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What is a self-organizing system?
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N

∑N
j=1 δ(xj ,vj ),
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Understanding how superposition of re-iterated binary “social
forces” yields global self-organization.
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For S(x , v) = −bv and K (x , v) = a(‖x‖2)(−x)− f (‖x‖2)(−x) we
get the Cucker-Dong model{

ẋi = vi ,

v̇i = −bvi + 1
N

∑N
j=1(a− f )(‖xi − xj‖2)(xj − xi ), i = 1, . . .N,

Usually, a(r) = 1
(1+r2)β

and f (r) = 1
rδ

. A sufficient condition for

self-organization is given by the quantities

E (t) =
N∑
i=1

‖vi (t)‖2+
1

2N

N∑
i<j

(∫ ‖xi (t)−xj (t)‖2
0

a(r)dr +

∫ +∞

‖xi (t)−xj (t)‖2
f (r)dr

)

θ =
N − 1

2

∫ +∞

0

a(r)dr



Models for social dynamics - Cucker-Dong

If E(0) ≤ θ, cohesiveness occurs every-

time

If E(0) > θ, cohesiveness occurs only for

certain initial data



Models for social dynamics - D’Orsogna-Bertozzi et al.

For S(x , v) = (α − β‖v‖2)v and K (x , v) = −∇U(‖x‖) x
‖x‖ we get

the D’Orsogna-Bertozzi et al. model{
ẋi = vi ,

v̇i = (α− β‖vi‖2)vi − 1
N

∑N
j=1∇U(‖xi − xj‖)
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For S(x , v) = (α − β‖v‖2)v and K (x , v) = −∇U(‖x‖) x
‖x‖ we get

the D’Orsogna-Bertozzi et al. model{
ẋi = vi ,

v̇i = (α− β‖vi‖2)vi − 1
N

∑N
j=1∇U(‖xi − xj‖)

xi−xj
‖xi−xj‖ , i = 1, . . .N,

Usually, U(r) = −CAe−r/`A + CRe−r/`R .

If CR
CA

(
`R
`A

)d
< 1, cristalline

structures appear If CR
CA

(
`R
`A

)d
≥ 1, mill patterns arise
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Split coherence in homophilious societies: government?

I A society is said to be homophilious whenever its agents are
more influenced by near agents than far ones;

I As seen in the CS and CD models, in homophilious societies
global self-organization can be expected as soon as enough
initial coherence is reached;

I However, it is common experience that coherence in a
homophilious society can be lost, leading sometimes to
dramatic consequences, questioning strongly the role and the
effectiveness of governments.

Question: can a government endowed with limited resources res-
cue/stabilize a society by minimal interventions? Which ones?
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and dk =
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j=1 akj
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A parametric model of homo-to-hetero-philia
The Cucker-Smale model:

ẋi = vi ∈ Rd

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi ) ∈ Rd
,

where a(t) := aβ(t) = 1
(1+t2)β

, β > 0 governs the rate of

communication. In matrix notation:{
ẋ = v

v̇ = −Lxv

where Lx is the Laplacian of the matrix1 (a(‖xj − xi‖)/N)Ni ,j=1
and depends on x .

I Mean-velocity conservation:
d
dt v̄(t) = 1

N

∑N
i=1 v̇i (t) = 1

N2

∑N
i=1

∑N
j=1

vj−vi
(1+‖xj−xi‖2)β

≡ 0.

1The Laplacian L of A is given by L = D − A, with D = diag(d1, . . . , dN)
and dk =

∑N
j=1 akj



Conditional consensus emergence for a generic
communication rate a(·)
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X (t) = B(x(t), x(t)), V (t) = B(v(t), v(t)).



Conditional consensus emergence for a generic
communication rate a(·)

Consider the symmetric bilinear form

B(u, v) =
1

2N2

∑
i ,j

〈ui − uj , vi − vj〉 =
1

N

N∑
i=1

〈ui , vi 〉 − 〈ū, v̄〉,

and
X (t) = B(x(t), x(t)), V (t) = B(v(t), v(t)).

Theorem (Ha-Ha-Kim)

Let (x0, v0) ∈ (Rd)N × (Rd)N be such that
X0 = B(x0, x0) and V0 = B(v0, v0) satisfy

γ(X0) :=
√

N

∫ ∞
√
NX0

a(
√

2r)dr >
√

V0 .

