Ground States and Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations

Weizhu Bao

Department of Mathematics & Center for Computational Science and Engineering National University of Singapore Email: <u>bao@math.nus.edu.sg</u> URL: <u>http://www.math.nus.edu.sg/~bao</u> & Beijing Computational Science Research Center (CSRC) URL: <u>http://www.csrc.ac.cn</u>

Outline

Nonlinear Schrodinger / Gross-Pitaevskii equations

Ground states

- Existence, uniqueness & non-existence
- Numerical methods & results

Dynamics

- Well-posedness & dynamical laws
- Numerical methods & results
- **Applications** --- collapse & explosion of a BEC

Extension to rotation, nonlocal interaction & system
Conclusions

NLSE / GPE

The nonlinear Schrodinger equation (NLSE) ---1925 $i \partial_t \psi(\vec{x}, t) = -\frac{1}{2} \nabla^2 \psi + V(\vec{x}) \psi + \beta |\psi|^2 \psi$

- t: time & $\vec{x} \in \mathbb{R}^d$) : spatial coordinate (d=1,2,3)
 - $\psi(\vec{x},t)$: complex-valued wave function
 - $V(\vec{x})$: real-valued external potential
 - $oldsymbol{eta}$: dimensionless interaction constant
 - =0: linear; >0(<0): repulsive (attractive) interaction Gross-Pitaevskii equation (GPE) :
 - E. Schrodinger 1925';
 - E.P. Gross 1961'; L.P. Pitaevskii 1961'

Model for BEC

Bose-Einstein condensation (BEC):

- Bosons at nano-Kevin temperature
- Many atoms occupy in one obit -- at quantum mechanical ground state
- Form like a `super-atom', New matter of wave --- fifth state
- Theoretical prediction S. Bose & E. Einstein 1924'
- Experimental realization JILA 1995
- 2001 Noble prize in physics
 - E. A. Cornell, W. Ketterle, C. E. Wieman
- Mean-field approximation
 - Gross-Pitaevskii equation (GPE) :
 - E.P. Gross 1961'; L.P. Pitaevskii 1961'

BEC@ JILA

Laser beam propagation

Nonlinear wave (or Maxwell) equations
 Helmholtz equation – time harmonic
 In a Kerr medium
 Paraxial (or parabolic) approximation -- NLSE

Other applications

In plasma physics: wave interaction between electrons and ions
– Zakharov system, …..

- In quantum chemistry: chemical interaction based on the first principle
 Schrodinger-Poisson system
- **In materials science**:
 - First principle computation
 Semiconductor industry
 - Semiconductor industry
- In nonlinear (quantum) optics
 In biology protein folding
- In superfluids flow without friction

Conservation laws

$$i \partial_t \psi(\vec{x}, t) = -\frac{1}{2} \nabla^2 \psi + V(\vec{x}) \psi + \beta |\psi|^2 \psi$$

 $\forall Time symmetric: t \rightarrow -t \& take conjugate \Rightarrow unchanged!!$ Time transverse (gauge) invariant $V(\vec{x}) \rightarrow V(\vec{x}) + \alpha \Rightarrow \psi \rightarrow \psi e^{-i\alpha t} \Rightarrow \rho = |\psi|^2$ --unchanged!! Mass conservation $N(t) := N(\psi(\bullet, t)) = \int |\psi(\vec{x}, t)|^2 d\vec{x} = \int |\psi(\vec{x}, 0)|^2 d\vec{x} = 1, \quad t \ge 0$ Energy conservation $E(t) := E(\psi(\bullet, t)) = \int_{0}^{1} \left[\frac{1}{2} |\nabla \psi|^{2} + V(x) |\psi|^{2} + \frac{\beta}{2} |\psi|^{4} \right] d\vec{x} = E(0), \quad t \ge 0$

bispersive

Stationary states

 $i \partial_t \psi(\vec{x}, t) = -\frac{1}{2} \nabla^2 \psi + V(\vec{x}) \psi + \beta |\psi|^2 \psi$ **Stationary states (ground & excited states)** $\psi(\vec{x}, t) = \phi(\vec{x}) e^{-it\mu}$

