different story how to approximate the above eigenvalue
problem, aka the electronic structure theory, which we will not go into
today ...
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The adiabatic approximation

Recall that

iε∂tu = −ε
2

2
∆xu−

1

2
∆ru+ V (x, r)u =: −ε

2

2
∆xu+He(x)u,

and Ψk(r;x) (adiabatic states) are the eigenstates of He(x)

He(x)Ψk(r;x) = Ek(x)Ψk(r;x).

(Time-dependent) Born-Oppenheimer approximation:

u(t, x, r) ≈ u0(t, x)Ψ0(r;x),

with u0 solving the nuclei Schrödinger equation

iε∂tu0(t, x) = −ε
2

2
∆xu0 + E0(x)u0.



The semi-classical approximation

Nuclei Schrödinger equation on the energy surface E0(x):

iε∂tu0(t, x) = −ε
2

2
∆xu0 + E0(x)u0.

It is still impractical to solve, as this is a PDE on Rm.

To make it practical, recall that ε� 1. The semiclassical limit ε→ 0
gives the Hamilton dynamics for the nuclei with Hamiltonian
1
2 |p|

2 + E0(q).

dp

dt
= −∇qE0(q);

dq

dt
= p.

This is known as the ab initio molecular dynamics, since the
interaction potential E0 is given by a first principle calculations.
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Thus, from Schrödinger equations to molecular dynamics, we have
made two approximations:
(a) Adiabatic approximation: u(t, x, r) = u0(t, x)Ψ0(r;x);
(b) Semiclassical approximation.

(a) is justified if E0(x) (ground state) as an energy surface is well
separated from E1(x) (excited state).

This is however often not the case, for applications like photoexcited
dynamics, electron transfer and surface chemistry, where the
Born-Oppenheimer approximation falls apart.
Instead, we would need to consider components of excited states:

u(t, x, r) =
∑
i

ui(t, x)Ψi(r;x),

and to make the notation simple, we will just consider two states
(generalization is straightforward):

u(t, x, r) = u0(t, x)Ψ0(r;x) + u1(t, x)Ψ1(r;x).
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Two state wave function:

u(t, x, r) = u0(t, x)Ψ0(r;x) + u1(t, x)Ψ1(r;x).

Substitute into the Schrödinger equation, we get

iε∂t

(
u0

u1

)
= −ε

2

2
∆x

(
u0

u1

)
+

(
E0

E1

)(
u0

u1

)
−ε2

m∑
j=1

(
d00 d01

d10 d11

)
j

∂xj

(
u0

u1

)
−ε

2

2

(
D00 D01

D10 D11

)(
u0

u1

)
,

where for k, l = 0, 1

Dkl(x) = 〈Ψl(r;x),∆xΨk(r;x)〉r,(
dkl(x)

)
j

= 〈Ψl(r;x), ∂xjΨk(r;x)〉r.

As before, it is almost hopeless trying to directly simulate the matrix
Schrödinger equation, and thus we still need to consider the semiclassical
approximation.



Tully’s fewest switch surface hopping [JChP 1990]

Semiclassical approximation to the matrix Schrödinger equation

iε∂t

(
u0

u1

)
= −ε

2

2
∆x

(
u0

u1

)
+

(
E0

E1

)(
u0

u1

)
−ε2

m∑
j=1

(
d00 d01

d10 d11

)
j

∂xj

(
u0

u1

)

Intuition: Without the coupling d term, it is really just propagation on one of
the energy surfaces, and hence very similar to the ab initio molecular
dynamics, however, we need to “modify” the dynamics so to account the
coupling terms.

Denote a trajectory as (q(t), p(t)), the FSSH algorithm proposes to solve
along the trajectory a “fictitious” ODE system of (k = 1, 2)

iεċk(t) = Ek(q(t))ck(t)− iε
∑
j

cj(t)p(t) · dkj(q(t)),

and (|c0(t)|2, |c1(t)|2) is understood as “population” on each energy surface
along the trajectory. Q: Where this equation comes from???
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Why studying surface hopping (FSSH) ?