Then the solution with initial data (x0, v0)
tends to consensus.
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Consider β = 1 and x(t) = x1(t)− x2(t), v(t) = v1(t)− v2(t)
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v̇ = − v

1 + x2

with initial conditions x(0) = x0 and v(0) = v0 > 0.
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Consider β = 1 and x(t) = x1(t)− x2(t), v(t) = v1(t)− v2(t)
relative pos. and vel. of two agents on the line: ẋ = v

v̇ = − v

1 + x2

with initial conditions x(0) = x0 and v(0) = v0 > 0.
By direct integration

v(t) = − arctan x(t) + arctan x0 + v0.

Hence, if arctan x0 + v0 > π/2 + ε we have

v(t) > π/2 + ε− arctan x(t) > ε, ∀t ∈ R+.
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u = (u1, . . . , uN) : [0,+∞)→ RN such that

∑N
i=1 ‖ui (t)‖ ≤ M for

every t > 0, for a given constant M:
ẋi = vi

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi )+ui

for i = 1, . . . ,N, and xi ∈ Rd , vi ∈ Rd .

Our aim is then to find admissible controls
steering the system to the consensus
region.
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Proof.
Consider a solution of system with initial data (x0, v0) associated
with a feedback control u = −α(v − v̄), with
0 < α ≤ M/(N

√
B(v0, v0)). Then

d

dt
V (t) =

d

dt
B(v(t), v(t))

= −2B(Lxv(t), v(t)) + 2B(u(t), v(t))

≤ 2B(u(t), v(t)) = −2αB(v − v̄ , v − v̄) = −2αV (t).

Therefore V (t) ≤ e−2αtV (0) and V (t) tends to 0 exponentially
fast as t →∞. Moreover

∑N
i=1 ‖ui‖ ≤ M.
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We wish to make

d

dt
V (t) =

d

dt
B(v(t), v(t))

= −2B(Lxv(t), v(t)) + 2B(u(t), v(t))

the smallest possible and use the minimal amount of intervention:
minimize B(u(t), v(t)) with additional sparsity constraints.
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Greedy sparse control

Theorem (Caponigro-F.-Piccoli-Trélat)

For every initial condition (x0, v0) ∈ (Rd)N × (Rd)N and M > 0
there exist T > 0 and a sparse control u : [0,T ]→ (Rd)N , with∑N

i=1 ‖ui (t)‖ ≤ M for every t ∈ [0,T ] such that the associated AC
solution reaches the consensus region. More precisely, we can
choose adaptively the control law explicitly as one of the solutions
of the variational problem

min B(v , u) +
γ(x)

N

N∑
i=1

‖ui‖ subject to
N∑
i=1

‖ui‖ ≤ M ,

where γ(x) =
√

N
∫∞√

NB(x ,x)
a(
√

2r)dr threshold by Ha-Ha-Kim.

This choice of the control makes V (t) = B(v(t), v(t)) vanishing in
finite time, hence there exists T such that B(v(t), v(t)) ≤ γ(x)2,
t ≥ T .



Geometrical interpretation in the scalar case

For |v | ≤ γ the minimal solution u ∈ [−M,M] is zero.

For |v | > γ the minimal solution u ∈ [−M,M] is |u| = M.
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If ‖v⊥i‖ ≤ γ(x) for every i = 1, . . . ,N, then

u1 = · · · = uN = 0⇒ reached consensus region.

Otherwise there exists a “best index” i ∈ {1, . . . ,N} such that

‖v⊥i‖ > γ(x) and ‖v⊥i‖ ≥ ‖v⊥j‖ for every j = 1, . . . ,N.

Therefore we can choose i ∈ {1, . . . ,N} satisfying it, and a control law

ui = −M
v⊥i

‖v⊥i‖
, and uj = 0, for every j 6= i .

