Fluctuation and fixation in the one-dimensional Axelrod model

Nicolas Lanchier

School of Mathematical and Statistical Sciences,
Arizona State University

The Axelrod model

State space $-F$ cultural features with q states
$\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}$

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

Fluctuation - For all $x \in \mathbb{Z}$ and all i
$P\left(\eta_{t}(x, i)\right.$ changes at arbitrarily large $\left.t\right)=1$

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

Fluctuation - For all $x \in \mathbb{Z}$ and all i
$P\left(\eta_{t}(x, i)\right.$ changes at arbitrarily large $\left.t\right)=1$
Fixation - For all $x \in \mathbb{Z}$ and all i
$P\left(\eta_{t}(x, i)\right.$ changes at arbitrarily large $\left.t\right)=0$

The Axelrod model

State space $-F$ cultural features with q states

$$
\eta_{t}: \mathbb{Z} \longrightarrow\{1,2, \ldots, q\}^{F}
$$

Homophily - Tendency to interact more fre quently with individuals who are more similar

Social influence - Tendency of individuals to become more similar when they interact

Fluctuation - For all $x \in \mathbb{Z}$ and all i

$$
P\left(\eta_{t}(x, i) \text { changes at arbitrarily large } t\right)=1
$$

Fixation - For all $x \in \mathbb{Z}$ and all i
$P\left(\eta_{t}(x, i)\right.$ changes at arbitrarily large $\left.t\right)=0$
Clustering - For all $x, y \in \mathbb{Z}$ and all i

$$
\lim _{t \rightarrow \infty} P\left(\eta_{t}(x, i)=\eta_{t}(y, i)\right)=1
$$

Fluctuation versus fixation

Main conjecture

- Fluctuation (clustering) when $F>q$
- Fixation (no clustering) when $F<q$

Fluctuation versus fixation

Main conjecture

- Fluctuation (clustering) when $F>q$
- Fixation (no clustering) when $F<q$

Fluctuation versus fixation

Main conjecture

- Fluctuation (clustering) when $F>q$
- Fixation (no clustering) when $F<q$

Fluctuation versus fixation

Main conjecture

- Fluctuation (clustering) when $F>q$
- Fixation (no clustering) when $F<q$

Fluctuation versus fixation

Main conjecture

- Fluctuation (clustering) when $F>q$
- Fixation (no clustering) when $F<q$

Fluctuation versus fixation

Main conjecture

- Fluctuation (clustering) when $F>q$
- Fixation (no clustering) when $F<q$

Fixation occurs when

$$
q\left(1-\frac{1}{q}\right)^{F}-F\left(1-\frac{1}{q}\right)>0
$$

Fluctuation versus fixation

Main conjecture

- Fluctuation (clustering) when $F>q$
- Fixation (no clustering) when $F<q$

Fixation occurs when

$$
q\left(1-\frac{1}{q}\right)^{F}-F\left(1-\frac{1}{q}\right)>0
$$

This holds when $F \leq c q$ where $e^{-c}=c$

Fluctuation versus fixation

Main conjecture

- Fluctuation (clustering) when $F>q$
- Fixation (no clustering) when $F<q$

Fixation occurs when

$$
q\left(1-\frac{1}{q}\right)^{F}-F\left(1-\frac{1}{q}\right)>0
$$

This holds when $F \leq c q$ where $e^{-c}=c$

Fluctuation versus fixation

Main conjecture

- Fluctuation (clustering) when $F>q$
- Fixation (no clustering) when $F<q$

Fixation occurs when

$$
q\left(1-\frac{1}{q}\right)^{F}-F\left(1-\frac{1}{q}\right)>0
$$

This holds when $F \leq c q$ where $e^{-c}=c$

System of random walks

System of random walks

time 0

time 0
\qquad

System of random walks

System of random walks

System of random walks

System of random walks

System of random walks

time 0

time 0
\qquad

System of random walks

System of random walks

System of random walks

System of random walks

System of random walks

Annihilating events

System of random walks

Annihilating events

Coalescing events

System of random walks

Colors c_{-}and c_{+}are independent uniform random variables on the set $\{1,2, \ldots, q\} \ldots$

Annihilating events

Coalescing events

System of random walks

Colors c_{-}and c_{+}are independent uniform random variables on the set $\{1,2, \ldots, q\} \ldots$ conditioned to be different from c_{0}

Annihilating events

Coalescing events

System of random walks

must have different ancestors
Colors c_{-}and c_{+}are independent uniform random variables on the set $\{1,2, \ldots, q\} \ldots$ conditioned to be different from c_{0}

Annihilating events: probability $(q-1)^{-1}$

Coalescing events

System of random walks

must have different ancestors
Colors c_{-}and c_{+}are independent uniform random variables on the set $\{1,2, \ldots, q\} \ldots$ conditioned to be different from c_{0}