W Nonlinear eigenvalue problems: Find (μ, ϕ) s.t.

$$\mu \phi(\vec{x}) = -\frac{1}{2} \nabla^2 \phi(\vec{x}) + V(\vec{x}) \phi(\vec{x}) + \beta |\phi(\vec{x})|^2 \phi(\vec{x}), \quad \vec{x} \in \mathbb{R}^d$$

with $\|\phi\|^2 := \int_{\mathbb{R}^d} |\phi(\vec{x})|^2 d\vec{x} = 1$

Time-independent NLSE or GPE:

Eigenfunctions are

– Orthogonal in linear case & Superposition is valid for dynamics!!

Not orthogonal in nonlinear case !!!! No superposition for dynamics!!!

Ground states

The eigenvalue is also called as chemical potential $\mu := \mu(\phi) = E(\phi) + \frac{\beta}{2} \int_{\mathbb{R}^d} |\phi(\vec{x})|^4 d\vec{x}$ – With energy

$$E(\phi) = \int_{\mathbb{R}^d} \left[\frac{1}{2} |\nabla \phi(\vec{x})|^2 + V(\vec{x}) |\phi(\vec{x})|^2 + \frac{\beta}{2} |\phi(\vec{x})|^4 \right] d\vec{x}$$

Ground states -- nonconvex minimization problem

$$E(\phi_g) = \min_{\phi \in S} E(\phi) \qquad S = \left\{ \phi \mid \left\| \phi \right\| = 1, \quad E(\phi) < \infty \right\}$$

Euler-Lagrange equation \rightarrow nonlinear eigenvalue problem

Existence & uniqueness $C_{b} = \inf_{0 \neq f \in H^{1}(\mathbb{R}^{2})} \frac{\|\nabla f\|_{L^{2}(\mathbb{R}^{2})}^{2} \|f\|_{L^{4}(\mathbb{R}^{2})}^{2}}{\|f\|_{L^{4}(\mathbb{R}^{2})}^{4}}$ Theorem (Lieb, etc, PRA, 02'; Bao & Cai, KRM, 13') If potential is confining $V(\vec{x}) \ge 0$ for $\vec{x} \in \mathbb{R}^d$ & $\lim V(\vec{x}) = \infty$ - There exists a ground state if one of the following holds (*i*) $d = 3 \& \beta \ge 0$; (*ii*) $d = 2 \& \beta > -C_h$; (*iii*) $d = 1 \& \beta \in \mathbb{R}$ - The ground state can be chosen as nonnegative $|\phi_g|$, *i.e.* $\phi_g = |\phi_g|e^{i\theta_0}$ – Nonnegative ground state is unique if $\beta \ge 0$ - The nonnegative ground state is strictly positive if $V(\vec{x}) \in L^2_{loc}$ - There is no ground stats if one of the following holds $(i)' \quad d = 3 \& \beta < 0; \quad (ii)' \quad d = 2 \& \beta \le -C_h$

Key Techniques in Proof

Positivity & semi-lower continuous $E(\phi) \ge E(|\phi|) = E(\sqrt{\rho}), \quad \forall \phi \in S \quad \text{with} \quad \rho = |\phi|^2$ The energy $\tilde{E}(\rho) := E(\sqrt{\rho})$ is bounded below if conditons (i) or (ii) or (iii) and strictly convex if $\beta \ge 0$ Confinement potential implies decay at far field The set $S = \left\{ \rho \mid \int_{\mathbb{T}^d} \rho(\vec{x}) d\vec{x} = 1 \& \tilde{E}(\rho) < \infty \right\}$ is convex in ρ **W** Using convex minimization theorem **Won-existence** result $\phi_{\varepsilon}(\vec{x}) = \frac{1}{(2\pi\varepsilon)^{d/4}} \exp\left(-\frac{|\vec{x}|^2}{2\varepsilon}\right), \quad \vec{x} \in \mathbb{R}^d \quad \text{with} \quad \varepsilon \to 0$

