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Motivation for studying a suspension of self-propelled micro-swimmers

Current questions of interest about micro-swimmers:

Microscopic scale : How do they swim? What determines their trajectory? Can we control them?

Macroscopic scale : Collective motion? Pattern formation? Property of the complex fluid made
by the suspension?

Examples of self-propelled flagellated micro-swimmers

Escherichia Coli Bacilus Subtilis
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One example of problem of interest : Rheology of the bacterial suspension

Experimental observation

The Effective Viscosity of a fluid containing self-propelled swimming bacteria is smaller,
compared to the Effective Viscosity of a fluid containing dead bacteria.

Why is it important? Small viscosity ≈ Better motility of macroscopic objects

Ingredients needed in models predicting decrease of Effective viscosity :
Self-propulsion + Elongated body + Random tumbling (Haines et al., 2009)
Self-propulsion + Elongated body + Hydrodynamic interactions + pair-wise interactions (Ryan et
al., 2013)

However : A viscosity reduction has been measured without noticeable tumbling
(Sokolov/Aronson et al. (2007,09)) for dilute suspensions of Bacillus Subtilis.

A model which predicts the decrease of viscosity in dilute suspension without tumbling is
needed.
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The flagellum as a key ingredient in the viscosity decrease

A bacterium is composed of a body + several flagella distributed over the surface of its body,
which allow the bacterium to swim (forward movement).

Until now, at the microscopic level, swimmers are modeled as rigid ellipsoid with a propulsion
force concentrated somewhere behind the body.

F

One hypothesis is that the geometry and physical properties of the flagellum may affect the
trajectories, and thus the rheological properties of a bacterial suspension.

To check this hypothesis, we develop a more accurate model of the flexible flagellum, and see
how it affects the evolution of trajectories and orientation of the bacterium.
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Behaviour of an ellipsoid in a planar shear flow : Jeffery’s equation

L l

a =
L2

l2 + L2
, b =

l2

l2 + L2

Jeffery Equation:







dθ(t)

dt
= γ

[

a sin2 θ(t) + b cos2 θ(t)
]

,

θ(0) = 0.

Solution:

θ(t) = Arctan

(

b
√
ab

tan(
√
abt)

)

Fast rotation when perpendicular to the flow
Slow rotation when parallel to the flow
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Beyond the model : How do bacteria swim?

Flagellated organisms such as bacteria
utilize the fluid drag anisotropy of flagella in
order to propel themselves through a
viscous fluid.

Bacteria such as B. subtilis actuate passive helical filaments using rotary motors embedded
in the cell walls, and whose rotation gives rise to propulsion (as a propeller).
The force exerted by the flagellum propell the swimmer which moves forward (pushers) or
backward (pullers) and modifies the velocity flow around the swimmer, which slows down
the swimmer (drag force).

The motor is driven by protons flowing from the outside to
the inside of the cell creating a transmembrane electrical
potential.
CW and CCW modes alternate.
When the motors turn CW, the flagellar filaments work
independently, and the cell body moves erratically :
tumble. When the motors turn CCW, the filaments rotate
in parallel in a bundle that pushes the cell body steadily
forward : run.
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Different models of flagellated swimmers for different purposes (Non
exhaustive history)

For the issue of viscosity in shear flows or mixing enhancement: Ellipsoid, with a point force
directed radially outward from the body Hatwalne (04), Haines/Berlyand/Aranson (08),
Riffer/Zimmel (07), Decoene (10).

For the issue of collective behavior : Self locomoting rod Saintillan (07). Force dipole model,
with size and shape, Ryan/Berlyand/Sokolov/Aranson (12), Dresher (11) .

For understanding the dynamics of a bacterium in a fluid :

Idealized sphere in a streaming fluid Bretherton/ Rotchild (61), Kessler (85).

Relationship between angular and translational velocities and force for an helix model
Purcell (97), extended to superhelices by Jung et al (07).

Introduction of a precise model of the helical flagellum to adress the question on the
effect of chiral forces on the dynamic in a shear flow Marcos (11) .

Elastic plate equation to model the elastic flagellum : Hines/Blum (78), Stone (06)
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Description of the model
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The microswimmer model

y

x

N0

θ0
u

θ (s)

τ
n

d

l

L
y

x

The 2D swimmer is composed of a rigid body, rigidly attached to a flexible flagellum.
The swimmer in plunged in a given flow u.

