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Introduction

Memory effects

Memory effects are ubiquitous in physics and engineering ( particles in
heat bath; soft matter with viscoelasticity)

One-sided convolution is usually used to model the memory effects.

A typical example is the generalized Langevin equation (GLE) (Mori,
Kubo, Zwangzig):

ẋ = v ,

mv̇ =−∇V (x)−
∫ t

t0
γ(t−s)v(s)ds + R(t)

R(t) is a random noise satisfying the so-called fluctuation-dissipation
theorem:

E(R(t0)R(t0 + t)) = mE(v(t0)2)γ(|t |) = kT γ(|t |).
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Introduction

GLE: Memory effects often lead to fractional calculus

For absolutely continuous functions, the Caputo derivative is

Dα
c x =

1
Γ(1−α)

∫ t

0

ẋ(s)

(t−s)α
ds,

Our recent work (Li, Liu and Lu) considers the over-damped regime of
GLE driven by fractional noise, leading to the following fractional SDE
model:

D2−2H
c x =−∇V (x) + ḂH .

I Dα
c x is the Caputo derivative, which corresponds to the

∫ t
t0 γ(t−s)v(s)ds

term in the GLE model. ḂH is the fractional noise.
I For a physical system, the Caputo derivative and the fractional noise must

appear in pairs.
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Introduction

Time FPDEs: Some probabilistic interpretations

Hairer, Iyer et. al. recently showed that some intermediate time behaviors
of celluclar flows can be described by time fractional diffusion equations
with Caputo derivatives. (In other words, in certain scaling regime, the
solutions to an advection-diffusion equations converge weakly to the
solution of time fractional diffusion equations)

Meerschaert and Scheffer noticed that the solution to the time fractional
diffusion equation with order γ with initial data u0 = f (x) admits the
following probabilistic representation:

u(x , t) = Ex (f (WEt ))

where W is a Brownian motion and Et is an inverse γ-stable subordinator
independent of β .
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Introduction

Fractional calculus

Integrals of order γ > 0:

Jγ f (t) =
1

Γ(γ)

∫ t

0
(t−s)γ−1f (s)ds

The fractional integral is just the convolution between θ(t)f and
gγ (t) = θ(t) 1

Γ(γ) tγ−1. θ(t) is the Heaviside step function.
I Example: J2f =

∫ t
0
∫

τ

0 f (s)ds dτ =
∫ t
0(t−s)f (s)ds

For derivatives, Riemann-Liouville and Caputo types are widely used:
If γ ∈ (n−1,n),

Dγ

rl f (t) =
1

Γ(n− γ)

dn

dtn

∫ t

0

f (s)

(t−s)γ+1−n ds, Dγ

c f (t) =
1

Γ(n− γ)

∫ t

0

f (n)(s)

(t−s)γ+1−n ds.

If γ = n, they are defined as the usual derivative f (n)(t).
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Introduction

Properties and issues for the traditional definition

The integrals {Jγ} form a semigroup. Dγ

rl = DnJγ−(n−1) and
Dγ

c = Jγ−(n−1)Dn.

If α ≥ γ > 0:
Dγ

rlJα = Dγ

cJα = Jα−γ .

The Riemann-Liouville operator and Caputo derivative are left inverse of
integrals, but in general not the right inverse: JDf = f (t)− f (0).

I Dγ

rl1 6= 0. This is due to a jump at t = 0 for causality.
I Dγ

c1 = 0. The Caputo derivative removes the singularity at t = 0. The
dynamics is counted from t = 0+.

The definition of Caputo derivative requires higher order derivatives.
intuitively, if we want to define γ-th order derivative, we do not need it to
be n-th order differentiable.

Lei Li (Math Dept) Compactness and fractional PDEs October 11, 2017 8 / 42



Introduction

Some recent definitions to extend Caputo derivatives

In the book by Kilbas et. al, the Caputo derivative with order γ ∈ (0,1)
was defined using Riemann-Liouville derivatives.

In a recent work by Allen, Caffarelli and Vasseur, the Caputo derivative
was defined by an integral form.