Phase transition –symmetry breaking

Attractive interaction with double-well potential in 1D $\mu \phi(x) = -\frac{1}{2}\phi''(x) + V(x)\phi(x) + \beta |\phi(x)|^2 \phi(x), \text{ with } \int_{-\infty}^{\infty} |\phi(x)|^2 dx = 1$

 $V(x) = (x^2 - 1)^2$ & β : positive $\rightarrow 0 \rightarrow$ negative

Excited states

 \checkmark Excited states: $\phi_1, \phi_2, \phi_3, \cdots$ Cpen question: (Bao & W. Tang, JCP, 03'; Bao, F. Lim & Y. Zhang, Bull Int. Math, 06') $\varphi_{g}, \qquad \varphi_{1}, \qquad \varphi_{2},$ $E(\varphi_{e}) < E(\varphi_{1}) \le E(\varphi_{2}) \le \cdots$ $\mu(\varphi_g) < \mu(\varphi_1) \le \mu(\varphi_2) \le \cdots \quad ???????$ Gaps between ground and first excited states $\delta_{\mu}(\beta) := \mu(\phi_1^{\beta}) - \mu(\phi_2^{\beta}) > 0, \qquad \delta_E(\beta) := E(\phi_1^{\beta}) - E(\phi_2^{\beta}) > 0$ Linear case – fundamental gap conjecture (B. Andrews & J. Clutterbuck, JAMS 11') $\delta := \delta_{\mu}(0) = \delta_{E}(0) \ge \frac{3\pi^{2}}{|D|} \qquad \text{on bounded domain } D \subset \mathbb{R}^{d}$ Nonlinear case ????? $\delta_{\mu}(\beta) \ge C_1 > 0, \qquad \delta_{E}(\beta) \ge C_2 > 0, \quad \beta \ge 0????$

Computing ground states

Idea: Steepest decent method + Projection $\partial_t \varphi(\vec{x}, t) = -\frac{1}{2} \frac{\delta E(\varphi)}{\delta \varphi} = \frac{1}{2} \nabla^2 \varphi - V(\vec{x}) \varphi - \beta |\varphi|^2 \varphi, \quad t_n \le t < t_{n+1}$ $\varphi(\vec{x}, t_{n+1}) = \frac{\varphi(\vec{x}, \vec{t_{n+1}})}{\|\varphi(\vec{x}, \vec{t_{n+1}})\|}, \qquad n = 0, 1, 2, \cdots \quad \phi_1 \qquad \phi_1 \qquad \phi_1 \qquad \phi_1 \qquad \phi_1 \qquad \phi_2 \qquad \phi_1 \qquad \phi_1 \qquad \phi_2 \qquad \phi_2 \qquad \phi_1 \qquad \phi_2 \qquad \phi_2 \qquad \phi_1 \qquad \phi_2 \qquad \phi_2 \qquad \phi_2 \qquad \phi_1 \qquad \phi_2 \qquad \phi_2 \qquad \phi_2 \qquad \phi_1 \qquad \phi_2 \qquad \phi_1 \qquad \phi_2 \qquad \phi_2$ $E(\hat{\phi}_1) < E(\phi_0)$ $E(\hat{\phi}_1) < E(\phi_1)$ $E(\phi_1) < E(\phi_0)$?? $\varphi(\vec{x}, 0) = \varphi_0(\vec{x})$ with $\|\varphi_0(\vec{x})\| = 1$. + The first equation can be viewed as choosing $t = i\tau$ in NLS - (For linear case: (Bao & Q. Du, SIAM Sci. Comput., 03') $E_0(\phi(.,t_{n+1})) \le E_0(\phi(.,t_n)) \le \dots \le E_0(\phi(.,0))$ - For nonlinear case with small time step, CNGF

Normalized gradient glow

Idea: letting time step go to 0 (Bao & Q. Du, SIAM Sci. Comput., 03')

$$\partial_{t}\phi(\vec{x},t) = \frac{1}{2}\nabla^{2}\phi - V(\vec{x})\phi - \beta |\phi|^{2}\phi + \frac{\mu(\phi(.,t))}{\|\phi(.,t)\|^{2}}\phi, \quad t \ge 0,$$

 $\phi(\vec{x}, 0) = \phi_0(\vec{x})$ with $\|\phi_0(\vec{x})\| = 1$.