Along the flagellum is generated a force of total intensity F , that is transmitted to the body, and
which is responsible for the swimmer propulsion.
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The bacterium is plunged in flow (Planar shear flow or Poiseuille flow)

The flagellum

Balance of force [Physical framework : Resistive force theory]

∂

∂s

(

Λτ + Nn
)

=ζf

(

vτ−u(y) cos θ
)

τ + αζf

(

vn+u(y) sin θ
)

n− Fτ.

Balance of torque [Physical hypothesis : Flagellum is inextensible]

N(s) = −Kb
∂2θ

∂s2
(s).

Boundary conditions [Physical hypothesis : The flagellum end is free]

∂θ

∂s
(L, t) =

∂2θ

∂s2
(L, t) = Λ (L, t) = 0,

The body : [Physical hypothesis : The body is rigid]

dθ0

dt
= −γ̇

(

l2

l2 + d2
sin2 θ0 +

d2

l2 + d2
cos2 θ0

)

+
l

2ζr
N0,

Interface conditions : [Physical hypothesis : Attachment is rigid]

θ (0, t) = θ0 (t) , Λ (0, t) = Λ0 (t) ,

vτ (0) = vτ,0, vn(0) = vn,0 +
l

2

dθ0

dt
.
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Description of the model : The body

Parameter: β =
l2

l2 + d2
.

Variables:
Head angle : θ0(t)

Head y -component: y0(t)
y

x

N0

θ0
u

θ (s)

τ
n

d

l

L
y

x

The equations:























dθ0

dt
(t) = −u′(y0(t))

(

(1− β) sin2 θ0(t) + β cos2 θ0(t)
)

+
3L

l
krN0(t),

dy0

dt
(t) = krΛ0(t) sin(θ0(t)) +

kr

α
N0(t) cos(θ0(t)),

y0(0) = y0,in, θ0(0) = θ0,in.
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Description of the model : The flagellum

Parameters :
Bending stiffness Kb

Propulsion force F

Variables:

Angle of the flagellum : θ(s, t)

Tangential intenal stress : Λ(s, t)

y

x

N0

θ0
u

θ (s)

τ
n

d

l

L
y

x

The equations : Angle


































∂θ

∂t
= −

Kb

α

∂4θ

∂s4
+ (

1

α
Λ + Kb(

∂θ

∂s
)2)

∂2θ

∂s2
+ (

α + 1

α

∂Λ

∂s
+ Fp)

∂θ

∂s
− u′(y) sin(θ)2,

∂θ

∂s
(1, t) =

∂2θ

∂s2
(1, t) = 0,

θ(0, t) = θ0(t), −Kb
∂2θ

∂s2
(0, t) = N0(t)

Tangential intenal stress






∂2Λ

∂s2
=

1

α
Λ(

∂θ

∂s
)2 − Kb(

∂2θ

∂s2
)2 − u′(y) sin(θ) cos(θ) −

(α + 1)

α
Kb

∂3θ

∂s3
∂θ

∂s
,

Λ(1, t) = 0, Λ(0, t) = Λ0(t)
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Description of the model : Interface between body and flagellum

Parameters :
Bending stiffness Kb

Propulsion force F

Variables:

Tangential intenal stress : Λ0(t)

Normal intenal stress : N0(t)
y

x

N0

θ0
u

θ (s)

τ
n

d

l

L
y

x

The equations (Velocity equality) :
Tangential component :

krΛ0 =
α

L

(

u(y(0)) − u(yh)
)

cos(θ0) +
∂Λ

∂s
+ F −

∂θ

∂s
N0, s = 0, (1)

Normal component :

( α

αh
+

3α

2

)

krN0 =−
α

L
sin(θ0)

(

u(y(0)) − u(yh)
)

+
αl

2L
u′(y)

[

(1 − β)sin2(θ0) + βcos2(θ0)
]

+
[

− Kb
∂3θ

∂s
+

∂θ

∂s
Λ
]

, s = 0,

(2)
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Dynamic of the swimmer in a planar shear flow
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What we want to capture

Planar shear flow u(y) = γy

What we want to capture

1 The time evolution of the swimmer orientation θ0(t), compared to the
orientation given by Jeffery orbit.

dθ0

dt
(t) = −γ

(

(1− β) sin2 θ0(t) + β cos2 θ0(t)
)

+
3L

l
krN0(t),

2 The shape of the flagellum.
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Asymptotic analysis - Method

Identification of the behavior for large Kb (rigid flagellum)

We write the asymptotic expansions



































θ(s, t) = θ0(s, t) +
1

Kb
θ1(s, t), θ0(t) = θ00(t) +

1

Kb
θ10(t),

Λ(s, t) = Λ0(s, t) +
1

Kb
Λ1(s, t), Λ0(t) = Λ0

0(t) +
1

Kb
Λ1
0(t),

N0(t) = N0
0 (t) +

1

Kb
N1

0 (t),

Plug into the non-linear system, identify the term of same order to get an equation on θ00.

