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Introduction
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Introduction: the Boltzmann equation

The Boltzmann equation (late 1860s and 1870s, Maxwell and Boltzmann) describes
evolution of the probability density f (t , x , v) of gas particles in a rarefied gas, for the
time t ∈ R+ velocity v ∈ Rd and position x ∈ Rd . It reads

∂t f + v · ∇x f = Q(f , f ),(1.1)

where Q(f , f ) is a quadratic integral operator. Before we write the formula for the
collision operator, we recall notation associated to a collision of a pair of particles.

Pre-post collisional velocities:

v ′ = v +
1
2
(|u|σ − u)

v ′∗ = v∗ +
1
2
(|u|σ − u) , σ ∈ Sd−1.

Notation:
u = v − v∗, u′ = v ′ − v ′∗
f ′ = f (v ′), f∗ = f (v∗) etc.
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v∗
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u

v ′

v ′∗

u′

σ

ûθ
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The collisional operator

The strong form of the collisional operator is the following:

Q(f , f )(t, x, v) =

∫
Rd

∫
Sd−1

(
f ′f ′∗ − ff∗

)
B(|u|, û · σ) dσ dv∗

The collision kernel B(|u|, û · σ) is assumed to have the factorized form:

B(|u|, û · σ) = |u|γ b(cos θ).

In physically motivated models, γ ∈ (−d , 1], with the following special cases

γ ∈ (0, 1]: hard potentials; γ = 1: hard spheres,

γ = 0: Maxwell molecules,

γ ∈ (−d , 0): soft potentials.
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The angular cross-section

The angular kernel b(cos θ) has a singularity at θ = 0, which makes it non-integrable
over the sphere. Traditionally, however, integrability was assumed

Grad’s cutoff:
∫ π

0
b(cos θ) sind−2 θ dθ <∞.

This simplifies the analysis of the collision operator as it can then be split in the so
called gain and loss terms Q(f , f ) = Q+(f , f )−Q−(f , f ). For a long time, it was
believed that this removal of the singularity does not influence the equation
significantly. However, recently it has been observed that singularity carries
regularizing effect.

We work in the non-cutoff regime, which means that the integral above is infinite,
while its weighted version is finite. More precisely:

Non-cutoff:∫ π

0
b(cos θ) sind−2 θ dθ =∞,∫ π

0
b(cos θ) sinβθ sind−2 θ dθ <∞, β ∈ (0, 2].
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Another simplification of the Boltzmann equation

Another major simplification of the Boltzmann equation is removal of the dependence
on the space variable x . This leads to the so called spatially homogeneous
Boltzmann equation:

∂t f = Q(f , f ).(1.2)

We study this spatially homogeneous Boltzmann equation, in non-cutoff regime, for
hard potentials.
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Goal

We study Exponential Tail Behavior of a solution in L1 and L∞ sense. We say f has
exponential tail behavior in L1 or in L∞ sense is for some α > 0 and some s > 0, the
following norms are finite, respectively:

‖f‖L1
exp(α 〈v〉s)

:=

∫
Rd

f (t, v) eα 〈v〉
s

dv <∞,

‖f‖L∞
exp(α 〈v〉s)

:= sup
v

f (t, v) eα〈v〉
s
<∞.

L1 exponential tail behavior in time:
Propagation: If initial data f (0, v) has exp(α0 〈v〉s) tail in L1 sense, does
f (t , v) has exp(α 〈v〉s) tail in L1 sense, uniformly in time, for some α < α0?
Generation: If initial data has finite first two moments, does f (t , v)
generates exponential tail in L1 sense? If so, for what order s?

L∞ exponential tail behavior in time:
Propagation: If f (0, v) ≤ e−α0 〈v〉s , is it true that then f (t , v) ≤ eα 〈v〉

s
holds

uniformly in time, with potentially smaller α?
Generation: If initial data has finite finite first few moments, is it possible to
generate pointwise exponential tail f (t , v) ≤ eα 〈v〉

s
for t > 0? For what s?
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L1 exponential tails
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Previous L1
exp results

First results were on polynomial moments, defined as mp(t) =
∫

f (t , v)〈v〉pdv .
It has been shown (Arkeryd ’72, Elmroth ’83, Desvilletes ’93, Wennberg ’97,
Mischler-Wennberg ’99) that as soon as the initial energy (second moment) is
finite, all higher moments are generated and remain bounded uniformly in time.

