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Scientific Goals

Long-term collaboration between NCSU and UPF
Monitor cell division and differentiation

Assess polyfunctionality
Investigate immunospecific extracellular signaling pathways
Identify correlated and (ideally) causal relationships
between immune mechanisms

Quantitative measure of ‘dynamic responsiveness’

Link observed (cellular) behaviors to clinical outcomes;
improve clinical outcomes

The ‘central problem in immunology’ (according to G.
Bocharov): to understand the ‘cellular and molecular
mechanisms that control the ability of the immune system
to mount a protective response against pathogen-derived
foreign antigens, but avoid a pathological response to
self-antigens’

H.T. Banks CFSE Modeling
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Persistent Infections

Trade-off between immune protection and immunopathy can
lead to persistent infection

(A. Meyerhans)

H.T. Banks CFSE Modeling
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Persistent Infections (cont’d)

(A. Meyerhans)

‘Dynamic equilibrium’ between host immune response and
microbe expansion

Applications in HIV, HCV, TB

Open questions:
Characterization of set point
Outcome of perturbations, modification for host benefit

H.T. Banks CFSE Modeling
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Goals

Observations:

Clinical outcome believed to be strongly influenced by timing and
magnitude of ‘clonal expansion’

CFSE (intracellular dye) + flow cytometry = powerful new tool for
tracking cell division

Analysis of data:

Develop a mathematical model for CFSE data

Link cell counts to measures of proliferation/death rates

Population doubling time; cell cycle time
Cell viability

Applications:

Analyze experimental and biological variability

Optimal experimental design

Lab experiments (more in a moment...)

H.T. Banks CFSE Modeling
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CFSE Data Set
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Data Overview

(A. Meyerhans)
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CFSE Labeling (Lyons and Parish, 1994)

Cells cultured with CFDA-SE (carboxyfluorescein diacetate
succinimidyl ester) then washed

CFDA-SE becomes protein-bound and fluorescent CFSE
(the fluorescent dye carboxyfluorescein succinimidyl ester)

Dye split between daughter cells at division

Dye naturally turns over/degrades (very slowly)

Fluorescence Intensity (FI) of CFSE measured via flow
cytometry

FI linear with dye concentration ⇒ FI ∝ mass

Several advantages over other dyes/techniques

H.T. Banks CFSE Modeling
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CFSE Labeling (Lyons and Parish, 1994)

(C. Parish, Fluorescent dyes for lymphocyte migration and proliferation studies, Immunology and Cell Biol. 77

(1999), 499–508.)
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CFSE Data Set
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Goals of Modeling

Cellular ‘Dynamic Responsiveness’
Link cell counts with proliferation/death rates

Population doubling time
Cell viability
Biological descriptors (cell cycle time, etc.)

Uncertainty Quantification...
... in the experimental procedure
... for estimated rates/etc

Analyze cell differentiation and division-linked changes

Investigate immunospecific extracellular signaling
pathways

Comparison among donors/cell types/disease progression

H.T. Banks CFSE Modeling
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Traditional Approach (Gett and Hodgkin)

Traditional ‘semi-quantitative analysis’ pioneered by Gett
and Hodgkin et al. (2000)
Fit data with gaussian curves to determine approximate
cells per generation

(A.V. Gett and P.D. Hodgkin, A cellular calculus for signal integration by T cells, Nature Immunology 1 (2000),

239–244.)
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Traditional Approach (cont’d)

Gett-Hodgkin method quick, easy to implement, useful
comparisons between data sets (e.g. stimulation
conditions)

Compatible with ODE, DDE models; ‘indirect fitting’ for
parameter estimation
Generalizations, extensions, and various other modeling
efforts

Smith-Martin model (with generalizations)
Cyton model
Branching process models

H.T. Banks CFSE Modeling
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Label-Structured Model

All previous work with cell numbers determined by
deconvolution
Alternatively, we propose to fit the CFSE histogram data
directly

Capture full behavior of the population density
No assumption on the shape of CFSE uptake/distribution