In the work by Gorenflo, Luchko and Yamamoto, the Caputo derivative
was extended to functions in some Sobolev spaces using functional
analysis tools.

Li and Liu extended the definition of Caputo derivatives to a certain class
of locally integrable functions based on a convolution group. This
definition reveals the underlying structures and is theoretically convenient
.
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Introduction

Fractional differential equations
Caputo derivatives count the dynamics from t = 0+ and shares many
similarities with usual derivatives, so more suited to initial value problems.

Fractional ODE theory has been well established.
I Books by Kilbas, and Diethelm for FODEs with Caputo derivatives.
I Recently, Feng, Li, Liu and Xu studied 1D autonomous FODEs using a

generalized definition. The monotonicity and blowup have been discussed
thoroughly.

Fractional SDEs: for physical systems, fractional noise must be paired
with Caputo derivatives while for other models, they may not be paired.

Very little rigorous study of FPDEs.
I The time fractional diffusion equations have been studied by M. Taylor, and

Caffarelli et. al.
I Many papers used the old definition of Caputo derivatives to study other

types of fractional PDEs, but are not mathematically rigorous.
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Definition of weak Caputo derivatives

A convolution group and a generalized definition of
Caputo derivatives

In the book by Gel’fand and Shilov, integrals and derivatives of arbitrary
order for a distribution supported on [0,∞) are defined to as

ϕ
(α) = ϕ ∗gα , gα :=

tα−1
+

Γ(α)
, α ∈ C.

Here t+ = max(t ,0) = θ(t)t and tα−1
+

Γ(α) must be understood as distributions
for ℜ(α)≤ 0.

We use this group {gα : α ∈ C} (with more convenient forms) in our work
to define the modified Riemann-Liouville calculus. The derivatives are
now inverse of integral operators.
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Definition of weak Caputo derivatives

A convolution group and a generalized definition of
Caputo derivatives
The extended Caputo derivative:

Definition 1
Let 0 < γ < 1. Consider u ∈ L1

loc(0,T ;R) and there is u0 ∈ R such that
limt→0

1
t
∫ t

0 |u(s)−u0|ds = 0. The γ-th order Caputo derivative of u is a
distribution in D ′(−∞,T ) with support in [0,T ), given by

Dγ

cu := g−γ ∗
(

(u−u0)θ(t)
)
.

For β ∈ (−1,0), gβ (t) = 1
Γ(1+β )

D(θ(t)tβ ), where D means the
distributional derivative in D ′.

One can check that this agrees with the traditional definition of Caputo
derivatives if u is absolutely continuous.
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Definition of weak Caputo derivatives

Right derivatives
Another group given by

C̃ := {g̃α : g̃α (t) = gα (−t),α ∈ R}.
Clearly, supp g̃ ⊂ (−∞,0].

Right Caputo derivatives:

Definition 2
Let 0 < γ < 1. Consider u ∈ L1

loc(−∞,T ) such that T is a Lebesgue point. The
γ-th order right Caputo derivative of u is a distribution in D ′(R) with support in
(−∞,T ], given by

D̃γ

c;T u := g̃−γ ∗ (θ(T − t)(u(t)−u(T−))).

If u is absolutely continuous on (a,T ), a < T , then

D̃γ

c;T u =− 1
Γ(1− γ)

∫ T

t
(s− t)−γ u̇(s)ds, ∀t ∈ (a,T ). (1)
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Definition of weak Caputo derivatives

Integration by parts using right derivatives
Lemma 3
Let u,v be absolutely continuous on (0,T ), then we have the integration by
parts formula for Caputo derivatives∫ T

0
(Dγ

cu)(v(t)−v(T−))dt =
∫ T

0
(u(t)−u(0+))(D̃γ

c;T v)dt .

This relation also holds if u ∈ L1
loc(0,T ) so that u(0+) exists and

v ∈ C∞
c (−∞,T ).

Remark 1
If γ → 1, it is not hard to see that D̃γ

c;T u→−u′(t) weakly. Hence, the right
derivatives carry a natural negative sign.