To refine the result, compute the corrector θ10 .

Resonance appears : the asymptotic expansion does not converge.
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Asymptotic analysis - Two-time scale method

Identification of the behavior for large Kb (rigid flagellum).

Introduce a small time scale τ =
t

Kb
.

Write the asymptotic expansions



































θ(s, t, τ) = θ0(s, t, τ) +
1

Kb
θ1(s, t, τ), θ0(t, τ) = θ00(t, τ) +

1

Kb
θ10(t, τ),

Λ(s, t, τ) = Λ0(s, t, τ) +
1

Kb
Λ1(s, t, τ), Λ0(t, τ) = Λ0

0(t, τ) +
1

Kb
Λ1
0(t, τ),

N0(t, τ) = N0
0 (t, τ) +

1

Kb
N1

0 (t, τ),

By identifying the terms of order 0, we obtain the modified Jeffery’s equation:











∂θ00(t, τ)

∂t
= A sin2 θ00(t, τ) + B cos2 θ00(t, τ),

θ(0, τ) = ?, Given by order 1.

with A and B determined by the geometrical and physical parameters of the model.
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Asymptotic analysis - Two-time scale method

The equation on the corrector θ1
0 is

(∂θ00
∂τ

+
∂θ1

0

∂t

)

= Cθ
1
0 sin(2θ

0
0) + C1 sin(2θ

0
0) + C2 sin(2θ

0
0) cos(2θ

0
0) + CsF cos(2θ00),

where C1,C2 and Cs < 0 are constants depending on the geometrical parameters.

Secular term : CsF cos(2θ00).

To prevent any resonance to appear, we impose :

∂θ00
∂τ

= CsFxdf cos(2θ
0
0(t, τ)).

The equations for order 0 thus are :



























∂θ00
∂t

(t, τ) = A sin2 θ00(t, τ) + B cos2 θ00(t, τ),

∂θ00
∂τ

(t, τ) = CsF cos(2θ00(t, τ)),

θ00(0, 0) = 0.
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Asymptotic analysis - Result

Modified Jeffery equation :
dθ00
dt

= −(1− b) sin2 θ0 − b cos2 θ0

In the limit Kb = +∞ the evolution of the bacterial body
angle is given asymptotically by

θ00(t) = arctan

[
√

b

1− b
tan

(

√

(1 − b)bt

(

1−
c

Kbb

)

)]

,

0
0

0.5

1

1.5

2

2.5

 

 

Without flagellum
With flagellum

π/2 π 3π/2 2π

where b ≤ β 1− b ≥ 1− β, c < 0.

As β <
1

2
, it means that

In regions where the ellipsoidal body rotates fast, the flagellum makes it rotate faster,

In regions where the ellipsoidal body rotates slow, the flagellum makes it rotate slower.

Proposition

In a planar shear flow, the trajectories of flagellated swimmers are periodic. The period is
determined by the elasticity of the flagellum: the softer the flagellum, the smaller the period.
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Numerical result

About the numerical scheme :

It is shown to be robust, convergent, and gives the right solution on simple basal cases.
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Asymptotic analysis - Result - The shape of the flagellum

Shape of the swimmer for different body orientations :

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

The flagellum is shaped by the flow (prevails for θ0 =
π

2
) and by the body

rotation (prevails for θ0 = 0),
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Dynamic of the swimmer in a Poiseuille flow
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Previous work in Poiseuille flow : Model studied by Zottl and Stark (2012)

Rigid self-propelled ellipsoid plunged in a Poiseuille flow.
y -coordinate of the body : y0(t), angle of the body θ0(t)

d
l

y0

y

x
θ0

F















dy0(t)

dt
= −F sin(θ0(t)), y0(0) = yc,0,

dθ0(t)

dt
= −2py0(t)

(

(1− β) sin2 θ0(t) + β cos2 θ0(t)
)

, θ0(0) = θ00.

