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Similarities and differences b/w Kac and Boltzmann equations

Similarities between the Kac equation and the Boltzmann equations:

Both model the evolution of rarefied gases via a distribution function f (t , x , v).

Binary interactions between particles.

Quadratic collision operator.

Our assumption: spatial homogeneity, i.e. we assume the distribution function
f (t , v) does not depend on x .

Differences between the Kac equation and the Boltzmann equation:

The dimension of spatial and velocity spaces is d ≥ 2 for the Boltzmann
equation, while for the Kac equation d = 1.

Conservation laws: collisions modeled by the Boltzmann equation conserve
mass, momentum and energy, while those for the Kac equation conserve only
mass and energy (but not the momentum).

Pre-post collisional velocity laws are be different.
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The Kac equation

The Kac equation (1959, Kac) models a 1-dimensional gas in which collisions
conserve the mass and the energy, but not the momentum. The spatially
homogeneous Kac equation reads

∂t f (t, v) =

∫
R

∫ π

−π

(
f ′ f ′∗ − f f∗

)
bK (|θ|) dθ dv∗,

with the standard abbreviations f∗ := f (t , v∗), f ′ := f (t , v ′), f ′∗ := f (t , v ′∗).

Conservation of energy v ′2 + v ′2∗ = v2 + v2
∗ implies that the pre and

post-collisional velocities v ′, v ′∗ and v , v∗ can be related by introducing a
parameter θ ∈ [−π, π] as:

v ′ = v cos θ − v∗ sin θ,
v ′∗ = v sin θ + v∗ cos θ.

By a change of variables, one can also use the following relation:

v ′ =
√

v2 + v2
∗ cos θ,

v ′∗ =
√

v2 + v2
∗ sin θ.
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The Boltzmann equation

The Boltzmann equation (late 1860s and 1870s, Maxwell and Boltzmann)
models evolution of a d-dimensional gas (d ≥ 2) in which particles interact via
binary collisions. The spatially homogeneous Boltzmann equation reads:

∂t f =

∫
Rd

∫
Sd−1

(
f ′ f ′∗ − f f∗

)
|v − v∗|γ bB

(
v−v∗
|v−v∗| · σ

)
dσ dv∗,

Conservation of momentum and energy implies the following relation between pre
and post-collisional velocities (v ′, v ′∗) and (v , v∗):

v ′ =
v + v∗

2
+
|v − v∗|σ

2

v ′∗ =
v + v∗

2
− |v − v∗|σ

2
, σ ∈ Sd−1.

Notation: u′ = v ′ − v ′∗, u = v − v∗,
γ ∈ (0, 1]: hard potentials,
γ = 0: Maxwell molecules,
γ ∈ (−d , 0): soft potentials.

v ′

v ′∗

u′

v

v∗

O

u
σ

ûθ
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The angular cross-section

Angular kernels bK (|θ|) and bB(cos θ) often have a non-integrable singularity at
θ = 0. However, such singularity is often cut-off ( bK (|θ|) ∈ L1([0, π]) or
bB(û · σ) ∈ L1(Sd−1)). Cutoff simplifies the analysis of the collision operator by
enabling its splitting into the gain and loss terms Q(f , f ) = Q+(f , f )−Q−(f , f ). It was
believed that this removal of the non-integrability does not influence the equation
significantly. However, it has been observed that singularity carries regularizing
effect. This motivates further study of the non-cutoff regime:

Non-cutoff (Kac): ∫ π

−π
bK (|θ|) dθ =∞,∫ π

−π
bK (|θ|) sinβ θ dθ <∞, β ∈ (0, 2]

Non-cutoff (Boltzmann):∫ π

0
bB(cos θ) sind−2 θ dθ =∞,∫ π

0
bb(cos θ) sinβθ sind−2 θ dθ <∞, β ∈ (0, 2]
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Summary: Kac equation and Boltzmann equation for Maxwell molecules

Kac equation:

∂t f =

∫
R

∫ π

−π

(
f ′ f ′∗ − f f∗

)
bK (|θ|) dθ dv∗,

∫ π

−π
bK (|θ|) dθ =∞,∫ π

−π
bK (|θ|) sinβ θ dθ <∞, β ∈ (0, 2]

Boltzmann equation for Maxwell molecules:

∂t f =

∫
Rd

∫
Sd−1

(
f ′ f ′∗ − f f∗

)
bB

(
v−v∗
|v−v∗| · σ

)
dσ dv∗,

∫ π

0
bB(cos θ) sind−2 θ dθ =∞,∫ π

0
bb(cos θ) sinβθ sind−2 θ dθ <∞, β ∈ (0, 2]
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What do we study?