Histogram presentation of cytometry data makes
structured population models a natural choice (as in age,
size, etc) except here structure label is “CFSE content or
intensity”

Key ideas first formulated by Luzyanina, Bocharov, et al.,
2007
FI (or log FI) ⇔ Division Number

H.T. Banks CFSE Modeling
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Label-Structured Model (cont’d)

This model must account for (Luzyanina et al., 2007):

Slow decay of CFSE FI over time

Dilution of CFSE as cells divide

Asynchronous division times
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Rate of Label Decay

(C. Parish, Fluorescent dyes for lymphocyte migration and proliferation studies, Immunology and Cell Biol. 77

(1999), 499–508.)
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‘Biphasic Decay’
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‘Translated Coordinate’ (Banks et al, 2010)

While the structure variable z does correlate with division
number, the ‘translated variable’

s(t , z) = z − c
k log 10

(

e−kt − 1
)

has an even stronger correlation.

Follows from the Method of Characteristics

Intuitively, s represents the FI of a cell with a hypothetical
label which does not decay

Change of reference: Eulerian vs Lagrangian coordinates

H.T. Banks CFSE Modeling
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‘Translated Coordinate’ (cont’d)
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Fragmentation Model Summary

Model is capable of precisely fitting the observed data

c, k , xa estimated consistently (as α and β nodes change),
though subject to high experimental variability

‘Translated coordinate’ very strongly correlated with
division number

Time-dependence of the proliferation rate is an essential
feature of the model

Biologically relevant average values of proliferation and
death (in terms of number of divisions undergone) are
easily computable.
But...(Aggregate Data/Aggregate Dynamics)

Still cannot compute cell numbers and cohort rate
parameters
Data overlap affecting estimated rates (?)
Large number of parameters necessary

H.T. Banks CFSE Modeling
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Best-fit, AIC-selected results: Model A5B5Dist
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Cell Numbers
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Label Structure Fragmentation Model-Model 1

CFSE label dynamics can be described by the fragmentation
equation

∂n(t , x)
∂t

− ce−kt ∂[(x − xa)n(t , x)]
∂x

= −(α(t , x) + β(t , x))n(t , x)χ[xa ,x∗]4α(t ,2x − xa)n(t ,2x − xa)

n(0, x) = Φ(x)

n(t , xmax) = 0

v(t , xa)n(t , xa) = 0. (1)

where n(t , x) is the structured population density (cells per unit
FI) at time t and measured FI x and the advection term (with
parameters c and k) represents the Gompertz decay process
for decrease in FI resulting from intracellular turnover of CFSE.

H.T. Banks CFSE Modeling
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Compart. Models with Generation Structure-Model 2

A model can be reformulated with distinct compartments for
each generation. The resulting model is a system of partial
differential equations

∂n0

∂t
− ce−kt(x − xa)

∂n0

∂x
=− (α0(t) + β0(t) − ce−kt)n0(t , x)

∂n1

∂t
− ce−kt(x − xa)

∂n1

∂x
=− (α1(t) + β1(t) − ce−kt)n1(t , x)

+ R1(t , x)
...

∂nimax

∂t
− ce−kt(x − xa)

∂nimax

∂x
=− (βimax

(t) − ce−kt)nimax
(t , x)

+ Rimax
(t , x), (2)

H.T. Banks CFSE Modeling
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Compartmental Models-Model 2

Here ni(t , x) is structured population density for cells having
undergone i divisions. The recruitment terms describe the
symmetric division of CFSE upon mitosis. Given by
Ri(t , x) = 4αi−1(t)ni−1(t ,2x − xa). Boundary and initial
conditions same as in (1).

Observe that, because the number of divisions undergone has
now been explicitly identified by the subscripted generation
number, no longer necessary for division and death rates to
depend upon measured fluorescence intensity.