Result of Zottl-Stark : Trajectories are periodic.
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The structure of the dynamic















dy c(t)

dt
= krΛ0(t) sin(θ0(t))+

kr

αh
N0(t) cos(θ0(t)), y c(0) = y c0 ,

dθ0(t)

dt
= −2py c(t)

(

(1− β) sin2 θ0(t) + β cos2 θ0(t)
)

+
3L

l
krN0(t),

where N0 is given by solving

BKb
(N0, θ0, y

c) = 0.

N0 = 0 : No flagellum - Previous result

B+∞(N0, y
c , θ0) = 0 → N0 = B−1(y c , θ0) : Rigid flagellum -

Asymptotic analysis

BKb
(N0, yc , θ0) = 0 : General case - Numerical analysis
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Movie
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Trajectory in Poiseuille flow for large Kb - Numerics

−20

−15

−10

−5

0

fluid
y

x

x=0x ≈ −10−4x ≈ −5.10−4x ≈ −10−6x large

Numerical Observation

In large time, the swimmer converges to the centerline of the channel and orients against the flow.
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Stability of the stationary state in the approximation Kb = ∞

Proposition

The state [y = 0, θ = π] is linearly stable, whereas [y = 0, θ = 0] is not.

The linearized system around the stationary state [y = 0, θ = π] :















dθ0(t)

dt
= −2py(t) + 3N0(t),

dy(t)

dt
=

Fp cos(π)

3
θ0(t) +

cos(π)

4
N0(t),

where N0 is asymptotically determined by

N0 = −
1

3

(dθ0

dt
+ βpy

)

.

A =





0 −2p
Fp cos(π)

3
0





Magali Tournus (PSU) Effect of the flagellum 28 / 34



Heuristics (large Kb) - Why does the swimmer reaches the center

Two mechanisms are responsible for the convergence toward the center

The rigidity of the flagellum tends move the center of mass of the swimmer,

WALL

CENTER OF THE CHANNEL

HIGH SHEAR RATE

LOW SHEAR RATE

high vertical displacement

small vertical displacement

The propulsion force amplifies this phenomenon

Magali Tournus (PSU) Effect of the flagellum 29 / 34



Non-monotonic behaviour depending on the bending stiffness

Numerical Observation

For Kb = 20 ( realistic value for B.Subtilis is Kb = 30 ) the self-propelled swimmer no longer
drifts toward the center, but instead converges towards a limit cycle , where the swimmer swings
around the centerline.

0
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Non-monotonic behaviour depending on the bending stiffness

Numerical Observation

For Kb = 20 the self-propelled swimmer no longer drifts toward the center, but instead converges
towards a limit cycle , where the swimmer swings around the centerline. When further decreasing
the bending stiffness (Kb = 10), the behavior is again similar to Kb = 30. This suggests that the
behavior of the system is very complex and highly non trivial.
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The buckling effect

The coefficient in front of the second order term has the bad sign.



































∂θ

∂t
= −

Kb

α

∂4θ

∂s4
+(

1

α
Λ + Kb(

∂θ

∂s
)2)

∂2θ

∂s2
+ (

α+ 1

α

∂Λ

∂s
+ Fp)

∂θ

∂s
− u′(y) sin(θ)2,

∂θ

∂s
(1, t) =

∂2θ

∂s2
(1, t) = 0,

θ(0, t) = θ0(t), −Kb
∂2θ

∂s2
(0, t) = N0(t)

Euler Buckling of the flagellum is likely to occur.
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Conclusions

Derivation of a non-linear PDE model that couples body motion of a
swimmer with bending flagellum attached to it.

Linear asymptotic analysis of this model for planar shear flow shows how
classical Jeffery orbits change due to the presence of the flagellum.

Numerical analysis in Poiseuille : The model exhibits non periodic
trajectories due to the presence of the flagellum : contrast with
classical periodic trajectories for Jeffery equation
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Perspectives

Open question : Can we understand the convergence toward the steady
state/limit cylce via analysis?

Macroscopic properties: How does the presence of the flagellum modifies the
rheology of the bacterial suspension? (work in progress)

Collective motion : How does the presence of the flagellum modifies pasive
hydro-dynamic interactions?

Derivation of kinetic models including the flagellum at the miroscopic scale?
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