Annihilating events: probability $(q-1)^{-1}$

Coalescing events: probability $(q-2)(q-1)^{-1}$

Fixation when $F \leq c q$ - survival of the blockades

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$
Number of particles per edge

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$
Number of particles per edge

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$
Number of particles per edge

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$
Number of particles per edge

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$
Number of particles per edge: $X=\operatorname{Binomial}(F, 1-1 / q)$

Fixation when $F \leq c q$ - survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$
Number of particles per edge: $X=\operatorname{Binomial}(F, 1-1 / q)$

$$
E \phi(e)=\sum_{i=0}^{F-1}-i P(X=i)+E(Z-F+1) P(X=F)
$$

Fixation when $F \leq c q-$ survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$
Number of particles per edge: $X=\operatorname{Binomial}(F, 1-1 / q)$

$$
\begin{aligned}
E \phi(e)=\sum_{i=0}^{F-1} & -i P(X=i)+E(Z-F+1) P(X=F) \\
& =-\sum_{i=0}^{F} i P(X=i)+E(Z+1) P(X=F)
\end{aligned}
$$

Fixation when $F \leq c q-$ survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$
Number of particles per edge: $X=\operatorname{Binomial}(F, 1-1 / q)$

$$
\begin{aligned}
E \phi(e)=\sum_{i=0}^{F-1} & -i P(X=i)+E(Z-F+1) P(X=F) \\
& =-\sum_{i=0}^{F} i P(X=i)+E(Z+1) P(X=F)=-F\left(1-\frac{1}{q}\right)
\end{aligned}
$$

Fixation when $F \leq c q-$ survival of the blockades

How many blockades required to absorb all the active particles?
Each active particle is assigned a weight of -1
Number of collisions to break a blockade: $Z=$ Geometric with mean $q-1$

$$
\phi(e)=\left\{\begin{array}{cl}
-i & \text { if there are } i \text { active particles on edge } e \text { at time } 0 \\
Z-(F-1) & \text { if there is a blockade at edge } e \text { at time } 0
\end{array}\right.
$$

Fixation whenever $E \phi(e)>0$
Number of particles per edge: $X=\operatorname{Binomial}(F, 1-1 / q)$

$$
\begin{aligned}
E \phi(e)=\sum_{i=0}^{F-1} & -i P(X=i)+E(Z-F+1) P(X=F) \\
& =-\sum_{i=0}^{F} i P(X=i)+E(Z+1) P(X=F)=-F\left(1-\frac{1}{q}\right)+q\left(1-\frac{1}{q}\right)^{F}
\end{aligned}
$$

Flux when $q=2$ - extinction of the blockades

Flux when $q=2$ - extinction of the blockades

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually

no interaction since time 0

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually
no interaction since time 0

no interaction since time 0

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually

no interaction since time 0

If different parities, left or right blockade destroyed eventually

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually

no interaction since time 0

If different parities, left or right blockade destroyed eventually
By symmetry, left blockade destroyed before right blockade with probability $1 / 2$

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually

no interaction since time 0

If different parities, left or right blockade destroyed eventually
By symmetry, left blockade destroyed before right blockade with probability 1/2
If same parity or right blockade destroyed first then ...

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually
no interaction since time 0

no interaction since time 0

If different parities, left or right blockade destroyed eventually
By symmetry, left blockade destroyed before right blockade with probability 1/2
If same parity or right blockade destroyed first then ...

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually
no interaction since time 0

no interaction since time 0

If different parities, left or right blockade destroyed eventually
By symmetry, left blockade destroyed before right blockade with probability 1/2
If same parity or right blockade destroyed first then ...

Flux when $q=2$ - extinction of the blockades

When $q=2$ only annihilating events so the parity is preserved

Different parities imply that one of the two blockades is destroyed eventually
no interaction since time 0

no interaction since time 0

If different parities, left or right blockade destroyed eventually
By symmetry, left blockade destroyed before right blockade with probability 1/2
If same parity or right blockade destroyed first then ...

References

- Axelrod, R. (1997). The dissemination of culture: a model with local convergence and global polarization. J. Conflict. Resolut. 41, 203-226.
- Lanchier, N. (2012). The Axelrod model for the dissemination of culture revisited. Ann. Appl. Probab. 22 860-880.
- Lanchier, N. and Schweinsberg, J. (2012). Consensus in the two-state Axelrod model. Stochastic Process. Appl. 122 3701-3717.
- Lanchier, N. and Scarlatos, S. (2013). Fixation in the one-dimensional Axelrod model. To appear in Ann. Appl. Probab.