Hence the control acts on the most
“stubborn”. We may call this control the
“shepherd dog strategy”. This choice of the
control makes V (t) = B(v(t), v(t)) vanishing
in finite time, hence there exists T such that
B(v(t), v(t)) ≤ γ(x)2, t ≥ T .
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Instantaneous optimality of the greedy strategy
Consider generic control u (solution of the variation problem) of
components

ui (x , v) =


0 if v⊥i

= 0

− αi
v⊥i

‖v⊥i
‖

if v⊥i
6= 0

where αi ≥ 0 such that
∑N

i=1 αi ≤ M.

Theorem (Caponigro-
F.-Piccoli-Trélat)

The 1-sparse control is
the minimizer of

R(t, u) := R(t) =
d

dt
V (t),

among all the control of
the previous form.

∗ A policy maker, who is not allowed to have
prediction on future developments, should
always consider more favorable to intervene
with stronger actions on the fewest possible
instantaneous optimal leaders than trying to
control more agents with minor strength.
∗ Homophilious society can be stabilized by
parsiminious interventions!



Homophilious societies are sparsely stabilizable – 1

If we allow external intervention, the CS system in the homophilious
regime (β > 1

2)
ẋi = vi

v̇i =
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N
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can be stabilized for any initial condition by using only sparse con-
trols, i.e., zero for almost every agent 2.

2M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat, Sparse stabilization
and control of alignment models, Math. Models Methods Applied Sciences, ’14
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If we allow external intervention, the CS system in the homophilious
regime (β > 1

2)
ẋi = vi

v̇i =
1

N

N∑
j=1

a(|xi − xj |) (xj − xi ) + ui

can be stabilized for any initial condition by using only sparse con-
trols, i.e., zero for almost every agent 2.

The sparse control acts
on the most “stubborn”
agent at every time, like
the “shepherd dog strat-
egy”.

2M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat, Sparse stabilization
and control of alignment models, Math. Models Methods Applied Sciences, ’14
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Homophilious societies are sparsely stabilizable – 2

For the CD system in the homophilious regime (that is E (0) ≥ θ),
the shepard dog strategy stabilization of{

ẋi = vi ,

v̇i = −bvi + 1
N

∑N
j=1(a− f )(|xi − xj |)(xj − xi ) + ui ,

with b ≡ 0 occurs under the additional hypothesis

θ > E (0) exp

(
−2
√

3

9

N‖v̄(0)‖3

E (0)3/2

)

The shepherd dog strat-
egy does not work for ev-
ery initial condition!



Observing the future: sparse optimal control
The problem is to minimize, for a given γ > 0

J (u) =

∫ T

0

1

N

N∑
i=1

((
vi (t)− 1

N

N∑
j=1

vj(t)
)2

+ γ‖ui (t)‖
)

dt,

s.t.
N∑
i=1

‖ui‖ ≤ M

where the state is a trajectory of the control system
ẋi = vi

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi ) + ui

with initial constraint

(x(0), v(0)) = (x0, v0) ∈ (Rd)N × (Rd)N .



Beyond a greedy approach: sparse optimal control

Theorem (Caponigro-F.-Piccoli-Trélat)

For every (x0, v0) in (Rd)N × (Rd)N , for every M > 0, and for
every γ > 0 the optimal control problem has an optimal solution.
The optimal control u(t) is “usually” instantaneously a vector with
at most one nonzero coordinate.



Beyond a greedy approach: sparse optimal control

Theorem (Caponigro-F.-Piccoli-Trélat)

For every (x0, v0) in (Rd)N × (Rd)N , for every M > 0, and for
every γ > 0 the optimal control problem has an optimal solution.
The optimal control u(t) is “usually” instantaneously a vector with
at most one nonzero coordinate.

The PMP ensures the existence of λ ≥ 0 and of a nontrivial
covector (px , pv ) ∈ (Rd)N × (Rd)N satisfying the adjoint
equations, for i = 1, . . . ,N,

ṗxi =
1

N

N∑
j=1

a(‖xj − xi‖)
‖xj − xi‖

〈xj − xi , vj − vi 〉(pvj − pvi )

ṗvi = −pxi −
1

N

∑
j 6=i

a(‖xj − xi‖)(pvj − pvi )− 2λvi +
2λ

N

N∑
j=1

vj .

The application of the PMP leads to minimize

min
N∑
i=1

〈pvi , ui 〉+ λγ

N∑
i=1

‖ui‖, subject to
N∑
i=1

‖ui‖ ≤ M.