- Mass conservation & energy diminishing $\|\varphi(.,t)\| = \|\varphi_0\| = 1, \quad \frac{d}{d} E(\varphi(.,t))\| = \|\varphi_0\| = 1,$

$$(.,t) \parallel = \parallel \varphi_0 \parallel = 1, \qquad \frac{d}{dt} E(\varphi(.,t)) \le 0, \qquad t \ge 0$$

Numerical discretizations

BEFD: Energy diminishing & monotone (Bao & Q. Du, SIAM Sci. Comput., 03') TSSP: Spectral accurate with splitting error (Bao & Q. Du, SIAM Sci. Comput., 03') BESP: Spectral accuracy in space & stable (Bao, I. Chern & F. Lim, JCP, 06')

Ground states in 1D & 3D

b4

b)

Dynamics

Time-dependent NLSE / GPE

$$i\partial_t \psi(\vec{x},t) = -\frac{1}{2}\nabla^2 \psi + V(\vec{x})\psi + \beta |\psi|^2 \psi, \quad \vec{x} \in \mathbb{R}^d, \quad t > 0$$

- $\psi(\vec{x},0) = \psi_0(\vec{x})$
- Well-posedness & dynamical laws
 - Well-posedness & finite time blow-up
 - Dynamical laws
 - Soliton solutions
 - Center-of-mass
 - An exact solution under special initial data
 - Numerical methods and applications

Dynamics with no potential

 $V(\vec{x}) \equiv 0, \quad \vec{x} \in \mathbb{R}^{d}$ Womentum conservation $J(t) \coloneqq \operatorname{Im}_{\mathbb{R}^{d}} \overline{\psi} \, \nabla \psi \, d\vec{x} \equiv J(0) \quad t \ge 0$ $\operatorname{Dispersion relation} \quad \psi(\vec{x}, t) = Ae^{i(\vec{k} \cdot \vec{x} - \omega t)} \Rightarrow \omega = \frac{1}{2} |\vec{k}|^{2} + \beta A^{2}$ $\operatorname{Soliton solutions in 1D:}$

- Bright soliton $\beta < 0$ ----decaying to zero at far-field $\psi(x,t) = \frac{a}{\sqrt{-\beta}} \operatorname{sech}(a(x-vt-x_0)) e^{i(vx-\frac{1}{2}(v^2-a^2)t+\theta_0)}, x \in \mathbb{R}, t \ge 0$

– Dark (or gray) soliton $eta > 0\,$ -- nonzero &oscillatory at far-field

$$\psi(x,t) = \frac{1}{\sqrt{\beta}} \left[a \tanh(a(x - vt - x_0)) + i(v - k) \right] e^{i(kx - \frac{1}{2}(k^2 + 2a^2 + 2(v - k)^2)t + \theta_0)}, \quad x \in \mathbb{R}, \quad t \ge 0$$

Dynamics with harmonic potential

Wharmonic potential
$$V(\vec{x}) = \frac{1}{2} \begin{cases} \gamma_x^2 x^2 & d = 1 \\ \gamma_x^2 x^2 + \gamma_y^2 y^2 & d = 2 \\ \gamma_x^2 x^2 + \gamma_y^2 y^2 + \gamma_z^2 z^2 & d = 3 \end{cases}$$