Remark 2
Assuming that u,v are smooth functions, this identity can be verified easily
using traditional definitions of left and right Caputo derivatives.
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Definition of weak Caputo derivatives

Weak Caputo derivatives for functions valued in
Banach spaces?

Fix T > 0 and introduce the following sets:

D ′ :=
{

v
∣∣∣ v : C∞

c ((−∞,T );R)→ B is a bounded linear operator
}
.

In other words, D ′ consists of functionals from C∞
c ((−∞,T );R) to B.

Definition of weak Caputo derivatives:

Definition 4
Let B be a Banach space and u ∈ L1

loc([0,T );B). Let u0 ∈ B. We define the
weak Caputo derivative of u associated with initial data u0 to be Dγ

cu ∈D ′

such that for any test function ϕ ∈ C∞
c ((−∞,T );R),

〈Dγ

cu,ϕ〉 :=
∫ T

−∞

(u−u0)θ(t)(D̃γ

c;T ϕ)dt =
∫ T

0
(u−u0)D̃γ

c;T ϕ dt .
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Definition of weak Caputo derivatives

Some basic properties of the weak Caputo derivatives

supp Dγ

cu ⊂ [0,T ).

If B = Rd and u(0+) = u0, then the Caputo derivative is then given by

Dγ

cu = g−γ ∗ ((u−u0)θ(t)).

Let γ ∈ (0,1). If Dγ

cu ∈ L1
loc([0,T );B), then

u(t) = Jγ (Dγ

cu) = u0 +
1

Γ(γ)

∫ t

0
(t−s)γ−1Dγ

cu ds, a.e. on (0,T ).

where the integral is understood as the Lebesgue integral.
If u is absolutely continuous, then Dγ

cu ∈ L1
loc([0,T );B) for γ ∈ (0,1) and

Dγ

cu(t) =
1

Γ(1− γ)

∫ t

0

u̇(s)

(t−s)γ
ds, t ∈ [0,T ). (2)
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Definition of weak Caputo derivatives

An important lemma

Proposition 1
Let γ ∈ (0,1). If u : [0,T )→ B is C1((0,T );B)∩C0([0,T );B), and
u 7→ E(u) ∈ R is a C1 convex functional on B, then

Dγ

cu(t) =
1

Γ(1− γ)

(
u(t)−u(0)

tγ
+ γ

∫ t

0

u(t)−u(s)

(t−s)γ+1 ds
)

(3)

and

Dγ

cE(u(t))≤
〈
DuE(u),Dγ

cu
〉
, (4)

where DuE(·) : B→ B′ is the Fréchet differential and 〈·, ·〉 is understood as the
dual pairing between B′ and B.

The proof is very straightforward by observing

E(u(t))−E(b)≤ DuE(u(t)) · (u(t)−b), ∀b ∈ B.
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Definition of weak Caputo derivatives

Regularity improvements by fractional integral

Proposition 2
Let B be a Banach space and T > 0 and γ ∈ (0,1). Suppose u ∈ L1

loc((0,T );B)

and f = Dγ

cu with an assigned initial value u0 ∈ B.
(i) If f ∈ L∞((0,T );B), then u is Hölder continuous with order γ− ε for any

ε ∈ (0,γ). If f is continuous, then u is γ-th order Hölder continuous.
(ii) If further there exists δ > 0, such that f ∈Cm,β ([δ/4,T ];B), with β ∈ [0,1],

then

u ∈


Cm,β +γ ([δ ,T ];B), β + γ < 1,
Cm+1,β +γ−1([δ ,T ];B), β + γ > 1,
Cm,1;1([δ ,T ];B), β + γ = 1.

(iii) If there exists δ > 0, such that f ∈ Hs((δ/4,T );B) (the Sobolev space
W 1,s((δ/4,T );B)), then u ∈ Hs+γ ((δ ,T );B)

The claims are not true in general if δ = 0. For example, f = 1, then we have
u = u0 + tγ/Γ(1 + γ). There is an intrinsic singularity at t = 0.
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Compactness Criteria

The traditional Aubin-Lions Lemma and its variants

The traditional Aubin-Lions-Simon lemma:
Let X0,X ,X1 be three Banach spaces such that X0 is compactly
embedded into X and X is continuously embedded into X1. Let

W = {u ∈ Lp([0,T ];X0)|ut ∈ Lq([0,T ];X1)}.