What if the population is too large N ≈ ∞?
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Mean-field (sparse) optimal control?
What if N →∞? Did you know that the term “curse of
dimensionality” was first introduced by Richard E. Bellman
precisely for high-dimensional optimal control problems?
How can we define an approximating “infinite dimensional” sparse
optimal control?
We consider a perhaps natural control problem:

ẋi = vi ,
v̇i = (H ∗ µN)(xi , vi ) + ui , i = 1, . . .N, t ∈ [0,T ],

where , µN = 1
N

∑N
j=1 δ(xj ,vj ),

controlled by the minimizer of the cost functional

J (u) :=

∫ T

0

∫
R2d

(
L(x , v , µN)dµN(t, x , v) +

1

N

N∑
i=1

‖ui‖

)
dt,



Mean-field (sparse) optimal control?
What if N →∞? Did you know that the term “curse of
dimensionality” was first introduced by Richard E. Bellman
precisely for high-dimensional optimal control problems?
How can we define an approximating “infinite dimensional” sparse
optimal control?
We consider a perhaps natural control problem:

ẋi = vi ,
v̇i = (H ∗ µN)(xi , vi ) + ui , i = 1, . . .N, t ∈ [0,T ],

where , µN = 1
N

∑N
j=1 δ(xj ,vj ),

controlled by the minimizer of the cost functional

J (u) :=

∫ T

0

∫
R2d

(
L(x , v , µN)dµN(t, x , v) +

1

N

N∑
i=1

‖ui‖

)
dt,

Which topology on µN = 1
N

∑N
j=1 δ(xj ,vj )? Which topology on

νN = 1
N

∑N
j=1 uiδ(xj ,vj )?



Too weak convergence

The compactness of the problem is way too weak

νN =
1

N

N∑
j=1

uiδ(xj ,vj ) ⇀ ν, µN =
1

N

N∑
j=1

δ(xj ,vj ) ⇀ µ,

as it can happen that ν ⊥ µ.
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Too weak convergence

The compactness of the problem is way too weak

νN =
1

N

N∑
j=1

uiδ(xj ,vj ) ⇀ ν, µN =
1

N

N∑
j=1

δ(xj ,vj ) ⇀ µ,

as it can happen that ν ⊥ µ. Natural limit equation

∂µ

∂t
+ v · ∇xµ = ∇v · [(H ∗ µ)µ+ ν] .

Steering the cloud µ by means of the toothpicks ν!! Then relax it
by ν = f µ and obtain

∂µ

∂t
+ v · ∇xµ = ∇v · [(H ∗ µ+ f )µ] ,

but f ∈ L1
µ(R2d ,Rd) only and no well-posedness can be expected!



Mean-field Sparse Optimal Control?

“Ultimately it would be good to have a theory that combined both the

collective behaviour of a large number of “ordinary” agents with the decisions

of a few key players of unusually large (relative) influence – some complicated

combination of PDE and game theory, presumably – but our current

mathematical technology is definitely insufficient for even a zeroth

approximation to this task”.

– Terry Tao, January 7, 2010
https://terrytao.wordpress.com/2010/01/07/mean-field-equations



A natural relaxation: smoother controls

Definition
For a horizon time T > 0, and an exponent 1 ≤ q < +∞ we fix a
control bound function ` ∈ Lq(0,T ). The class of admissible
control functions F`([0,T ]) is so defined: f ∈ F`([0,T ]) if and
only if

(i) f : [0,T ]× Rn → Rd is a Carathéodory function,

(ii) f (t, ·) ∈W 1,∞
loc (Rn,Rd) for almost every t ∈ [0,T ], and

(iii) ‖f (t, 0)‖+ Lip(f (t, ·),Rd) ≤ `(t) for almost every t ∈ [0,T ].