 $\begin{aligned} &\overleftarrow{center-of-mass:} \quad \vec{x}_{c}(t) = \int_{\mathbb{R}^{d}} \vec{x} |\psi(\vec{x},t)|^{2} d\vec{x} \\ & \vec{x}_{c}(t) + \operatorname{diag}(\gamma_{x}^{2}, \gamma_{y}^{2}, \gamma_{z}^{2}) \vec{x}_{c}(t) = 0, \quad t > 0 \Rightarrow \text{ each component is periodic} !! \\ & \overleftarrow{c} \text{ An analytical solution if } \quad \psi_{0}(\vec{x}) = \phi_{s}(\vec{x} - \vec{x}_{0}) \\ & \psi(\vec{x},t) = e^{-i\mu_{s}t} \phi_{s}(\vec{x} - \vec{x}_{c}(t)) e^{iw(\vec{x},t)}, \quad \vec{x}_{c}(0) = \vec{x}_{0} \quad \& \Delta w(\vec{x},t) = 0 \\ & \Rightarrow \rho(\vec{x},t) := |\psi(\vec{x},t)|^{2} = |\phi_{s}(\vec{x} - \vec{x}_{c}(t))|^{2} \quad - \text{ moves like a particle} !! \\ & \mu_{s} \phi_{s}(\vec{x}) = -\frac{1}{2} \nabla^{2} \phi_{s} + V(\vec{x}) \phi_{s} + \beta |\phi_{s}|^{2} \phi_{s} \end{aligned}$

Numerical difficulties

$$i \partial_t \psi(\vec{x}, t) = -\frac{1}{2} \nabla^2 \psi + V(\vec{x}) \psi + \beta |\psi|^2 \psi, \quad \vec{x} \in \mathbb{R}^d, \quad t > 0$$

bispersive & nonlinear
with $\psi(\vec{x}, 0) = \psi(\vec{x})$

- with $\psi(\vec{x},0) = \psi_0(\vec{x})$ With $\psi(\vec{x},0) = \psi_0(\vec{x})$ Solution and/or potential are smooth but may oscillate wildly
- Keep the properties of NLS on the discretized level
 - Time reversible & time transverse invariant
 - Mass & energy conservation
 - Dispersion relation
 - In high dimensions: many-body problems

- Design efficient & accurate numerical algorithms
 - Explicit vs implicit (or computation cost)
 - -___Spatial/temporal accuracy, Stability
 - Resolution in strong interaction regime:

 $\beta \gg 1$

Numerical methods

- Different methods
 - Crank-Nicolson finite difference method (CNFD)
 - Time-splitting spectral method (TSSP)
 - Leap-frog (or RK4) + FD (or spectral) methods
- Vine-splitting spectral method (TSSP) $i \partial_t \psi(\vec{x}, t) = (A + B)\psi \quad \text{with } A = -\frac{1}{2}\nabla^2, \quad B = V(\vec{x}) + \beta |\psi|^2$ $\psi(\vec{x}, t_{n+1}) = e^{-i(A+B)\Delta t} \ \psi(\vec{x}, t_n) \approx \begin{pmatrix} e^{-iA\Delta t} e^{-iB\Delta t} \ \psi(\vec{x}, t_n) + O((\Delta t)^2) \\ e^{-iA\Delta t/2} e^{-iB\Delta t} e^{-iA\Delta t/2} \ \psi(\vec{x}, t_n) + O((\Delta t)^3) \\ \dots + O((\Delta t)^5) \end{pmatrix}$

Time-splitting spectral method (TSSP)

For $[t_n, t_{n+1}]$, apply time-splitting technique − Step 1: Discretize by spectral method & integrate in phase space exactly $i \partial_t \psi(\vec{x}, t) = -\frac{1}{2} \nabla^2 \psi$ − Step 2: solve the nonlinear ODE analytically

Use 2nd order Strang splitting (or 4th order time-splitting)

Properties of TSSP

 \bigvee Explicit & computational cost per time step: $O(M \ln M)$ Time symmetric: yes Time transverse invariant: yes **Wass** conservation: yes **b** Stability: yes **W** Dispersion relation without potential: yes Accuracy Spatial: spectral order; Temporal: 2nd or 4th order