Exponential tail behavior in L1 sense was first studied under the Grad’s cutoff by
Bobylev (Maxwell molecules in 1984, hard spheres in 1997). In these seminal
works, by Taylor expanding exponential function the question is reformulated
(formally) to showing summability of polynomial moments renormalized by
Gamma functions:∫

Rd
f (t, v) eα 〈v〉

s
dv =

∫
Rd

f (t, v)
∞∑

q=0

〈v〉qs αq

q!
=
∞∑

q=0

mqs(t)αq

q!
.

To estimate this sum, ordinary differential inequalities for polynomial moments are
developed, also used in the study of polynomial moments, but now because of
the required summability, constants need to be shaper.
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Classical technique

The weak form of the collision operator:∫
Rd

Q(f , f )φ dv =
1
2

∫
R2d

f f∗
(∫

Sd−1

(
φ′ + φ′∗ − φ− φ∗

)
B(|u|, û · σ) dσ

)
dv∗dv

Hence, if the Boltzmann equation is multiplied by 〈v〉2k , i.e. ∂t f 〈v〉2k = Q(f , f ) 〈v〉2k ,
integration in velocity yields the first step toward an ordinary differential inequality of
moments:

m′2k (t) =
∫
Rd

Q(f , f )φ dv

=
1
2

∫
R2d

f f∗
(∫

Sd−1

(
〈v ′〉2k + 〈v ′∗〉2k − 〈v〉2k − 〈v∗〉2k

)
B(|u|, û · σ) dσ

)
dvdv∗

In the Grad’s cutoff case, the positive and negative parts of the above integral can be
bounded separately. That leads to an ODI for polynomial moments, from which one
can obtain bounds of the infinite sum representation of exponential moments.
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Summary of previous L1
exp results

Grad’s cut-off case:
Term-by-term method: Bobylev 97, Bobylev-Gamba-Panferov 04,
Gamba-Panferov-Villani 09, Mouhot 06
Partial sum method: Alonso-Caniz̃o-Gamba-Mouhot 2013

generation propagation

s = order of the exponential eα〈v〉
s

21γ0

Non-cutoff case: Prior to our work, there was one result on exponential tail behavior
in non-cutoff. Namely, Lu and Mouhot in 2012 adapted the term-by term technique to
the non-cutoff case to show generation of exponential tails of order up to s = γ.

generation

s = order of the exponential eα〈v〉
s

21γ0
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How do we approach the problem in the non-cutoff?

We adapt the partial sum technique to the non-cutoff case. The story begins in the
same way as before

m′2q(t)=

∫
Rd

Q(f , f ) 〈v〉2q dv

=
1
2

∫
R2d

ff∗
(∫

Sd−1

(
〈v ′〉2q + 〈v ′∗〉2q − 〈v〉2q − 〈v∗〉2q

)
B(|u|, û · σ) dσ

)
dvdv∗.

One of the challenges compared to Grad’s cutoff, is
the angular singularity. To overcome it, we exploit
certain cancellation properties that become
visible after an application of the Taylor expansion
to the test functions in the weak formulation above.

û
σ

ωj

V̂

θ

Sd−2

Sd−1

This leads to an ODI for polynomial moments, which compared to the Grad’s cutoff
case has two extra powers of q in the last term of the following inequality:

m′2q ≤−K1 m2q+γ + K2 m2q

+ K3 εq q (q − 1)

b q+1
2 c∑

k=1

(
q − 2
k − 1

) (
m2k+γ m2(q−k) + m2k m2(q−k)+γ

)
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How to proceed?