(i) If p < ∞, W is relatively compact in Lp([0,T ];X ).
(ii) If p = ∞ and q > 1, W is relatively compact in C([0,T ];X ).

In the work by Chen, Jungel and Liu, several variants of Aubin-Lions
lemma have been summarized and proved. The results here apply to
many common nonlinear PDEs.
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Compactness Criteria

The role of Aubin-Lions Lemma in parabolic equations
The Aubin-Lions Lemma is a powerful tool for establishing the existence of
weak solutions to nonlinear PDEs with diffusion.

As a trivial but illustrating example, consider

ut = ∆u, x ∈ Ω; u = 0, x ∈ ∂ Ω.

Suppose u|t=0 = u0 ∈ L2(Ω). The proof of existence of weak solutions is as
following (though I did not introduce the definition of weak solutions):

Find a common basis to L2 and H1
0 , {wk}. Expand u0 = ∑k αk wk .

Let um = ∑
m
k=1 ck (t)wk . Solve the ODE system

〈∂tum,wj〉= 〈∆um,wj〉, j = 1, . . . ,m.

We have 1
2 ∂t‖um‖22 =−‖∇um‖22, which yields the uniform boundedness of

um in L∞(L2) and L2(H1
0 ).

One can estimate ‖∂tum‖L2(H−1). Then, the Aubin-Lions lemma yields the
relative compactness of {um} in L2(L2). The limit of a subsequence is
then a weak solution.
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Compactness Criteria

FPDEs? Some a priori estimates and motivation
Consider the simple time fractional diffusion equation with Dirichlet condition:

Dγ

cu = ∆u, x ∈ Ω.

Formula is available (See the notes by M. Taylor).

Show the existence of solutions without using the formula? We do a priori
estimates.

∫
u Dγ

cudx =−
∫
|∇u|2dx . Using the important lemma about

convex functional:

1
2

Dγ

c‖u‖22 ≤
∫

u Dγ

cudx =−
∫
|∇u|2dx

This implies that

‖u‖22(t) +
2

Γ(γ)

∫ t

0
(t−s)γ−1‖∇u(s)‖22 ds ≤ ‖u0‖22.

Goal: use the boundedness of
∫ t

0(t−s)γ−1‖∇u(s)‖22 ds and L∞(0,∞;L2) to
find a certain compactness criterion and then the existence of weak
solution follows.
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Compactness Criteria

The first compactness criteria
We propose two compactness criteria, which could be useful at different
situations (see the examples later).

Theorem 5
Let T > 0,γ ∈ (0,1) and p ∈ [1,∞). Let M,B,Y be Banach spaces. M ↪→ B
compactly and B ↪→ Y continuously. Suppose W ⊂ L1

loc((0,T );M) satisfies:
(i) There exists C1 > 0 such that ∀u ∈W,

sup
t∈(0,T )

Jγ (‖u‖pM) = sup
t∈(0,T )

1
Γ(γ)

∫ t

0
(t−s)γ−1‖u‖pM(s)ds ≤ C1.

(ii) There exist r ∈ ( p
1+pγ

,∞)∩ [1,∞) and C3 > 0 such that ∀u ∈W, there is an
assignment of initial value u0 for u so that the weak Caputo derivative
satisfies:

‖Dγ

cu‖Lr ((0,T );Y ) ≤ C3.

Then, W is relatively compact in Lp((0,T );B).
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Compactness Criteria

The second compactness criteria

Theorem 6

Let T > 0,γ ∈ (0,1) and p ∈ [1,∞). Let M,B,Y be Banach spaces. M ↪→ B
compactly and B ↪→ Y continuously. Suppose W ⊂ L1

loc((0,T );M) satisfies:
(i). There exists r1 ∈ [1,∞) and C1 > 0 such that ∀u ∈W,

sup
t∈(0,T )

Jγ (‖u‖r1M) = sup
t∈(0,T )

1
Γ(γ)

∫ t

0
(t−s)γ−1‖u‖r1M(s)ds ≤ C1.