W Best resolution in strong interaction regime: $\beta \gg 1$

Interaction of 3 like vortices

Interaction of 3 opposite vortices

Interaction of a lattice

3D collapse & explosion of BEC

Experiment (Donley et., Nature, 01')
Start with a stable condensate (as>0)
At t=0, change as from (+) to (-)
Three body recombination loss

 $\beta = \frac{4\pi N a_s}{1}$

 \mathcal{X}_{c}

 $\frac{\partial}{\partial t}\psi(\vec{x},t) = -\frac{1}{2}\nabla^2\psi + V(\vec{x})\psi + \beta |\psi|^2\psi - i\delta_0\beta^2 |\psi|^4\psi$

Numerical results (Bao et., J Phys. B, 04)

t=2 (ms)

t=4 (ms)

0

t=3 (ms)

t=6 (ms)

2

Jet formation

3D Collapse and explosion in BEC

3D Collapse and explosion in BEC

Extension to GPE with rotation

 $\begin{array}{l} & & \bullet \text{GPE / NLSE with an angular momentum rotation} \\ & & i \,\partial_t \,\psi(\vec{x},t) = \left[-\frac{1}{2}\,\nabla^2 + V(\vec{x}) - \Omega \,L_z + \beta \,|\psi|^2\right]\psi, \quad \vec{x} \in \mathbb{R}^d, \quad t > 0 \\ & & L_z := xp_y - yp_x = -i(x\partial_y - y\partial_x) \equiv -i\partial_\theta, \quad L = \vec{x} \times \vec{P}, \quad \vec{P} = -i\nabla \end{array}$

Wass conservation $N(t) = \int_{\mathbb{R}^d} |\psi(\vec{x}, t)|^2 d\vec{x}$

 $E_{\Omega}(\psi) := \int_{\mathbb{R}^d} \left[\frac{1}{2} |\nabla \psi|^2 + V(x) |\psi|^2 - \Omega \, \overline{\psi} L_z \psi + \frac{\beta}{2} |\psi|^4 \right] d \, \vec{x}$

Vortex @MIT

Ground states

Seiringer, CMP, 02'; Bao, Wang & Markowich, CMS, 05';

- Exists a ground state when $\beta \ge 0 \& |\Omega| \le \min\{\gamma_x, \gamma_y\}$
- Uniqueness when $|\Omega| < \Omega_c(\beta)$
- Quantized vortices appear when $|\Omega| \ge \Omega_c(\beta)$
- Phase transition & bifurcation in energy diagram
- With the second seco

Ground states with different Ω

Ground states of rapid rotation

Ω = 2.0

 $\Omega = 2.6$

 $\Omega = 3.0$

 $\Omega = 3.3$

C.

 $\Omega = 4.0$

 $\Omega = 4.5$

Dynamics – Bao, Du & Zhang, SIAP, 05'; Bao & Cai, KRM, 13';

Vumerical methods $\tilde{\vec{x}} = A(t)^{-1} \vec{x}$ & **A new formulation** $\phi(\tilde{\vec{x}},t) := \psi(\vec{x},t) = \psi(A(t)\vec{x},t)$ – A rotating Lagrange coordinate: $\begin{bmatrix} \cos(\Omega t) & \sin(\Omega t) \\ -\sin(\Omega t) & \cos(\Omega t) \end{bmatrix} \text{ for } d = 2; \quad A(t) = \begin{bmatrix} \cos(\Omega t) & \sin(\Omega t) & 0 \\ -\sin(\Omega t) & \cos(\Omega t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ for } d = 3$ GPE in rotating Lagrange coordinates $i\partial_t \phi(\tilde{\vec{x}},t) = \left[-\frac{1}{2}\nabla^2 + V(A(t)\tilde{\vec{x}}) + \beta |\phi|^2\right]\phi, \quad \tilde{\vec{x}} \in \mathbb{R}^d, \quad t > 0$

Analysis & numerical methods -- Bao & Wang, JCP6'; Bao, Li & Shen, SISC, 09'; Bao, Marahrens, Tang & Zhang, 13',