H.T. Banks CFSE Modeling
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Compartmental Models-Model 3

IDEA: Combine compartmental models with probabilistic
structures (so-called Cyton Models) for cell division and death
Let Ni(t), 0 ≤ i ≤ imax represent the number of cells having
undergone i divisions at time t . Assume there are N0 cells in
the population at t = 0. In its simplest form, the cyton model
relates the number of cells in the population to the number of
cells which divide and die in a unit of time,

N0(t) = N0 −
∫ t

0

(

ndiv
0 (s)− ndie

0 (s)
)

ds

Ni(t) =
∫ t

0

(

2ndiv
i−1(s)− ndiv

i (s)− ndie
i (s)

)

ds, (3)

where ndiv
i (t) and ndie

i (t) indicate the numbers per unit time of
cells having undergone i divisions that divide and die,
respectively, at time t .

H.T. Banks CFSE Modeling
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Compartmental Models-Model 3

Let φ0(t) and ψ0(t) be probability density rate functions (in units
1/time) for the times to division and death, respectively, for an
undivided cell. Let F0, the initial precursor fraction, be the
fraction of undivided cells which would hypothetically divide in
the absence of any cell death. It follows that

ndiv
0 (t) = F0N0

(

1 −
∫ t

0
ψ0(s)ds

)

φ0(t)

ndie
0 (t) = N0

(

1 − F0

∫ t

0
φ0(s)ds

)

ψ0(t). (4)

H.T. Banks CFSE Modeling
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Compartmental Models-Model 3

Can define probability density rate functions φi(t) and ψi(t) for
times to division and death, respectively, for cells having
undergone i divisions, as well as the progressor fractions Fi of
cells which would complete the i th division in the absence of
cell death. Then the numbers per unit time of dividing and
dying cells are computed as

ndiv
i (t) = 2Fi

∫ t

0
ndiv

i−1(s)
(

1 −
∫ t−s

0
ψi(ξ)dξ

)

φi(t − s)ds

ndie
i (t) = 2

∫ t

0
ndiv

i−1(s)
(

1 − Fi

∫ t−s

0
φi(ξ)dξ

)

ψi(t − s)ds. (5)

H.T. Banks CFSE Modeling
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Compartmental Models-Model 4

Allgöwer, et al., have proposed a model which is structured by
the fluorescence intensity resulting from the mass of CFSE
within the cell, i.e., intracellular label ignoring autofluorescence.
This leads to a system for the mass of fluorescence n(t , x)
described by the system of equations

∂n0

∂t
− ce−kt ∂[xn0]

∂x
=− (α0(t) + β0(t))n0(t , x)

...

∂ni

∂t
− ce−kt ∂[xni ]

∂x
=− (αi(t) + βi(t))ni (t , x) + 4αi−1(t)ni−1(t ,2x)

(6)
...

with boundary and initial conditions as in (1) and (2).

H.T. Banks CFSE Modeling
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Compartmental Models-Model 4

The major advantage of formulating the model in terms of mass
of FI is the very simple form of the model solution. The solution
to the model (6) can be written as

ni(t , x) = Ni(t)n̄i (t , x) (7)

for all i . In this representation the functions Ni(t) satisfy the
weakly coupled system of ordinary differential equations

dN0

dt
=− (α0(t) + β0(t))N0(t)

dN1

dt
=− (α1(t) + β1(t))N1(t) + 2αi−1(t)Ni−1(t) (8)

...

with initial conditions N0(0) = N0, Ni(0) = 0 for all i ≥ 1.

H.T. Banks CFSE Modeling
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Compartmental Models-Model 4

The functions n̄i(t , x) each satisfy the partial differential
equation

∂n̄i(t , x)
∂t

− ce−kt ∂[xn̄i(t , x)]
∂x

= 0 (9)

with initial condition

n̄i(0, x) =
2iΦ(2ix)

N0
.

Note that, by definition,

N0 =

∫

∞

0
Φ(ξ)dξ.