To reduce the quadratic power of q(q − 1), we renormalize moments in the last term,
and exploit the following properties of Gamma and Beta function, as well as a
combinatorial sum of Beta functions:

Γ(x) Γ(y) = Γ(x + y) B(x, y)

b q+1
2 c∑

k=1

(
q − 2
k − 1

)
B(ak + 1, a(q − k) + 1) ≤ Ca

1
qa+1

The last inequality holds only if a > 1. This leads us to study partial sums of the form

En(t) :=
n∑

q=0

m2q(t) αaq

Γ(aq + 1)
,

which differ from partial sums of exponential moments∫
Rd

f (t, v) eα 〈v〉
s

dv =
∞∑

q=0

mqs(t)αq

q!
.
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Mittag-Leffler function and moment

The appearance of Γ(aq + 1), with a non-integer coefficient a, inspired us to use
Mittag-Leffler functions defined by:

Ea(x) :=
∞∑

q=0

xq

Γ(aq + 1)

instead of the classical exponential functions. Mittag-Leffler functions generalize
exponentials and are known to asymptotically behave like exponentials:

Ea(x) ∼ ex1/a
, for x � 1.

Definition (Mittag-Leffler moment)

The Mittag-Leffler moment of f of order s and rate α > 0 is introduced via:

ML(α,s) =
∞∑

q=0

m2q α
2q/s

Γ( 2
s q + 1)

.
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”Statement” of ourL1
exp result:

Generation of tails of order s ≤ γ:
We provide a new proof of the generation of exponential tails e−α〈v〉

s
of order up

to s = γ for the most singular kernel
∫ π

0
b(cos θ) sin2θ sind−2 θ dθ <∞.

Propagation of higher-order tails:
This result depends on the strength of the angular singularity. If the angular

kernel satisfies
∫ π

0
b(cos θ) sinβθ sind−2 θ dθ <∞, with β ∈ (0, 2], we

establish propagation of Mittag-Leffler moments of order s < 4
2+β .

0.5 1 1.5 2

1

2

γ

β

4
2+β

0.5 1 1.5 2

1

2

β = 4
s − 2

s

β = 2
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Application to the inverse-power law model in 3D

If the intermolecular force is given by U(r) = r−(p−1), where r is the distance between
interacting particles, then B = |u|γb(cos θ) with

γ = p−5
p−1 ,

b(cos θ) ∼ Kθ−2− 2
p−1 as θ → 0.

Hard potentials correspond to p > 5. In this case, we have that:
1 Exponential moments of order s ∈ (0, γ] are generated.
2 Mittag-Leffler moments of order s ∈ (γ, 2− 2

p ) are propagated.

s = 2− 2
p

γ = p−5
p−1

p

s = order of the exponential eα〈v〉
s

0

1

2

2 3 4 5 6 7 8 9 10 11 12 13 14
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L∞ exponential tails
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Previous L∞
exp result

Grad’s cut-off case: Gamba, Panferov, Villani 2009 established propagation of
pointwise Gaussian tails. In other words:

f0(v) ≤ c e−α|v|
2
⇒ f (t, v) ≤ c1 e−α1|v|2 .

For this purpose, they established comparison principle for the Boltzmann equation.
Formally, it says that if

∂t f = Q(f , f ), f (0, v) = f0
∂tg ≥ Q(f , g), g(0, v) = g0,

then f0 ≤ g0 implies f ≤ g. So to establish propagation of pointwise Gaussian tails, all
they need to show is that Q(f ,M) < 0 (for large velocities). This last bound heavily
relies on the possibility to split gain and loss, which is not possible in the non-cutoff.
But, another beautiful aspect of their calculation is that the bound of Q(f ,M) will use L1

exponentially weighted norm. In that sense, their result enhances L1 exponentially
weighted bounds to L∞ exponentially weighted bounds. Moreover, they show

‖f‖L∞
exp(α|v|2)

≤ F (‖f‖L1
exp(α1|v|2)

).
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Previous L∞ result without weights

Very recently, Silvestre 2014 applied general techniques he developed with Schwab for
non-local equations to the Boltzmann equation. Along the way of proving Hölder
continuity of solutions to the Boltzmann equation, he establishes the lifting of from L1

to L∞ (notice there are no weights). This is done via a smart contradiction argument
that enables the author to extract a negative contribution out of the collision
operator in the strong form.