(ii). There exists p1 ∈ (p,∞], W is bounded in Lp1((0,T );B).
(iii). There exist r2 ∈ [1,∞) and C2 > 0 such that ∀u ∈W, there is an
assignment of initial value u0 for u so that the weak Caputo derivative
satisfies:

‖Dγ

cu‖Lr2 ((0,T );Y ) ≤ C2,

Then, W is relatively compact in Lp((0,T );B).
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Compactness Criteria

Sketch of the proof 1: The implication of boundness
fractional integral

Let γ ∈ (0,1). If supt∈(0,T )
1

Γ(γ)

∫ t
0(t−s)γ−1‖f (s)‖pMds < ∞, then

f ∈ Lp((0,T );M).
I Proof:

∫ T
0 ‖f‖

p
M(s)ds ≤ T 1−γ

∫ T
0 (T −s)γ−1‖f‖pMds.

The results can not essentially be improved: Suppose µ is the middle 1/3
Cantor measure that is Ahlfors-regular of degree (or dimension)
α = ln2/ ln3. Then, if γ > 1−α,

sup
t∈[0,1]

∫ 1

0
|t−s|γ−1dµ(s) < ∞.
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Compactness Criteria

Sketch of the proof 2: Time shift estimates

Proposition 3
Fix T > 0. Let B be a Banach space and γ ∈ (0,1). Suppose u ∈ L1

loc((0,T );B)

has a weak Caputo derivative Dγ

cu ∈ Lp((0,T );B) associated with initial value
u0 ∈ B. If pγ ≥ 1, we set r0 = ∞ and if pγ < 1, we set r0 = p/(1−pγ). Then,
there exists C > 0 independent of h and u such that

‖τhu−u‖Lr ((0,T−h);B) ≤

{
Chγ+ 1

r −
1
p ‖Dγ

cu‖Lp((0,T );B), r ∈ [p, r0),

Chγ‖Dγ

cu‖Lp((0,T );B), r ∈ [1,p].
(5)
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Compactness Criteria

Sketch of the proof 3: Some key lemmas

The first:

Lemma 7
Suppose M,B,Y are three Banach spaces. M ↪→ B ↪→ Y with the embedding
M → B be compact. 1≤ p < ∞ and
(i). W is bounded in Lp((0,T );M);
(ii). ‖τhf − f‖Lp((0,T−h);Y )→ 0 uniformly as h→ 0.
Then, W is relatively compact in Lp((0,T );B).

The second:

Lemma 8
Let 1 < p1 ≤ ∞. If W is a bounded set in Lp1((0,T );B) and relatively compact
in L1

loc((0,T );B), then it is relatively compact in Lp((0,T );B) for all 1≤ p < p1.
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Examples of fractional PDEs A special case of time fractional compressible Navier-Stokes equations
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Examples of fractional PDEs A special case of time fractional compressible Navier-Stokes equations

Time fractional compressible Navier-Stokes equations

The first toy problem is:Dγ

cu + ∇ · (uu) +
1
2

∇(|u|2) = ∆u, x ∈ Ω,

u|∂ Ω = 0, x ∈ ∂ Ω.

Ω⊂ Rd (d = 2,3) is an open bounded domain with smooth boundary.

The nonconservative form Dγ

cu + u ·∇u + (∇u) ·u + (∇ ·u)u = ∆u is the
time fractional Burgers equation.

For the usual time derivative, it is also called the Euler-Poincare equation.
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Examples of fractional PDEs A special case of time fractional compressible Navier-Stokes equations

Weak formulation
Using the definition of weak Caputo derivative, we can formulate the definition
of weak solutions as following

Definition 9

Let γ ∈ (0,1). We say u ∈ L∞((0,T );L2(Ω))∩L2((0,T );H1
0 (Ω)) with

Dγ

cu ∈ Lq1((0,T );H−1(Ω)), q1 = min(2,4/d),

is a weak solution with initial data u0 ∈ L2(Ω), if

〈
u(x ,s)−u0, D̃

γ

c;T ϕ

〉
−
∫ T

0

∫
Ω

∇ϕ : u⊗u dxdt

− 1
2

∫ T

0

∫
Ω

∇ ·ϕ|u|2 dxdt =
∫ T

0

∫
Ω

u ·∆ϕ dxdt , (6)

for any ϕ ∈ C∞
c ([0,T )×Ω;Rd ). We say a weak solution is a regular weak

solution if u(0+) = u0.
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Examples of fractional PDEs A special case of time fractional compressible Navier-Stokes equations

Existence of weak solutions
The idea is to use Galerkin’s method to form an approximating function
sequence and then apply our first compactness criteria.