Mean-field optimal control

Theorem (F. and Solombrino)
Assume that we are given maps H, L, and ψ as in assumptions (H), (L), and
(Ψ). For N ∈ N and an initial datum
((x0

N)1, . . . , (x0
N)N , (v 0

N)1, . . . , (v 0
N)N) ∈ B(0,R0) ⊂ (Rd)N × (Rd)N , for R0 > 0

independent of N, we consider

min
f∈F`

∫ T

0

∫
R2d

[L(x , v , µN(t, x , v)) + ψ(f (t, x , v))] dµN(t, x , v)dt,

where µN(t, x , v) = 1
N

∑N
j=1 δ(xj (t),vj (t))(x , v), constrained by being the solution

of {
ẋi = vi ,
v̇i = (H ∗ µN)(xi , vi ) + f (t, xi , vi ), i = 1, . . .N, t ∈ [0,T ],

with initial datum (x(0), v(0)) = (x0
N , v

0
N) and, for consistency, we set

µ0
N =

1

N

M∑
i=1

δ((x0
N
)i ,(v

0
N
)i )

(x , v).

For all N ∈ N let us denote the function fN ∈ F` as a solution of the finite
dimensional optimal control problem.



Mean-field optimal control

If there exists a compactly supported µ0 ∈ P1(R2d) such that
limN→∞W1(µ0

N , µ
0) = 0, then there exists a subsequence (fNk )k∈N and a

function f∞ ∈ F` such that fNk converges to f∞ and f∞ is a solution of the
infinite dimensional optimal control problem

min
f∈F`

∫ T

0

∫
R2d

[L(x , v , µ(t, x , v)) + ψ(f (t, x , v))] dµ(t, x , v)dt,

where µ : [0,T ]→ P1(R2d) is the unique weak solution of

∂µ

∂t
+ v · ∇xµ = ∇v · [(H ∗ µ+ f )µ] ,

with initial datum µ(0) := µ0 and forcing term f .



Mean-field optimal control

If there exists a compactly supported µ0 ∈ P1(R2d) such that
limN→∞W1(µ0

N , µ
0) = 0, then there exists a subsequence (fNk )k∈N and a

function f∞ ∈ F` such that fNk converges to f∞ and f∞ is a solution of the
infinite dimensional optimal control problem

min
f∈F`

∫ T

0

∫
R2d

[L(x , v , µ(t, x , v)) + ψ(f (t, x , v))] dµ(t, x , v)dt,

where µ : [0,T ]→ P1(R2d) is the unique weak solution of

∂µ

∂t
+ v · ∇xµ = ∇v · [(H ∗ µ+ f )µ] ,

with initial datum µ(0) := µ0 and forcing term f .

The proof is based on the simultaneous development of the mean-field limit for

the equation and the Γ-limit for the optimization of the control.



Sparse optimal control? Mixing diffuse and granular

Let us now consider a controlled system with m leaders for m� N
ẏk = wk ,

ẇk = H ∗ µN(yk ,wk) + H ∗ µm(yk ,wk) + uk k = 1, . . .m,

ẋi = vi ,

v̇i = H ∗ µN(xi , vi ) + H ∗ µm(xi , vi ) i = 1, . . .N,



Sparse optimal control? Mixing diffuse and granular

Let us now consider a controlled system with m leaders for m� N
ẏk = wk ,

ẇk = H ∗ µN(yk ,wk) + H ∗ µm(yk ,wk) + uk k = 1, . . .m,

ẋi = vi ,

v̇i = H ∗ µN(xi , vi ) + H ∗ µm(xi , vi ) i = 1, . . .N,

For N →∞ the limit dynamics is
ẏk = wk ,

ẇk = H ∗ (µ+ µm)(yk ,wk) + uk , k = 1, . . .m,

∂tµ+ v · ∇xµ = ∇v · [(H ∗ (µ+ µm))µ] ,

where the weak solutions of the equations have to be interpreted in
the Carathéodory sense.



Mixing diffuse and granular

Figure : A mixed granular-diffuse crowd leaving a room through a door.
This figure was kindly provided by the authors. Copyright c©2011 Society
for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.



Main result on mean-field sparse control, I
Denote X := R2d×m × P(R2d).