We say that f has an exponential tail in the L1 if, for some rate α > 0 and some order
s > 0, the following norm is finite:

‖f‖L1
exp(α 〈v〉s)

(t) :=

∫
Rd

f (t, v) eα 〈v〉
s

dv <∞.

We study whether these norms propagate in time:

propagation of exponentially weighted L1 norms means:∫
Rd

f0(v) eα0

〈
v
〉s

dv < C0, for some α0, s > 0

⇒ ∃α,C > 0, ∀t ≥ 0 :

∫
Rd

f (t, v) eα
〈

v
〉s

dv < C.

generation of exponentially weighted L1 norms means∫
Rd

f0(v) 〈v〉q dv < C0, for some q ∈ N

⇒ ∃α, s,C > 0, ∀t > 0 :

∫
Rd

f (t, v) eα
〈

v
〉s

dv < C.
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Why exponential moments?

They provide information about tail behavior of solutions (exponential decay of
f (t , v) for large velocities).

First step towards pointwise exponential bounds L∞exp. In fact, in 1972 Arkeryd
asked if the following is true for the Boltzmann equation:

f0(v) ≤ c e−α0|v|2 ⇒ f (t, v) ≤ c1 e−α1|v|2 .

First results in this direction were in the L1 setting by Bobylev in 1984 and 1997.
Original question was addressed by Gamba, Panferov and Villani in 2009 in the
cutoff case, by relating L∞exp norm with L1

exp norms.
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Previous results
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Previous results

1984 Bobylev: Boltzmann equation for Maxwell molecules, s = 2
1993 Desvillettes: Kac equation, s = 1, s = 2
1997 Bobylev: Hard sphere, s = 2. This paper opened the doors for many
extensions:

2004 Bobylev-Gamba-Panferov
2009 Gamba-Panferov-Villani
2006 Mouhot 2006
2013 Alonso-Canizo-amba-Mouhot
2012 Lu-Mouhot 2012
2016 T.-Alonso-Gamba-Pavlović

Cutoff case for γ > 0:
generation propagation

s = order of the exponential eα〈v〉
s

21γ0

Non-cutoff case for γ > 0:
generation propagation

s = order of the exponential eα〈v〉
s

21γ0
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Desvillettes 1993

For the Kac equation with constant angular kernel and for orders s = 1 and s = 2,
Desvillettes 1993 proved propagation of exponential moments of integer orders
s = 1 and s = 2.

His elegant proof works directly with exponential moments. For example, for
s = 2, let the exponential moment of order 2 be denoted by

M(t , α) =
∫
R

f (t , v)eα|v|2 dv .

Multiply the Kac equation with the exponential weight and integrate in v :

∂tM(t , α) =
∫
R

K (f , f )eα|v|2 dv

=

∫
R

∫
R

∫ π

−π

f f∗
(

eα|v′|2 − eα|v|2
) dθ

2π
dvdv∗

=

∫
R

∫
R

∫ π

−π

f f∗
(

eα(|v|2+|v∗|2) cos2 θ − eα|v|2
) dθ

2π
dvdv∗

=

∫ π

−π

M2(t , α cos2 θ)−M(t , α)M(0, 0)
dθ
2π
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Bobylev 1997

The first groundbreaking work on exponential moments for hard potentials and cutoff,
was done by Bobylev in 1997. The key idea is to Taylor expand exponential function
to reformulate (formally) the question to showing summability of polynomial moments
renormalized by Gamma functions:∫

Rd
f (t, v) eα 〈v〉

s
dv =

∫
Rd

f (t, v)
∞∑

q=0

〈v〉qs αq

q!
dv =

∞∑
q=0

mqs(t)αq

Γ(q + 1)
.

Because of the required summability, constants need to be sharper compared to
results concerning polynomial moments. Estimates are developed by looking for
ordinary differential inequalities for mqs, and then deriving:

term-by-term estimates

partial sum estimates
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Classical technique

Multiply the Boltzmann equation with 〈v〉2q :

∂t f 〈v〉2q = Q(f , f ) 〈v〉2q .