Dynamics of a vortex lattice

Extension to dipolar quantum gas

 $\psi = \psi(\vec{x}, t) \quad \vec{x} \in \mathbb{R}^3$ Gross-Pitaevskii equation (re-scaled) $i\partial_t \psi(\vec{x},t) = \left| -\frac{1}{2} \nabla^2 + V(\vec{x}) - \Omega L_z + \beta |\psi|^2 + \lambda \left(U_{dip} * |\psi|^2 \right) \right| \psi$ Trap potential $V(\vec{x}) = \frac{1}{2} \left(\gamma_x^2 x^2 + \gamma_y^2 y^2 + \gamma_z^2 z^2 \right)$ - Interaction constants $\beta = \frac{4\pi N a_s}{r}$ (short-range), $\lambda = \frac{m N \mu_0 \mu_{dip}^2}{3\hbar^2 x}$ (long-range) - Long-range dipole-dipole interaction kernel $U_{\rm dip}(\vec{x}) = \frac{3}{4\pi} \frac{1 - 3(\vec{n} \cdot \vec{x})^2 / |\vec{x}|^2}{|\vec{x}|^3} = \frac{3}{4\pi} \frac{1 - 3\cos^2(\theta)}{|\vec{x}|^3}$ Molecules meet: there are temporary attractions and repulsions between electrons and nuclei k References: L. Santos, et al. PRL 85 (2000), 1791-1797 Non-polar molecules S. Yi & L. You, PRA 61 (2001), 041604(R); between temporary move together dipoles D. H. J. O'Dell, PRL 92 (2004), 250401

A New Formulation

$$r = |\vec{x}| \& \partial_{\vec{n}} = \vec{n} \cdot \nabla \& \partial_{\vec{n}\vec{n}} = \partial_{\vec{n}}(\partial_{\vec{n}})$$

Using the identity (O'Dell et al., PRL 92 (2004), 250401, Parker et al., PRA 79 (2009), 013617)

$$U_{\rm dip}(\vec{x}) = \frac{3}{4\pi r^3} \left(1 - \frac{3(\vec{n} \cdot \vec{x})^2}{r^2} \right) = -\delta(\vec{x}) - 3\partial_{\vec{n}\vec{n}} \left(\frac{1}{4\pi r} \right)$$

$$\Rightarrow \qquad \hat{U}_{\rm dip}(\xi) = -1 + \frac{3(\vec{n} \cdot \xi)^2}{|\xi|^2}$$

W Dipole-dipole interaction becomes

$$U_{\rm dip} * |\psi|^2 = -|\psi|^2 - 3\partial_{\vec{n}\vec{n}}\varphi$$
$$\varphi = \frac{1}{4\pi r} * |\psi|^2 \Leftrightarrow -\nabla^2 \varphi = |\psi|^2$$

A New Formulation

& Gross-Pitaevskii-Poisson type equations (Bao, Cai & Wang, JCP, 10') $i\partial_t \psi(\vec{x},t) = \left| -\frac{1}{2} \nabla^2 + V(\vec{x}) - \Omega L_z + (\beta - \lambda) |\psi|^2 - 3\lambda \partial_{\vec{n}\vec{n}} \varphi \right| \psi$ $|\psi(\vec{x},t)|^2, \quad \vec{x} \in \mathbb{R}^3, \quad \lim_{|\vec{x}| \to \infty} \varphi(\vec{x},t) = 0$ - Energy $E(\psi(\cdot,t)) := \int_{\mathbb{R}^3} \left[\frac{1}{2} |\nabla \psi|^2 + V(\vec{x}) |\psi|^2 - \Omega \overline{\psi} L_z \psi + \frac{\beta - \lambda}{2} |\psi|^4 + \frac{3\lambda}{2} |\partial_{\vec{n}} \nabla \phi|^2 \right] d\vec{x}$ Model in 2D $\xrightarrow{2D} (-\Delta_{\perp})^{1/2} \varphi(\vec{x},t) = |\psi(\vec{x},t)|^2, \quad \vec{x} \in \mathbb{R}^2, \quad \lim_{|\vec{x}| \to \infty} \varphi(\vec{x},t) = 0$ 😻 Ground state – Bao, Cai & Wang, JCP, 10'; Bao, Ben Abdallah & Cai, SIMA, 12' **by Dynamics** – Bao, Cai & Wang, JCP, 10'; Bao & Cai, KRM, 13' $\beta \ge 0 \& -\frac{\beta}{2} \le \lambda \le \beta$ Dimension reduction – Cai, Rosenkranz, Lei & Bao, PRA, 10'; Bao & Cai, KRM, 13'