Theorem (F., Piccoli, and Rossi)
Let H and L be maps satisfying conditions (H) and (L) respectively. Given an
initial datum (y 0,w 0, µ0) ∈ X , with µ0 compactly supported,
supp(µ0) ⊂ B(0,R), R > 0, the optimal control problem

min
u∈L1([0,T ],U)

∫ T

0

{
L(y(t),w(t), µ(t)) +

1

m

m∑
k=1

‖uk(t)‖

}
dt,

has solutions, where the triplet (y ,w , µ) defines the unique solution of
ẏk = wk ,

ẇk = H ∗ (µ+ µm)(yk ,wk) + uk , k = 1, . . .m, t ∈ [0,T ]

∂tµ+ v · ∇xµ = ∇v · [(H ∗ (µ+ µm))µ] ,

with initial datum (y 0,w 0, µ0) and control u, and

µm(t) =
1

m

n∑
k=1

δ(yk (t),wk (t)).



Main result on mean-field sparse control, II

Moreover, solutions to the problem can be constructed as weak limits u∗ of
sequences of optimal controls u∗N of the finite dimensional problems

min
u∈L1([0,T ],U)

∫ T

0

{
L(yN(t),wN(t), µN(t)) +

1

m

m∑
k=1

‖uk(t)‖

}
dt,

where µN(t) = 1
N

∑N
i=1 δ(xi,N (t),vi,N (t)) and µm,N(t) = 1

m

∑m
k=1 δ(yk,N (t),wk,N (t)) are

the time-dependent atomic measures supported on the trajectories defining the
solution of the system

ẏk = wk ,

ẇk = H ∗ µN(yk ,wk) + H ∗ µm,M(yk ,wk) + uk k = 1, . . .m, t ∈ [0,T ],

ẋi = vi ,

v̇i = H ∗ µN(xi , vi ) + H ∗ µm,M(xi , vi ) i = 1, . . .N, t ∈ [0,T ],

with initial datum (y 0,w 0, x0
N , v

0
N), control u, and µ0

N = 1
N

∑N
i=1 δ(x0i ,v

0
i )

is such

that W1(µ0
N , µ

0)→ 0 for N → +∞.



Evacuating an unknown environment



Simulations I



Simulations II



Learning the dynamics

Consider the dynamics

ẋi (t) =
1

N

∑
j 6=i

a(‖xi − xj‖)(xj − xi ), i = 1, . . . ,N.

with a ∈ X =
{

b : R+ → R | b ∈ L∞(R+) ∩W 1,∞
loc (R+)

}
.
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Consider the dynamics

ẋi (t) =
1

N

∑
j 6=i

a(‖xi − xj‖)(xj − xi ), i = 1, . . . ,N.

with a ∈ X =
{

b : R+ → R | b ∈ L∞(R+) ∩W 1,∞
loc (R+)

}
. Can we

”learn” the interaction function a from observations of the
dynamics?



A least square functional

As an approximation to a we seek for a minimizer of the following
discrete error functional

EN(â) =
1

T

∫ T

0

1

N

N∑
i=1

∥∥∥∥ 1

N

N∑
j=1

(â(‖xi (t)− xj(t)‖)(xi (t)− xj(t))− ẋi (t))

∥∥∥∥2dt,

among all functions â ∈ X .
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dimensional space V ⊂ X , we consider the minimizer:
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A least square functional

As an approximation to a we seek for a minimizer of the following
discrete error functional

EN(â) =
1

T

∫ T

0

1

N

N∑
i=1

∥∥∥∥ 1

N

N∑
j=1

(â(‖xi (t)− xj(t)‖)(xi (t)− xj(t))− ẋi (t))

∥∥∥∥2dt,

among all functions â ∈ X . In particular, given a finite
dimensional space V ⊂ X , we consider the minimizer:

âN,V = arg min
â∈V
EN(â).

The fundamental question is

(Q) For which choice of the approximating spaces V ∈ Λ (we
assume here that Λ is a countable family of invading
subspaces of X ) does âN,V → a for N →∞ and V → X and
in which topology should this convergence hold?



Mean-field limit

The empirical measure µN(t) = 1
N

∑N
i=1 δxi (t) weakly converges for

N →∞ to the probability measure valued trajectory t → µ(t)
satisfying weakly the equation

∂tµ(t) = −∇ · ((H[a] ∗ µ(t))µ(t)), µ(0) = µ0.

where H[a](x) = −a(‖x‖)x , for x ∈ Rd .