H.T. Banks CFSE Modeling
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Compartmental Models-Model 4

Let ñi(t , x̃) be the structured density relative to the measured
fluorescence (x̃ is related to x by the addition of cellular
autofluorescence). To account for autofluorescence and
because autofluorescence may vary from cell to cell in the
population, this is most accurately treated by computing the
convolution integral

ñ(t , x̃) =
∫

∞

0
n(t , x)p(t , x̃ − x)dx , (10)

where p(t , x̃) is (for each fixed time t) a probability density
function describing the distribution of autofluorescence in the
population.

H.T. Banks CFSE Modeling
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Compartmental Models-Model 4

So finally we consider the system of equations

∂n0

∂t
− ce−kt ∂[xn0]

∂x
=
(

ndiv
0 (t)− ndie

0 (t)
)

n̄0(t , x)

∂n1

∂t
− ce−kt ∂[xn1]

∂x
=
(

2ndiv
0 (t) − ndiv

1 (t) − ndie
1 (t)

)

n̄1(t , x)

(11)
...

where the definitions of ndiv
0 (t), ndie

0 (t), ndiv
i (t) and ndie

i (t) are
given in Equations (4) - (5).

H.T. Banks CFSE Modeling
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Compartmental Models-Model 4

This model, which is based on simple mass balance, can be
solved by factorization (7) as before; the label densities n(t , x)
are readily computed according to Equation (9), and the cell
numbers are now provided by the cyton model as discussed
above. Thus the new model (11) is capable of accurately
describing the evolving generation structure of a population of
cells while also accounting for the manner in which the CFSE
profile of the population changes in time. The model is easily
relatable to biologically meaningful parameters (times to
division and death) and can be solved efficiently so that it is
eminently suitable for use in an inverse problem.

H.T. Banks CFSE Modeling
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The Statistical Model

Links the mathematical model to the data

Implications for estimation procedure (Least squares vs.
weighted least squares)

N j
k = I[ñ](tj , z

j
k ; θ0) + (I[ñ](tj , z

j
k ; θ0))

γEkj

Early efforts using constant variance (CV) model,
Var(Ekj) = σ2

0 (⇒ Absolute Error: Ykj = model + Ekj )

Also tried constant coefficient of variance (CCV),
Var(Ekj) = σ2

0I[ñ](tj , z
j
k ; θ0)

2 (⇒ Relative
Error:Ykj = model × (1 + Ekj))

Found in between error most closely described data,
Var(Ekj) = σ2

0I[ñ](tj , z
j
k ; θ0) (⇒ SquareRoot Error:

Ykj = model +
√

model × Ekj )

H.T. Banks CFSE Modeling
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Residual Plots γ = 0 vs. γ = 1
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Residual Plots

0 0.5 1 1.5 2
x 10

4

−5000

0

5000
Residuals vs Model

Model Solution

R
es

id
ua

ls

0 0.5 1 1.5 2
x 10

4

−40

−30

−20

−10

0

10

20

30

40
Modified (sqrt) Residuals vs Model

Model Solution

M
od

ifi
ed

 (
sq

rt
) 

R
es

id
ua

ls
N j
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Least Squares Estimation

Define

qWLS = arg min
q∈Q

J(q; {λj})

= arg min
q∈Q

∑

j ,k

(

λj I[n̂](tj , zk ;q)− N j
k

)2

w j
k

where

w j
k =







λj
B
b̂j

I[n̂](tj , z
j
k ;q0), I[n](tj , z

j
k ;q0) > I∗

λj
B
b̂j

I∗, I[n](tj , z
j
k ;q0) ≤ I∗

.

Then qWLS is a consistent estimator of q0 (Banks, Kenz,
Thompson, 2012)
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Fit to Data
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Fit to Data (cont’d)
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Fit to Data (cont’d)
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Fit to Data (cont’d)
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Fit to Data (cont’d)
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Fit to Data, CD8 Cells
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Cytons
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Generation Structure
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Experimental Extensions

Account for multiple cell cultures present in PBMC culture

Antigen-specific stimulation

Effects of cryopreservation

Extracellular signaling, knockout experiments

In vitro vs in vivo differences

Linking to immune process models

Analyze Proliferation in Diseased vs Healthy cells
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