Dynamics of a vortex lattice

Coupled GPEs

Spinor F=1 BEC $i \frac{\partial}{\partial t} \psi_{1} = [-\frac{1}{2} \nabla^{2} + V(\vec{x}) + \beta_{n} \rho] \psi_{1} + \beta_{s} (\rho_{1} + \rho_{0} - \rho_{-1}) \psi_{1} + \beta_{s} \psi_{-1}^{*} \psi_{0}^{2}$ $i \frac{\partial}{\partial t} \psi_{0} = [-\frac{1}{2} \nabla^{2} + V(\vec{x}) + \beta_{n} \rho] \psi_{0} + \beta_{s} (\rho_{1} + \rho_{-1}) \psi_{1} + 2\beta_{s} \psi_{1} \psi_{-1} \psi_{0}^{*}$ $i \frac{\partial}{\partial t} \psi_{-1} = [-\frac{1}{2} \nabla^{2} + V(\vec{x}) + \beta_{n} \rho] \psi_{-1} + \beta_{s} (\rho_{-1} + \rho_{0} - \rho_{1}) \psi_{1} + \beta_{s} \psi_{1}^{*} \psi_{0}^{2}$ With $\rho = \rho_{-1} + \rho_{0} + \rho_{1}, \quad \rho_{j} = |\psi_{j}|^{2}, \quad \beta_{n} = \frac{4\pi N(a_{0} + 2a_{2})}{3x}, \quad g_{s} = \frac{4\pi N(a_{2} - a_{0})}{3x}$

 a_0, a_2 : s-wave scattering length with the total spin 0 and 2 channels Analysis & numerical methods:

For ground state (Bao & Wang, SIAM J. Numer. Anal., 07'; Bao & Lim, SISC, 08'; PRE, 08')
 For Dynamics (Bao, Markowich, Schmeiser & Weishaupl, M3AS, 05')

Conclusions & Future Challenges

& Conclusions:

- NLSE / GPE brief derivation
 - Ground states
 - Existence, uniqueness, non-existence
 - Numerical methods -- BEFD

- Dynamics

- Well-posedness & dynamical laws
- Numerical methods -- TSSP

Future Challenges

- System of NLSE/GPE; with random potential; high dimensions
- Coupling GPE & Quantum Boltzmann equation (QBE)

Collaborators

In Mathematics

 External: P. Markowich (KAUST, Vienna, Cambridge); Q. Du (PSU); J. Shen (Purdue); S. Jin (UW-Madison); L. Pareshi (Italy); P. Degond (France); N. Ben Abdallah (Toulouse), W. Tang (Beijing), I.-L. Chern (Taiwan), Y. Zhang (MUST), H. Wang (China), Y. Cai (UW/UM), H.L. Li (Beijing), T.J. Li (Peking),

Local: X. Dong, Q. Tang, X. Zhao,

In Physics

 External: D. Jaksch (Oxford); A. Klein (Oxfrod); M. Rosenkranz (Oxford);
 H. Pu (Rice), Donghui Zhang (Dalian), W. M. Liu (IOP, Beijing), X. J. Zhou (Peking U),

LOCAI: B. Li, J. Gong, B. Xiong, W. Ji, F. Y. Lim (IHPC), M.H. Chai (NUSHS),

W Fund support: ARF Tier 1 & Tier 2