Widely used in chemistry with many applications and increasing
popularity

“empirically guessed / designed” attempts try to “correct” it



Previous works

• “Surface hopping” is also sometimes used for a very different
“older” algorithm, which relies on Landau-Zener asymptotics.
This asymptotics has been rigorously justified by the work of
G. Hagedorn, C. Lasser, S. Teufel and others, also numerical
work by C. Lasser, S. Jin and others.
The FSSH type algorithms are for more general situations, and is
quite different in many ways.

• In the chemistry / physics literature, often the starting point to
“understand” the FSSH algorithm is the Kapral-Ciccotti equation,
which is an extension of the usual Moyal’s evolution equation for
Wigner distribution to the matrix Schrödinger equations. So far,

we don’t see how to justify the “derivation” of FSSH from Wigner
distribution, and it seems highly skeptical, at best.



Why studying surface hopping?

Even theoretical chemists find the algorithm mysterious, and are still
wondering about whether the algorithm is correct (and in which
sense) and can be derived ...

This is an area full of opportunities for applied mathematicians and
rich of mathematical ideas:
• semiclassical analysis
• stochastic simulation
• multiscale modeling
• high dimensional PDEs
• applied harmonic analysis ...



Surface hopping as a path integral

The surface hopping is an asymptotically convergent path integral
representation for the matrix Schrödinger equation! Similar to using
Feynman-Kac formula to stochastically solve reaction-diffusion
equations.

iε∂t

(
u0

u1

)
= −ε

2

2
∆x

(
u0

u1

)
+

(
E0

E1

)(
u0

u1

)
−ε2

m∑
j=1

(
d00 d01

d10 d11

)
j

∂xj

(
u0

u1

)
We have

u(t, x) = Z0EF (x; {z̃(s)}0≤s≤t) +O(ε),

where

• E stands for expectation over the path space of
z̃(s) =

(
z(s), l(s)

)
=
(
q(s), p(s), l(s)

)
,

• Z0 is a normalization factor, and

• F is a functional depends on the trajectory z̃
(exact expression, unfortunately quite long and requires more notations,
will be given later).



Surface hopping trajectory ensemble

Trajectory (path space) average

u(t, x) = Z0EF (x; {z̃(s)}0≤s≤t) +O(ε),

The trajectory follows a Markov switching process

dz(t) = d(q(t), p(t)) =
(
p(t),−∇qEl(t)

(
q(t)

))
dt,

P
(
l(t+ δt) = l | l(t) = k, z(t) = z

)
= δkl + λkl(z)δt+ o(δt)

with rate matrix

λ(z) =

(
λ00(z) λ01(z)
λ10(z) λ11(z)

)
=

(
−|p · d01(q)| |p · d01(q)|
|p · d10(q)| −|p · d10(q)|

)
.

• l(t) follows a (nonhomogeneous) Poisson process with state dependent
jumping intensity λ(z); it contains a.s. finite number of jumps.

• z(t) follows the Hamiltonian flow on energy surface l(t);



A rigorous surface hopping algorithm

The path integral representation readily suggests an algorithm for
approximating u:

u(t, x, r) = Z0 EF (x; {z̃(s)}0≤s≤t) +O(ε)

=
Z0

M

M∑
i=1

F (x; {z̃i(s)}0≤s≤t) +O
( 1√

M

)
+O(ε),

where z̃i is i.i.d. realization of the trajectory.

• With our mathematical understanding of the surface hopping
algorithm (in particular, what it really tries to compute), it is
natural to design more efficient algorithms.

• We remark that our algorithm actually offers an approximation to
the wave function (and hence physical observables, transition
rate, etc.)



Example (0) Sampling error with direct Monte Carlo
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The Frozen Gaussian approximation and other
semiclassical approaches

Before giving the detailed expression of F , let us go back to

iε∂tu = −ε
2

2
∆xu+ E(x)u.

The frozen Gaussian approximation (aka Herman-Kluk propagator)
[Herman-Kluk 1984; Kay 1994; Swart-Rousse 2009; Lu-Yang 2011]

uFGA(t, x) =
1

(2πε)3m/2

∫
R2m

A(t, q, p)e
i
ε

Θ(t,x,q,p) dq dp.