Our goal:

Adapt the contradiction argument of Silvestre to work with weighted spaces

Use L1 exponential bounds we established before to conclude propagation of
L∞ exponentially weighted bound.
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”Statement” of our L∞
exp result

Suppose:

Function f is a classical solution to the Boltzmann equation.

The angular kernel satisfies:

b(cos θ)(sin θ)d−2 ∼ (sin θ)−1−ν , ν ∈ (0, 1].

Exponential tails of order s propagate in time (by our L1
exp result, s ∈ [0, 4

2+ν )).

Then for every α0 there exists α1 < α0 and a uniform in time constant C so that

‖f0‖L∞
exp(α0〈v〉s)

<∞ ⇒ ‖f (t, v)‖L∞
exp(α1〈v〉s)

≤ ‖f (t, v)‖L1
exp(α〈v〉s)

≤ C.

Maja Tasković (UT Austin) Exponential tail behavior for solutions to the homogeneous Boltzmann equation 21 / 25



Few words on the proof: contradiction argument

Inspired by the contradiction argument of Silvestre, set as a goal the following estimate:

m(t) := ‖f‖L∞,(α,s) =

∥∥∥∥ f (t, v)

M(v)

∥∥∥∥
L∞

< a + bt−d/ν ,

where M(v) = e−α〈v〉
s

and where constants a, b > 0 will be determined later (they will
be multiples of ‖f/M‖L1

v
). Suppose t0 is the first time the inequality fails, i.e.

m(t0) = a + bt−d/ν
0 , and let v0 the the corresponding velocity where the maximum is

achieved. Then

∂t

(
f
M

)
≥ d

dt

(
a + bt−d/ν

)
,

which, after an algebraic manipulation, leads to a lower bound on ∂t f

∂t f (t0, v0) ≥ −d
ν

b−ν/d M(v0) (m(t0)− a)1+d/ν .

Goal: find an upper bound on Q(f , f )(t0, v0) that will contradict the last inequality.
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Few words on the proof: splitting and the negative contribution

The strong form of Q(f , f ) in the non-cutoff is usually split into two parts that are finite
thanks to the Cancellation lemma (e.g. Alexandre-Desvillettes-Villani-Wennberg):

Q(f , f ) = Q1 + Q2 =

∫
RN

∫
SN−1

(f ′ − f ) f ′∗ B dσdv∗ + f (v)
∫
RN

∫
SN−1

(f ′∗ − f∗)B dσdv∗

We further split the first term Q1(f , f ) in a way that is more suitable to deal with f/M
functions, so now Q = Q1,1 + Q1,2 + Q2, where:

Q1,1 = M(v)

∫
RN

∫
SN−1

(
f ′

M′
− f

M

)
f ′∗ B dσdv∗

Q1,2 =

∫
RN

∫
SN−1

f ′

M′
(M′ − M) f ′∗ B dσdv∗

Q2 = f (v)

∫
RN

∫
SN−1

(f ′∗ − f∗) B dσdv∗.
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Few words on the proof: splitting of Q(f , f )

At the point (t0, v0), the function f/M achieves its maximum. Hence,

Q1,1(t0, v0)= M(v0)

∫
RN

∫
SN−1

(
f ′

M′
− f (t0, v0)

M(v0)

)
f ′∗ B dσ dv∗

= −M(v0)

∫
RN

∫
SN−1

(
m(t0)− f ′

M′

)
f ′∗ B dσ dv∗,

so the term Q1,1 is negative at the point (t0, v0).

At the end of the day, one gets:

Q1,1(t0, v0)≤ −C m(t0)1+ν/d 〈v0〉1+γ+ν

Q1,2(t0, v0)≤ C m(t0) 〈v0〉1+γ+ν

Q2(t0, v0)≤ C m(t0) 〈v0〉γ .

Note that the negative term is dominating...
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Possible further questions

1 Soft potentials: tail behavior for γ < 0?

2 Tail behavior in L∞ sense: remove the assumption of classical solutions?

3 Can one use exp moments to get some results related to convergence to the
equilibrium?

Thank you!!!
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