Integrate in velocity. The weak form of the collision operator yields

m′2q(t)=

∫
Rd

Q(f , f ) 〈v〉2q dv

=
1
2

∫
R2d

f f∗
(∫

Sd−1

(
〈v ′〉2q + 〈v ′∗〉2q − 〈v〉2q − 〈v∗〉2q

)
|u|γ b(û · σ) dσ

)
dvdv∗

Then, look for a bound of the right-hand-side in terms of polynomial moments. For the
bounds to be good enough it is important that the highest-order moment comes with a
negative sign.

m′2q ≤−K1 m2q+γ + K2 m2q

+ K3 εq

b q+1
2 c∑

k=1

(
q
k

) (
m2k+γ m2(q−k) + m2k m2(q−k)+γ

)
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Our contribution
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Our main result

Theorem (Pavic-Colic, T. 2016)
Suppose initial datum f0 ≥ 0 has finite mass, energy and entropy. Let f (t , v) be an
associated weak solution to the Kac equation with the angular kernel satisfying:∫ π

−π
bK (|θ|) dθ =∞,∫ π

−π
bK (|θ|) sinβ θ dθ <∞, β ∈ (0, 2]

If
s ≤ 4

2 + β
,

then for every α0 > 0 there exists 0 < α ≤ α0 and a constant C > 0 (depending only
on the initial data and κ) so that

if
∫
R

f0(v)eα0〈v〉s dv ≤ M0 <∞,

then
∫
R

f (t, v)eα〈v〉
s
dv ≤ C, ∀t ≥ 0.
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Interpretation

0.5 1 1.5 2

1

2
s

β

4
2+β
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Strategy

We use recent techniques of T.-Alonso-Gamba-Pavlovic 2016, which consists of
studying generalized exponential moments, so-called Mittag-Leffler moments. They
are L1 norms weighted with Mittag-Leffler functions:

Ea(x) :=
∞∑

q=0

xq

Γ(aq + 1)

They generalize exponentials and are known to asymptotically behave like exp:

Ea(x) ∼ ex1/a
, for x � 1.

Because of this asymptotic behavior, finiteness of exponential moment is equivalent to
the finiteness of the corresponding Mittag-Leffler moment. So, we work with:

Definition (Mittag-Leffler moment)

The Mittag-Leffler moment of f of order s and rate α > 0 is introduced via:

ML(α,s) =
∞∑

q=0

m2q α
2q/s

Γ( 2
s q + 1)

.
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Why Mittag-Leffler moments? part 1

We develop the partial sum technique for the non-cutoff case. The story begins as
before

m′2q(t)=

∫
R

K (f , f ) 〈v〉2q dv

=
1
2

∫
R

∫
R

f f∗
∫ π

−π

(
〈v ′〉2q + 〈v ′∗〉2q − 〈v〉2q − 〈v∗〉2q

)
bK (|θ|) dθ dv∗ dv .

First challenge is angular singularity. Need to exploit certain cancellation properties
that become visible after an application of the Taylor expansion to the test functions.

This leads to an ODI for polynomial moments with another challenge: compared to
the Grad’s cutoff, there are two extra powers of q in the last term of the inequality:

m′2q ≤−K1 m2q + K2 m2q−2+ K3 εβ,q q (q − 1)

b q+1
2 c∑

k=1

(
q − 2
k − 1

)
m2k m2(q−k)
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Why Mittag-Leffler moments? part 2

Sequence εq depends on the angular kernel b(cos θ). It has the following property:

β ∈ [0, 2] q1−β2 εβ,q → 0, as q →∞,
β = 0 (Grad’s cutoff) q ε0,q → 0, as q →∞,
β = 2 (Full non-cutoff) ε2,q → 0, as q →∞.

Need to reduce the quadratic power of q(q − 1) in

m′2q ≤ ...+ εβ,q q (q − 1)

b q+1
2 c∑

k=1

(
q − 2
k − 1

)
m2k m2(q−k)

Going towards partial sums, divide all moments by appropriate Gamma functions:

m′2q

Γ(aq + 1)
≤ ...+ εβ,q q (q − 1)

Γ(aq + 1)

b q+1
2 c∑

k=1

(
q − 2
k − 1

)
× m2k

Γ(ak + 1)

m2(q−k)

Γ(a(q − k) + 1)

Γ(aq + 2)B(ak + 1, a(q − k) + 1)
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Why Mittag-Leffler moments? part 3

Use

b q+1
2 c∑

k=1

(
q − 2
k − 1

)
B(ak + 1, a(q − k) + 1) ≤ Ca

1
qa+1

Last inequality holds only if a > 1, and hence the need for Mittag-Leffler moments.

This yields εβ,q q2−a in an ODE for partial sums. For this sequence to converge to
zero as q →∞, we need:

2− a = 2− 2
s
≤ 1− β

2
Hence the order of the exponential moment depends on the signularity rate of the
angular kernel as:

s ≤ 4
2 + β

.
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Possible further questions

1 L∞exp bounds for the Kac equation

2 Exponential moments for soft potentials γ < 0?

3 Lower bounds?

4 Relation with the rate of convergence to the equilibrium?

Thank you!!!
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Maja Tasković (UPenn) Exponential moments for the homogeneous Kac equation 23 / 23


	Introduction
	Previous results
	Our contribution 