Pick a common basis {wk}∞

k=1 of L2(Ω) and H1
0 (Ω), orthonormal in L2. By

the uniform boundedness principle,

Pm : v 7→
m

∑
k=1

αk wk

is uniformly bounded in both H1
0 and L2.

Decompose u0 = ∑
∞

k=1 αk wk (x) in L2(Ω). Consider um(t) = ∑
m
k=1 ck

m(t)wk
satisfying

〈Dγ

cum,wj〉+ 〈∇ · (um⊗um),wj〉+
1
2
〈∇|um|2,wj〉= 〈∆um,wj〉,

um(0) =
m

∑
k=1

ck
m(0)wk =

m

∑
k=1

α
k wk .

(7)
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Examples of fractional PDEs A special case of time fractional compressible Navier-Stokes equations

Existence of weak solutions (continued)
The equation for um is reduced to an FODE for the coefficient cm. By the
result in Feng, Li, Liu and Xu:

um ∈ C1((0,∞);H1
0 (Ω))∩C0([0,∞);H1

0 (Ω)).

Note that um(0) ∈ H1
0 (Ω) though u0 is not necessarily in H1

0 .

Using the important lemma about convex functional, we have the energy
estimates:

‖um‖L∞((0,∞);L2(Ω)) ≤ ‖u0‖2, sup
0≤t<∞

∫ t

0
(t−s)γ−1‖∇um‖22ds ≤ 1

2
Γ(γ)‖u0‖2.

Using the fact that Pm is uniformly bounded, we find

‖Dγ

cum‖Lq1 (0,T ;H−1) ≤ C, q1 = min

(
2,

4
d

)
.

The second compactness criterion then yields a convergent
subsequence in L2(0,T ;L2), and the limit is a weak solution.
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2D time fractional Keller-Segel equations
As another toy problem, we consider{

Dγ

cρ + ∇ · (ρ∇c) = ∆ρ, x ∈ R2,

−∆c = ρ, x ∈ R2.

Initial condition is ρ(x ,0) = ρ0 ≥ 0.

Definition 10

We say ρ ∈ L∞(0,T ;L1(R2))∩L∞(0,T ;L2(R2))∩L2(0,T ;H1(R2)) is a weak
solution with initial data ρ0 ≥ 0 and ρ0 ∈ L1(R2)∩L2(R2), if
(i). ρ(x , t)≥ 0. (ii). There exists q ∈ (1,2) such that
Dγ

cu ∈ Lq1((0,T );W−2,q(R2)) for any q1 ∈ (1,∞). (iii). For any
ϕ ∈ C∞

c ([0,T )×R2),〈
u(x ,s)−u0, D̃

γ

c;T ϕ

〉
−
∫ T

0

∫
R2

∇ϕ · (∇(−∆)−1
ρ)ρ dxdt = 〈u,∆ϕ〉.

We say a weak solution is a regular weak solution if u(0+) = u0.
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The regularized system
To prove the existence of weak solutions, we construct an approximating
sequence. One standard idea is to consider a regularized system.

J(x) ∈ C∞
c (R2), J(x)≥ 0 and

∫
R2 J(x)dx = 1, Jε = 1

ε2 J
( x

ε

)
.

{
Dγ

cρ
ε + ∇ · (ρ

ε
∇cε ) = ∆ρ

ε ,

−∆cε = ρ
ε ∗Jε ,

Initial data ρε

0 = ρ0 ∗Jε , which has the same L1 norm as ρ0.

The question is that how we can show the existence of strong solutions of
the regularized system.