Somewhat unexpectedly (not at all clear from first sight), the surface hopping
algorithm is actually a natural generalization of the frozen Gaussian
approximation to the matrix Schrödinger equation!

Recall that most chemical derivations are trying to start from the Moyal’s
equation for Wigner function (i.e., Kapral-Ciccotti equation) ...

Note: the various ways towards semiclassical approximation: WKB
(geometric optics), Gaussian packets, Wigner distribution ...



The surface hopping ansatz
We assume the following deterministic ansatz, referred as surface hopping
ansatz, for the solution to the matrix Schrödinger equation

uFGASH(T, x) = |0〉
(
u(0)(T, x) + u(2)(T, x) + · · ·

)
+ |1〉

(
u(1)(T, x) + u(3)(T, x) + · · ·

)
, (1)

where |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
denotes the quantum state associated with

each surface.

The wave function u(n) stands for the contribution with n surface hops before
time t, starting from surface E0. In particular, for trajectories with even
number of hops, the electronic state ends at |0〉, and trajectories with odd
number of hops contribute to |1〉. This explains the above linear combination.



We denote a sequence {tk}nk=1 for the hopping times satisfying

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T,

at which time the trajectory switches from one energy surface to the other.
The ansatz for u(n) is given by

u(n)(T, x) =
1

(2πε)3m/2

∫
dq dp

∫
0≤t1≤···≤tn≤T

dTn:1

τ (1) · · · τ (n) A(n) exp

(
i

ε
Θ(n)

)
, (2)

where the hopping coefficient τ (k) is defined as

τ (k) = −p(tk) · d
l(t+
k

)l(t−
k

)
(q(tk)), (3)

and dTn:1 = dt1 · · · dtn. Note that in the above ansatz, we integrate over all
possible hopping times for n hops in the time interval [0, T ]. Given {tk}nk=1

and z0, the trajectory z̃(t) for 0 ≤ t ≤ T is specified.

The choice of the hopping coefficient τ (k) is essential for the term by term
matching in the surface hopping ansatz.



The term
A(t) exp

( i
ε

Θ(t, x)
)

resembles the familiar amplitude A(t) and phase Θ(t, x) expression from the
Herman-Kluk propagator.

In particular, the phase term Θ takes the following form

Θ(t, x) = S(t) +
i

2
|x− q(t)|2 + p(t) · (x− q(t)), (4)

where S(t) is the classical action associated with the trajectory and recall that
z(t) = (p(t), q(t)) is the momentum and position of the trajectory.



Recall that, the position and momentum z(t) = (p(t), q(t)) evolves by a
Hamiltonian flow on the energy surface l(t):{

q̇(t) = p(t);

ṗ(t) = −∇qEl(t)(q(t)).
(5)

Substitute the ansatz into the matrix Schrödinger equations and carry out
asymptotic calculations, we obtain the amplitude A and action S solve the
ODEs

Ṡ(t) =
1

2
p(t)2 − El(t)(q(t)), (6)

Ȧ(t) =
1

2
A tr

(
Z(t)−1(∂zp(t)− i∂zq(t)∇2

qEl(t)(q(t))
))

−Adl(t)l(t)(q(t)) · p(t), (7)

which are also continuous through jumps.



Theorem (Lu-Z., arXiv:1602.06459)
With some assumptions on E, d and D,
(a) the surface hopping ansatz uFGASH converges absolutely,
and (b) we have

‖u− uFGASH‖L2 = O(ε).

The FGA-SH method can be interpreted as a path integral formulation of the
matrix Schrödinger equation in the spirit of surface hopping. It approximates
the solution u =

( u0
u1

)
as

u(T, x) = uFGASH(T, x) +O(ε)

= Ez̃F
(
x; {z̃(s)}0≤s≤T

)
+O(ε),

(8)

where the average is taken over an ensemble of trajectories we describe
before.



The functional F is then given by

F
(
x; {z̃(t)}0≤t≤T

)
= |l(T )〉 Z0

|A0(z̃(0))|×

×A(T ) exp
( i
ε

Θ(T, x)
)

exp
(
w(T )

) n∏
k=1

τ (k)

|τ (k)|
, (9)

which depends on the trajectory z̃ up to time T .