Mean-field limit

The empirical measure µN(t) = 1
N

∑N
i=1 δxi (t) weakly converges for

N →∞ to the probability measure valued trajectory t → µ(t)
satisfying weakly the equation

∂tµ(t) = −∇ · ((H[a] ∗ µ(t))µ(t)), µ(0) = µ0.

where H[a](x) = −a(‖x‖)x , for x ∈ Rd . We define

E(â) =
1

T

∫ T

0

∫
Rd

∥∥∥∥(H[â]− H[a]
)
∗ µ(t)

∥∥∥∥2dµ(t)(x)dt,



Coercivity property I
By Jensen inequality

E(â) ≤ 1

T

∫ T

0

∫
Rd

∫
Rd

|â(‖x − y‖)− a(‖x − y‖)|2‖x − y‖2dµ(t)(x)dµ(t)(y)dt

=
1

T

∫ T

0

∫
R+

∣∣â(s)− a(s)
∣∣2s2d%(t)(s)dt (1)

where %(t) = (‖x − y‖#µx(t)⊗ µy (t)).
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Coercivity property I
By Jensen inequality

E(â) ≤ 1

T

∫ T

0

∫
Rd

∫
Rd

|â(‖x − y‖)− a(‖x − y‖)|2‖x − y‖2dµ(t)(x)dµ(t)(y)dt

=
1

T

∫ T

0

∫
R+

∣∣â(s)− a(s)
∣∣2s2d%(t)(s)dt (1)

where %(t) = (‖x − y‖#µx(t)⊗ µy (t)). We define the prob.
measure

ρ̄ :=
1

T

∫ T

0
%(t)dt.

Finally we define the weighted measure

ρ(A) :=

∫
A

s2d ρ̄(s),

Then one can reformulate (1) in a very compact form as follows

E(â) ≤
∫
R+

∣∣â(s)− a(s)
∣∣2dρ(s) = ‖â− a‖2L2(R+,ρ)

.



Coercivity property II

To establish coercivity of the learning problem it is essential to
assume that there exists cT > 0 such that also the following
additional lower bound holds

cT‖â− a‖2L2(R+,ρ)
≤ E(â),

for all relevant â ∈ X ∩ L2(R+, ρ). This crucial assumption
eventually determines also the natural space X ∩ L2(R+, ρ) for the
solutions.



Uniform approximation property

For M > 0 and an interval K = [0, 2R] define the set

XM,K =
{

b ∈W 1,∞(K ) : ‖b‖L∞(K) + ‖b′‖L∞(K) ≤ M
}
.

Additionally for every N ∈ N, let VN be a closed subset of XM,K

w.r.t. the uniform convergence on K with the following uniform
approximation property: for all b ∈ XM,K there exists a sequence
(bN)N∈N converging uniformly to b on K and such that bN ∈ VN

for every N ∈ N.



Main learnability result I

Theorem (Bongini, F., Hansen, Maggioni, 2015)

Fix M ≥ ‖a‖L∞(K) + ‖a′‖L∞(K) for K = [0, 2R], for R > 0 large
enough. For every N ∈ N, let VN be a closed subset of XM,K w.r.t.
the uniform convergence on K with the uniform approximation
property. Then the minimizers

âN ∈ arg min
â∈VN

EN(â).

converge uniformly up to subsequ. for N →∞ to a continuous
function â ∈ XM,K such that E(â) = 0.



Main learnability result II

If we additionally assume the coercivity condition, then â = a in
L2(R+, ρ). Moreover, in this latter case, if there exist rates
α, β > 0, constants C1,C2 > 0, and a sequence (aN)N∈N of
elements aN ∈ VN such that

‖a− aN‖L∞(K) ≤ C1N−α,

and
W1(µN0 , µ0) ≤ C2N−β,

then there exists a constant C3 > 0 such that

‖a− âN‖2L2(R+,ρ)
≤ C3N−min{α,β},

for all N ∈ N. In particular, in this case, it is the entire sequence
(âN)N∈N (and not only subsequences) to converge to a in
L2(R+, ρ).
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Conclusion

I We presented dynamical systems with
self-organization features ⇒
organization by external intervention.

I We proved that the most effective
greedy strategy is by instantaneous
1-sparse controls.

I We presented relaxations of the
(sparse) finite dimensional optimal
control problems and a general
technique to derive their mean-field
limits.

I We showed recent results on
learnability of systems modeling social
dynamics.
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