I The answer is to show the existence of mild solution and then show the mild
solution is a strong solution with the regularity proved.
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Linear time fractional advection diffusion equations

Dγ

cρ + ∇ · (ρa(x , t)) = ∆ρ,

Initila data ρ(x ,0) = ρ0.

By the Laplace transform, we have (A =−∆):

ρ(x , t) = Eγ (−tγA)ρ0 + γ

∫ t

0
τ

γ−1E ′γ (−τ
γA)(−∇ · (ρa)|t−τ )dτ.

An important observation is

‖E ′γ (−τ
γA)∇f‖2Hα ≤ C

∫
R2

E ′γ (−τ
γ |k |2)2|k |2 |̂fk |2(1 + |k |2α )dk

≤ Cτ
−γ

∫
R2
|̂fk |2(1 + |k |2α )dk = Cτ

−γ‖f‖2Hα .
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Linear time fractional advection diffusion equations

Lemma 11
Suppose a(x , t) is smooth and all the derivatives are bounded. Then:

(i) If ρ0 ∈ L1(R2)∩Hα (R2), then ∀T > 0, the equation has a unique mild
solution in C([0,T ];Hα (R2)).

(ii) For the unique mild solution in (i), ∀T > 0,

ρ ∈ C0,γ ([0,T ];Hα (R2))∩C∞((0,T );Hα (R2)).

The mild solution is a strong solution in C([0,T ];Hα−2) so that:

Dγ

cρ =
1

Γ(1− γ)

∫ t

0

ρ̇(s)

(t−s)γ
ds =−∇ · (ρa(x , t)) + ∆ρ.

(iii) If ρ0 ∈ H1(R2)∩L1(R2) and ρ0 ≥ 0, then ρ(x , t)≥ 0, and∫
R2

ρ dx =
∫
R2

ρ0 dx .
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Strong solutions of the regularized system

{
Dγ

cρ
ε + ∇ · (ρ

ε
∇cε ) = ∆ρ

ε ,

−∆cε = ρ
ε ∗Jε ,

Initial data ρε

0 = ρ0 ∗Jε .

Step 1: Existence and uniqueness of mild solutions. This is similar as
what we do for the linear equations.
Step 2: Let cε = (−∆)−1ρε and consider the linear problem:

Dγ

cv + ∇ · (v∇cε ) = ∆v .

By the results for linear advection-diffusion equation, we know this has
strong solutions, which then must be the mild solution ρε . Also, it is
nonnegative and preserves L1 norm.
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Energy estimates and compactness
By the standard Sobolev embeddings and the important lemma about
convex energy functional: 1

q Dγ

c‖ρε‖qq ≤ 〈(ρε )q−1,Dγ

cρε〉, we have

Lemma 12
Suppose ρ0 ≥ 0 satisfies that ρ0 ∈ L1∩L2 and M0 = ‖ρ0‖1 is sufficiently small.
Then, ρε ≥ 0 and for any fixed T > 0,

‖ρε‖L∞(0,T ;Lq) ≤ C(q,T ),∀q ∈ [1,2],

sup
0≤t≤T

∫ t

0
(t−s)γ−1‖∇ρ

ε‖22ds ≤ C(T ).

Further, there exists q ∈ (1,2) such that Dγ

cρε is uniformly bounded in
Lq1(0,T ;W−2,q(R2)) for any q1 ∈ (1,∞).

The first compactness criterion then yields a convergent subsequence,
which turns out to be a weak solution.
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This is a joint work with Prof. Jian-Guo Liu:

L. Li and J. Liu Some compactness criteria for weak solutions of time
fractional PDEs. Preprint.

Other references
I J. Simon, Compact sets in the space Lp(0,T ;B). Annali di Matematica pura

ed applicata
I L. Li, J. Liu and J. Lu Fractional stochastic differential equations satisfying

fluctuation-dissipation theorem. J. Stat. Phys.
I Y. Feng, L. Li, J. Liu and X. Xu Continuous and discrete one dimensional

autonomous fractional ODEs. Discrete Contin. Dyn. Syst. Ser. B

Thank you for your attention!
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