The weighting factor w in (9) solves the ODE

ẇ(t) = λ1−l(t),l(t), (10)

with initial condition w(0) = 0. Thus, it is the accumulated jumping intensity of
the trajectory.



The weight of a trajectory

For the algorithmic purpose, we remark that we can combine A with the
weighting factor w as

Γ(t) =
A(t)

|A(0)| exp
(
w(t)

)
, (11)

which solves the ODE

Γ̇(t) =
1

2
Γ tr
(
Z(t)−1(∂zp(t)− i∂zq(t)∇2

qEl(t)(q(t))
))

+ Γ
(∣∣p(t) · d(1−l(t))l(t)(q(t))

∣∣− p(t) · dl(t)l(t)(q(t))) (12)

with initial condition Γ(0; z̃(0)) = A0(z̃(0))/|A0(z̃(0))|.

The quantity |Γ(t)| will be treated as the weight of the trajectory in our
algorithm. Thus we will prune trajectories with small weight, and branch
trajectories with larger weights to reduce the variance of the stochastic
sampling algorithm.



Modified path integral (with birth/death branching)

After propagating the trajectories till t = T , due to the birth/death
branching process, the path integral is approximated by

uFGA-SH(T, x) ≈ Z0

M(0)

M(T )∑
α=1

|lα(T )〉 γα(T )×

× exp
( i
ε

Θα(T, x)
) nα∏
k=1

τ
(k)
α∣∣∣τ (k)α

∣∣∣ , (13)

where M(T ) denotes the number of trajectory at time T and we use
subscript α explicitly to emphasize the dependence of these
quantities on the right hand side on each trajectory.

We also remark that |γα| ≈ 1 due to the branching process, so it
mainly contributes to a phase factor in the summation.



Propagation of trajectories

The algorithm starts by sampling a collection of initial points for the
trajectories and estimate Z0.

The propagation of the trajectories are carried out as follows: For
each time step of size ∆t, the following steps are performed in order:

1. Evolve the position and momentum p(t), q(t) by the Hamiltonian
dynamics on the current surface l(t).

2. Evolve the other (q, p) dependent quantities (phase, amplitude,
weighting...) according to the current surface of the trajectory l(t).

3. Hopping attempts. The probability that a surface hop occurs within the
time interval (t, t+ ∆t) is given by ∆tλ(1−l(t))l(t). When hopping, l(t) is
changed, and the phase change is recorded.

4. (optional) Birth/death branching.



Example (1) Convergence test with various ε
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Example (2) Effect of weighting factor w
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Example (2) Effect of weighting factor w

avg. error Variance TR mean Variance
w/o w.f. 0.2695 9.5780e-03 0.1772 1.0339e-02
with w.f. 0.0678 7.5759e-03 0.2386 1.2106e-02

Table: Numerical error in the wave functions, and average transition rates
with and without the weighting factor. The reference transition rate is given by
0.2443; the inclusion of the weighting factor reduces the relative error from
27.5% to 2.33%.

The non-homogeneous and state dependent Poisson process (which
is involved in all version of surface hopping algorithms) requires the
crucial correction terms in averaging,

while as far as we have seen, the chemistry literature seems to have
missed such correction terms ...



Example (3) Initial condition with different momentum
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Example (3) Initial condition with different momentum
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Future directions
Well, this is not, however, the end of the story, but rather...

• It provides a framework to approximate a wide of class of matrix
form differential equations.

• By the similar spirit, many nonadiabatic phenomenon can be
studied, like thermal equilibrium sampling of nonadiabatic
systems. (work in preparation)

• and many fresh ideas....
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Thank you for your attention!

Email: zhennan@math.duke.edu

URL: http://www.math.duke.edu/~zhennan/

• Jianfeng Lu and Zhennan Zhou, Frozen Gaussian approximation
with surface hopping for mixed quantum-classical dynamics: A
mathematical justification of surface hopping algorithms,
arXiv:1602.06459

• Jianfeng Lu and Zhennan Zhou, Improved sampling and
validation of frozen Gaussian approximation with surface hopping
algorithm for nonadiabatic dynamics, Journal of Chemical
Physics, 145, 124109 (2016).
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